Pseudomonas delafieldii R-8脱硫代谢调控研究及组成型脱硫工程菌的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以脱硫菌Pseudomonas delafieldii R-8为研究对象,采用分子生物学和生物信息学等研究方法,开展了R-8菌脱硫代谢调控及组成型脱硫工程菌构建的研究,旨在进一步阐明脱硫代谢调控机理,为构建高活性的脱硫工程菌奠定理论基础。
     在添加了不同浓度硫酸盐的BSM培养基培养条件下,对R-8菌脱硫代谢的“硫饥饿”诱导机理进行了研究。实验结果表明以有机硫DBT为唯一硫源和添加的Na_2SO_4初始浓度小于或等于0.023 mmol/L时,能降解DBT,表现出正常的脱硫活性;而在起始浓度大于0.023 mmol/L时,R-8菌能正常生长,但脱硫活性受到抑制。该结果从细胞水平上验证了R-8菌脱硫代谢为“硫饥饿”诱导类型;通过构建融合脱硫操纵子pPR9TT穿梭表达重组质粒pRT-D,电转化消除脱硫质粒的R-8-0菌,获得了重组菌R-8-D,以R-8-D菌为研究材料,进一步从分子水平上验证了脱硫菌脱硫代谢“硫饥饿”诱导机制。当Na_2SO_4在R-8菌脱硫代谢“硫饥饿”诱导的临界浓度(0.023 mmol/L)以上时,报告基因lacZ不表达,而在低于临界浓度条件下,LacZ被诱导表达,同时还证实了脱硫基因的表达受硫酸盐的阻遏。
     采用PCR的方法,从R-8菌中克隆了脱硫基因启动子系列缺失片段,利用启动子探测型表达载体pPR9TT分别构建了含启动子缺失片段的系列重组质粒p-pPR,转化原始菌R-8获得了系列重组菌R-8-P,通过测定各重组菌中报告基因lacZ的表达量,对R-8菌脱硫基因启动子调控功能区进行了初步鉴定。实验结果表明,与正常脱硫基因启动子活性相比,脱硫基因转录起始位点上游300 bp启动子序列具100℅活性,150 bp为42%,小于75 bp活性为0。研究结果证明了脱硫基因启动子核心功能区位于上游300 bp序列内,与已报道的红平红球菌(Rhodococcus erythropolis)IGTS 8全长为385 bp的脱硫基因启动子相比,启动子全长缩短了85个核苷酸。采用生物信息学软件BPROM对R-8菌脱硫基因启动子功能区DNA序列进行预测,分析结果表明-10区序列为AGCCATGAT,-35区序列为CTGCTT,在-21~-28位点有一个ρD17蛋白结合位点。
     在上述研究结果基础上,为了获得不受硫酸盐阻遏脱硫作用的脱硫工程菌,将R-8菌中的脱硫基因dszABC和组成型gap基因启动子克隆到表达载体pPR9TT中,获得的重组质粒pRT-C转化R-8-0菌,得到了组成型工程菌R-8-C。R-8-C菌在Na_2SO_4浓度大于或等于0.1 mmol/L条件下,与原始菌R-8在以DBT为唯一硫源的培养条件下相比,其脱硫活性达93%,证明了该工程菌脱硫作用几乎不受硫酸盐阻遏。通过R-8-C菌的全细胞SDS-PAGE电泳和无细胞提取液western blotting再次验证了该工程菌能在较高硫酸盐浓度(0.1 mmol/L)存在条件下表达出脱硫酶蛋白。这些结果为阐明脱硫代谢调控机理,进一步研究脱硫基因调控机制及构建高活性的脱硫工程菌奠定了理论基础和技术支持。
Pseudomonas delafieldii R-8 is able to desulfurize dibenzothiophene (DBT) to 2-hydroxybiphenyl (2-HBP), the final product of the 4S pathway. We carried out the desulfurization metabolic regulation of strain R-8 and constitutive expressing dsz egineered strain for BDS in this paper by molecular biology and bio-informatics. These results will further reveal the mechanism of desulfurization metabolic regulation, and helpful to construct the highly activity desulfurization engineering bacteria.
     Firstly the sulfur-starvation-induced desulfurization mechanism of strain R-8 was studied which cultured in BSM medium with 0.2 mmol/L DBT and different concentrations of sulfate. The results showed that organic sulfur DBT could be used as sulfur source by strain R-8 and the desulfurization activity was induced when DBT as the sole sulfur source and the initial concentration of Na_2SO_4 less than or equal to 0.023 mmol/L in BSM. On the contrary, cultured in more than 0.023 mmol/L initial concentration of Na_2SO_4 could normally grow, but the desulfurization activity was inhibited. The results verified the mechanism of desulfurization by strain R-8 was sulfur-starvation- -induced at the cellular level. Then the dsz operon of strain R-8 was cloned into the expressing plasmid (pPR9TT) to construct recombinant plasmid pPR-D, and then pPR-D reintroduced into strain R-8-0 (strain R-8 lost plasmid containing the dsz gene cluster) to obtain engineering strain R-8-D by electrotransformation. The mechanism of desulfurization by biodesulfurization bacteria also was furtherly verified sulfur-starvation-induced at the molecular level. The expression of lacZ reporter gene in R-8-D was inhibited above the critical concentration (0.023 mmol/L) of Na_2SO_4, but it was not below the critical concentration. These results also confirmed the expression of dsz expression were repressed by sulfate.
     Secondly the dsz promoter serial deletion fragments by PCR from strain R-8 were cloned. These fragments were cloned into the promoter detection of expression vector pPR9TT to construct recombinant plasmids p-pPR, then p-pPR reintroduced into strain R-8 to obtain engineering strains R-8-P by electrotransformation, the expression of reporter gene lacZ in R-8-P were determined induced by DBT, so we can preliminary identify the dsz core promoter regulation and function region. The results showed that the desulfurization gene transcription start site upstream 300 bp promoter sequences with 100% activity, 150 bp to 42%, less than 75 bp for 0, compared with the normal dsz promoter activity in strain R-8. These results proved that dsz promoter core function region was located upstream 300 bp, which was shorter 85 nucleotides than Rhodococcus erythropolis IGTS8 reported 385 bp. Then we forecasted 300 bp promoter regulation region by BPROM, the results showed that -10 region with the sequence AGCCATGAT, -25 region of CTGCTT, andρD17 binding site is at -21 to -28.
     Finnally a constitutive engineering strain for desulfurization was constructed that called strain R-8-C which relieving the sulfate repression on the basis of those results we got. The dszABC in strain R-8 was cloned into expression vector pPR9TT with gap promoter to build a constitutive expression plasmid pgap-dsz-9TT, then reintroduced into strain R-8-0 to obtain strain R-8-C by electrotransformation. Strain R-8-C can convert dibenzothiophene into 2-hydroxybiphenyl in BSM medium with Na_2SO_4 concentration more than 0.1 mmol/L, compared with the wild type strain R-8 (DBT as the sole source of sulfur), still had 93% desulfurization activity that was not inhibited and repressed by sulfate. We also verified Dsz was expressed in strain R-8-C by the whole-cell protein SDS-PAGE electrophoresis and western blotting in the high concentration of sulfate in the presence of BSM. These results are theoretically and technically helpful for the construction of highly active and reliable desulphurization engineering strains that will not be inhibited by sulfate.
引文
1.白雪晶.硫酸盐对Rhodococcus sp. LY822脱硫代谢影响的研究及脱硫基因的克隆表达[硕士论文] .北京:中国农业科学院研究生院,2007.
    2.缑仲轩,罗明芳,李信,等.红平红球菌LSSE8-1脱硫代谢及其相关脱硫基因的比较.科学通报,2003,48(22):2343~2349.
    3.缑仲轩.专一性脱硫微生物的菌种筛选、代谢调控及相关基因研究[博士学位论文] .北京:中国科学院过程工程研究所,2004.
    4.黄玉屏,刘鹏,刘义,等.嗜盐古菌启动子DNA片段的功能检测.微生物学报, 2003, 46(2):200~204.
    5.姜成英,李磊,杨永谭,等.表面活性剂对微生物脱除柴油中有机硫的影响.过程工程学报,2002,2(2): 122~126.
    6.姜成英,刘会洲,邢建民,等.德氏假单孢杆菌菌株及其在脱除含硫有机化合物中的应用.中国专利,ZL 01115921.9,2001-05-28.
    7.姜成英,刘会洲,邢建民,等.短芽孢杆菌菌株及其在脱除含硫有机化合物中的应用.中国专利,ZL 01115920. 0,2001-05-28.
    8.姜成英,邢建民,罗明芳,等.小球诺卡氏菌菌株及其在脱除化石燃料中有机硫的应用.中国专利,ZL 02155682,2002-12.
    9.姜声华.专一性脱硫菌LY822的分离筛选及脱硫基因工程菌的构建[硕士论文] .北京:中国农业科学院研究生院,2006.
    10.李焕杰,余志坚,熊小超,等.脱硫工程菌的构建及其脱硫性能分析.生物工程学报,2008,24(12):2034~2040.
    11.李玉光,李望良,邢建民,等.石油生物脱硫过程和反应器的研究进展.化工学报,2006,57:1040~1047.
    12.刘莉,周政,采克俊,张易祥,等. EGFP-LacZ双报告基因真核表达载体的构建及体外表达.中国生物工程杂志,2009,29 (1):65~69.
    13.刘一倩.专一性脱硫微生物(Gordonia nitida LSSEJ-1)的分离鉴定和dszB基因的克隆及其发酵条件的优化[硕士论文] .北京:中国农业科学院研究生院,2002.
    14.罗明芳.细胞固定化生物脱硫工艺过程研究[博士学位论文] .北京:中国科学院过程工程研究所,2003.
    15.罗明芳,姜成英,邢建民,等.脱硫菌R-8的生长及其生物降解水中二苯并噻酚.过程工程学报,2002,2(3): 278~282.
    16.单国彬.π电子络合吸附及微生物脱硫工艺研究[博士学位论文] .北京:中国科学院过程工程研究所,2005.
    17.邢建民,刘一倩,缑仲轩,等.戈登氏菌及其在脱除含硫化合物中硫的应用.中国专利:ZL021162212.3,2002-05.
    18.熊小超,李望良,李信,等.专一性脱硫菌脱硫活性比较与基因保守性研究.微生物学报,712005,5(45):733~737.
    19.熊小超.代谢工程在生物脱硫中的应用[博士学位论文] .北京:中国科学院过程工程研究所,2007.
    20.中国环境保护总局.HJ/T342-2007.硫酸盐的测定铬酸钡分光光度法(Water quality-Determination of sulfate-barium chromate Spectrophotometry) .北京:中国环境保护总局发布稿,2007.
    21.朱焕章,曹莹莹,成国祥,等.配体依赖性Cre重组酶在培养肝细胞中介导条件性基因激活(英文).生物化学与生物物理学报,2003,35(5):435~440.
    22. Alves L., Salgueiro R., Rodrigues C., et al.. Desulfurization of dibenzothiophene, benzothiophene, and other thiophene analogs by a newly isolated bacterium, Gordonia alkanivorans strain 1B. Appl. Biochem. Biotechnol., 2005, 120(3): 199~208.
    23. Ayata M., Tinacoco R., Hernandez V., et al.. Biocatalytic oxidation of fuel as an alternative to biodesulfurization. Fuel Process. Technol., 1998, 57(2): 101~111.
    24. Bressler D.C., J.A. Norman, P.M. Fedorak. Ring cleavage of sulfur heterocycles: how does it happen? Biodegradation, 1998, 8(5): 297~311.
    25. Brown K.A.. Sulphur in the environment: a review. Environ. Pollut. Ser. ,1982, B3: 47~80.
    26. Chang J.H., Chang Y.K., Cho K.S., et al.. Desulfurization of model and diesel oils by resting cells of Gordona sp.. Biotechnol. Lett., 2000, 22(3): 193~196.
    27. Chang J.H., Chang Y.K., Ryu H.W., et al.. Desulfurization of light gas oil in immobilized-cell systems of Gordona sp. CYKS1 and Nocardia sp. CYKS2. FEMS. Microbiol. Lett., 2000, 182(2): 309~312.
    28. Chang J.H., Kim Y.J., Lee B.H., et al.. Production of a desulfurization biocatalyst by two-stage fermentation and its application for the treatment of model and diesel oils. Biotechnol. Prog., 2001, 17(5): 876~880.
    29. Chang J.H., Rhee S.K., Chang Y.K., et al.. Desulfurization of diesel oils by a newly isolated dibenzothiophene-degrading Nocardia sp. Strain, CYKS2. Biotechnol. Prog., 1998, 14(6): 851~855.
    30. Denis L., Labbe D., Bergeron H., et al.. Conservation of plasinid-encoded debenzothiophene desulfurization genes in several Rhodococci. Appl. Environ. Microbiol., 1997, 63(7): 2915~2919.
    31. Denome S.A., Oldfield C., Nash L.J., et al.. Characterization of the desulfurization genes from Rhodococcus sp. strain IGTS8. J. Bacteriol., 1994, 176(21): 6707~6716.
    32. Desomer J., Dhaese P., Montagu M.V.. Transformation of Rhodococcus fascians by high-voltage electroporation and development of R. fascians cloning vectors. Applied and environmental microbiology, 1990, 56(9): 2818~2825.
    33. Duarte G.F., Rosado A.S., Seldin L., et al.. Analysis of bacterial community structure in sulfurous-oil-containing soils and detection of species carrying dibenzothiophene desulfurization (dsz) genes. Appl. Environ. Microbiol., 2001, 67(3): 1052~1062.
    34. Egorova M.. Study of aspects of deep hydrodesulfurization by means of model reactions [PhD thesis]. Swiss Federal Institute of Technology, Zurich, Switzerland. 2003.
    35. Folsom B.R., Schieche D.R., Digrazia P.M., et al.. Microbial desulfurization of alkylated dibenzothiophenes from a hydridesulfurized middle distillate by Rhodococcus erythropolis I-19. Appl. Environ. Microbiol., 1999, 65(11): 4967~4972.
    36. Furuya T., Kirimura K., Kino K., et al.. Thermophilic biodesulfurization of dibenzothiophene and its derivatives by Mycobacterium phlei WU-F1. FEMS. Microbiol. Lett., 2001, 204(1) : 129~133.
    37. Furuya T., Takahashi S., Iwasaki Y., et al.. Gene cloning and characterization of Mycobacterium phlei flavin reductase involved in dibenzothiophene desulfurization. J. Biosci. Bioeng., 2005, 99(6): 577~585.
    38. Gallagher J.R., Olson E.S., Stanley D.C.. Microbial desulfurization of dibenzothiophene: a sulfur specific pathway. FEMS. Microbiol. Lett., 1993, 107: 31~36.
    39. Gallardo M.E., Ferra′ndez, A., De Lorenzo, et al.. Designing recombinant Pseudomonas Strains toenhance biodesulfurization. J. Bacteriol., 1997, 179(22): 7156~7160.
    40. Gray K.A., Pogrebinsky O.S., Mrachko G.T., et al.. Molecular mechanisms of biocatalytic desulfurization of fossil Fuels. Nat. Biotechnol., 1996, 14(13): 1705~1709.
    41. Gray K.A., Mrachko G.T., Squires, C.H.. Biodesulfurization of fossil fuels. Curr. Opin. Microbiol., 2003, 6(3): 229~235.
    42. Grossman M.J., Lee M.K., Prince R.C., et al.. Microbial desulfurization of a crude oil middle-distillate fraction: analysis of the extent of sulfur removal and the effect of removal on remaining sulfur. Appl. Environ. Microbiol., 1999, 65(1): 181~188.
    43. Grossman M.J., Lee M.K., Prince R.C., et al.. Deep desulfurization of extensively hydrodesulfurized middle distillate oil by Rhodococcus sp. strain ECRD-1. Appl. Environ. Microbiol., 2001, 67(4): 1949~1952.
    44. Gunam I.B.W., Yaku Y., Hirano M., et al.. Biodesulfurization of alkylated forms of dibenzothiophene and benzothiophene by Sphingomonas subarctica T7b. J. Biosci. Bioeng., 2006, 101(4): 322~327.
    45. Guobin S., Huaiying Z., Weiquan C., et al.. Improvement of biodesulfurization rate by assembling nanosorbents on the surfaces of microbial cells. Biophys. J., 2005, 89(6): 58~60.
    46. Guobin, S., Huaiying, Z., Jianmin, X., et al.. Biodesulfurization of hydrodesulfurized diesel oil with Pseudomonas delafieldii R-8 from high density culture. Biochem. Eng. J., 2006, 27(3): 305~309.
    47. Guobin S., Jianmin X., Huaiying Z., et al.. Deep desulfurization of hydrodesulfurized diesel oil by Pseudomonas delafieldii R-8. J. Chem. Technol. Biotechnol., 2005, 80(4): 420~424.
    48. Gupta N., Roychoudhury P.K., Deb, J.K.. Biotechnology of desulfurization of diesel: prospects and challenges. Appl. Microbiol. Biotechnol., 2005, 66(4): 356~366.
    49. Hanisch J., Waltermann M., Robenek H., et al.. The ralstonia eutropha H16 phasin phap1 istargeted to intracellular triacylglycerol inclusions in Rhodococcus opacus PD630 and Mycobacterium smegmatis MC2155, and provides an anchor to target other proteins. Microbiology, 2006, 152(Pt 11): 3271~3280.
    50. Ishii Y., Konishi J., Okada H., et al.. Operon structure and functional analysis of the genes encoding thermophilic desulfurizing enzymes of Paenibacillus sp. A11-2. Biochem.. Biophy. Res. Commun., 2000, 270(1): 81~88.
    51. Ishii Y., Konishi J., Suzuki M., et al.. Cloning and expression of the gene encoding the thermophillic NAD(P)H-FMN oxidoreductase coupling with the desulfurization enzymes from Paenibacillus sp. A11-2. J. Biosci Bioeng., 2000, 90(6): 591~599.
    52. Ishii Y., Kozaki S., Furuya T., et al.. Thermophilic biodesulfurization of various heterocyclic sulfur compounds and crude straight-run light gas oil fraction by a newly isolated strain Mycobacterium phlei WU-0103. Curr. Microbiol., 2005, 50(2): 63~70.
    53. John R.G., Edwin S.O, Daniel C.S.. Microbial desulfurization of dibenzothiophene: A. sulfurspecific pathway. FMS. Microbiology Letters., 1993, 107(1): 31~36.
    54. Kayser K.J., Cleveland L., Park H.S., et al.. Isolation and characterization of a moderate thermophile, Mycobacterium phlei GTIS10, capable of dibenzothiophene desulfurization. Appl. Microbiol. Biotechnol., 2002, 59(6): 737~746.
    55. Kazuaki H., Yoshitaka I., Morio K., et al.. Improvement of desulfurization activity in Rhodococcus erythropolis KA2-5-1 by genetic engneering. Biosci. Biotechnol. Biochem., 2001, 65(2): 239~246.
    56. Kertesz M.A.. Riding the sulfur cycle-metabolism of sulfonates and sulfate esters in gram-negative bacteria. FEMS. Microbiol. Rev., 1999, 24(2): 135~175.
    57. Kilbane J.J., Bielaga B.A.. Genetic study of biodesulfurization. In: Yunker and Rhee K eds, 1990, International symposium on the biological processing of coal. California: Electric Power Research Institute. Inc., Palo Alto., 1990, 2: 15~32.
    58. Kilbane J.J., Bielaga B.A.. Toward sulfur-free fuels. Chemtech., 1990, 20(12): 747~751.
    59. Kilbane J.J.. Desulfurization of coal: the microbial solution. Trends in Biotechnol., 1989, 7(4): 97~101.
    60. Kilbane J.J.. Microbial biocatalyst developments to upgrade fossil fuels. Curr. Opin. Biotechnol., 2006, 17(3): 305~314.
    61. Kilbane J.J., Le Borgne S.. Petroleum biorefining: the selective removal of sulfur, nitrogen, and metals. In Petroleum Biotechnology, Developments and Perspectives, pp. 29~65. Edited by R. Vazquez-Duhalt & R. Quintero-Ramirez. Amsterdam: Elsevier. 2004.
    62. Kilbane J.J.. Bacterial produced extracts and enzymes for cleavage of organic C-S bonds. European Patent no. 0 445 896 A2. 1991.
    63. Kirimura K., Furuya T., Nishii Y., et al.. Biodesulfurization of dibenzothiophene and its derivatives through the selective cleavage of carbon-sulfur bonds by a moderately thermophilic bacterium Bacillus subtilis WU-S2B. J. Biosci. Bioeng., 2001, 91(3): 262~266.
    64. Kirimura K., Furuya T., Sato R., et al.. Biodesulfurization of naphthothiophene and benzoth -iophene through selective cleavage of carbon-sulfur bonds by Rhodococcus sp. strain WU-K2R. Appl. Environ. Microbiol., 2002, 68(8): 3867~3872.
    65. Knoppova M., Phensaijai M., Vesely M., et al.. Plasmid vectors for testing in vivo promoter activities in Corynebacterium glutamicum and Rhodococcus erythropolis. Curr. Microbiol., 2007, 55(3): 234~239.
    66. Kobayashi M., Onaka T., Ishii Y., et al.. Desulfurization of alkylated forms of both dibenzothiophene and benzothiophene by a single bacterial strain. FEMS. Microbiol. Lett., 2000, 187(2): 123~126.
    67. Kodama K., Nakatani S., Umehara K., et al.. Microbial conversion of petro-sulfur compounds, part iii: isolation and identification of products from dibenzothiophene. Agr. Biol. Chem., 1970, 34(9): 1320~1324.
    68. Kodama K., Umehara K., Shimizu K., et al.. Identification of microbial products from dibenzothiophene and its proposed oxidation pathway. Agr. Biol. Chem., 1973, 37(1): 45~50.
    69. Komeda H., Hori Y., Kobayashi M., et al.. Transcriptional regulation of the Rhodococcus rhodochrous J1 nita gene encoding a nitrilase. Proc. Natil. Acad. of Sci. USA, 1996, 93(20): 10572~10577.
    70. Konishi J., Ishii Y., Onaka T., et al.. Purification and characterization of dibenzothiophene monooxygenase and FMN-dependent NADH oxidoreductase from the thermophilic bacterium Paenibacillus sp. Strain A11-2. J. Biosci. Bioeng., 2000, 90(6): 607~613.
    71. Konishi J., Ishi Y., Okumura K., et al.. High-temperature desulfurization by microorganisms. US Patent no. 5 925 560. 1999.
    72. Konishi J., Ishi Y., Okumura K., et al.. High-temperature desulfurization by microorganisms. US Patent no. 6 130 081. 2000.
    73. Konishi J., Ishii Y., Onaka T., et al.. Thermophilic carbon-sulfur-bond-targeted biodesulfurization. Appl. Environ. Microbiol., 1997, 63(8): 3164~3169.
    74. Kropp K.G., Fedorak P.M.. A review of the occurrence, toxicity, and biodegradation of condensed thiophenes found in petroleum. Can. J. Microbiol., 1998, 44(7): 605~622.
    75. Laborde A.L., Gibson DT.. Metabolism of dibenzothiophene by a Beijerinckia specis.Appl. Environ. Microbiol., 1977, 34(6): 783~790.
    76. Lee W.C., Ohshiro T., Matsubara T., et al.. Crystal structure and desulfurization mechanism of 2'-hydroxybiphenyl-2-sulfinic acid desulfinase. J. Biol. Chem., 2006, 281(43): 32534~32539.
    77. Lee M.K., Senius J.D., Grossman M.J.. Sulfur-specific microbial desulfurization of sterically hindered analogs of dibenzothiophene. Appl. Environ. Microbiol., 1995, 61: 4362~4366.
    78. Li F.L., Xu P., Ma C.Q., et al.. Deep desulfurization of hydrodesulfurization treated diesel oil by a facultative thermophilic bacterium Mycobacterium sp. X7B. FEMS. Microbiol.Lett., 2003, 223(2): 301~307.
    79. Li M.Z., Squires C.H., Monticello D.J., et al.. Genetic analysis of the dsz promoter andassociated regulatory regions of Rhodococcus erythropolis IGTS8. J. Bacteriol., 1996, 22(178): 6409~6418.
    80. Lu J., Fekete R.A., Frost L.S.. A rapid screen for functional mutants of TraM, an autoregulatory protein required for F conjugation. Mol. Genet. Genomics., 2003,269(2): 227~233.
    81. Maghsoudi S., Vossoughi M., Kheirolomoom A., et al.. Biodesulfurization of hydrocarbons and diesel fuels by Rhodococcus sp. strain P32C1. Biochem. Eng. J., 2001, 8: 151~156.
    82. Malik K.A.. Microbial removal of organic sulphur from crude oil and the enviroment: some new perspectives. Process. biochem. 1978, 35(9): 10~12.
    83. Marcelis C.. Anaerobic biodesulfurization of thiophenes [PhD thesis]. Wageningen University, The Netherlands. 2002.
    84. Maria Esther Gallardo, Abel Ferrández, Víctor De Lorenzo et al.. Designing recombinent Pseudomonas strain to enhance biodesulfurization. Journal of bacteriology, 1997, 179 (22): 7156~7160.
    85. Matsubara T., Ohshiro T., Nishina Y., et al.. Purification, characterization, and overexpression of flavin reductase involved in dibenzothiophene desulfurization by Rhodococcus erythropolis D-1. Appl. Environ. Microbiol., 2001, 67(3): 1179~1184.
    86. Matsui T., Hirasawa K., Koizumi K., et al.. Optimization of the copy number of dibenzothiophene desulfurizing genes to increase the desulfurization activity of recombinant Rhodococcus sp.. Biotechnol. Lett., 2001a, 23(20): 1715~1718.
    87. Matsui T., Noda K., Tanaka Y., et al.. Recombinant Rhodococcus sp. strain T09 can desulfurize DBT in the presence of inorganic sulfate. Curr. Microbiol., 2002, 45(4): 240~244.
    88. McFarland, B.L.. Biodesulfurization. Curr. Opin. Microbiol., 1999, 2(3): 257~264.
    89. Michael A., Pacheco E.A.L., Philip T.P., et al.. Recent advances in biodesulfurization of diesel fuel. NPRA annual meeting, 1999.
    90. Michèle B., Gérald D., Stéphanie P., et al.. Deep desulfurization: reactions, catalysts and technological challemges. Catalysis Today, 2003, 84(3-4): 129~138.
    91. Mohebali G, Ball A.S. Biocatalytic desulfurization (BDS) of petrodiesel fuels. Microbiology., 2008, 154(Pt 8): 2169-83.
    92. Mohebali G., Ball A.S., Kaytash A., et al.. Stabilization of water/gas oil emulsions by desulfurizing cells of Gordonia alkanivorans RIPI90A. Microbiology., 2007b, 153(5): 1573~1581.
    93. Monticello D.J.. Biodesulfurization and the upgrading of petroleum distillates. Curr. Opin. Biotechnol., 2000, 11(6): 540~546.
    94. Monticello D.J., Finnerty W.R.. Microbial desulfurization of fossil fuels. Annual Review of Microbiology, 1985, 39: 371~389.
    95. Monticello D.J.. Riding the fossil fuel biodesulfurization wave. Chemtech., 1998, 28(7): 38~45.
    96. Naito M., Kawamoto T., Fujino K., et al.. Long-term repeated biodesulfurization by immobilized Rhodococcus erythropolis KA2-5-1 cells. Appl. Microbiol. Biotechnol., 2001, 55(3): 374~378.
    97. Nekodzuka S., Toshiaki N., Nakajima K.T., et al.. Specific desulfurization of dibenzothiophene by Mycobacterium strain G3. Biocatal. Biotrans., 1996, 15(1): 21~27.
    98. Noda K., Watanabe K., Maruhashi K.. Isolation of the pseudomonas aeruginosa gene affecting uptake of dibenzothiophene in n-tetradecane. J. Biosci. Bioeng., 2003, 95(5): 504~511.
    99. Noda K., Watanabe K., Maruhashi K.. Isolation of a recombinant desulfurizing 4, 6-diproply dibenzothiophene in n-tetradecane. J. Biosci. Bioeng., 2003, 95(4): 354~360.
    100. Noda K., Watanabe K., Maruhashi K.. Cloning of Rhodococcus promoter using a transposon for dibenzothiophene biodesulfurization. Biotechnol Lett., 2003, 25(3): 1875~1882.
    101. Nomura N., Takada M., Okada H., et al.. Identification and functional analysis of genes required for desulfurization of alkyl dibenzothiophenes of Mycobacterium sp. G3. J. Biosci. Bioeng., 2005, 100(4): 398~402.
    102. Ohshiro T, Hirata T., Izumi Y.. Microbial desulfurization of dibenzothiophene in the presence of hydrocarbon. Appl. Microbiol. Biotechnol., 1995, 44(1-2): 249~252.
    103. Ohshiro T., Hine Y., Izumi Y.. Enzyme Desulfurization of dibenzothiophene by a cell-free system of Rhodococcus erythropolis D-1. FEMS. Microbiol. Lett., 1994, 118: 341~344.
    104. Ohshiro T., Hirata T., Hashimoto I., et al.. Characterization of dibenzothiophene desulfurization reaction by whole cells of Rhodococcus erythropolis H-2 in the presence of hydrocarbon. J. Ferment. Bioeng., 1996, 82(6): 610~612.
    105. Ohshiro T., Hirata T., Izumi Y.. Desulfurization of dibenzothiophene derivatives by whole cells of Rhodococcus erythropolis H-2. FEMS. Microbiol. Lett., 1996, 142(1): 65~70.
    106. Ohshiro T., Kanbayashi Y., Hine Y., et al.. Involvement of flavin coenzyme in dibenzothiophene degrading enzyme system from Rhodococcus erythrodopolis D-1. Biosci. Biotechnol. Biochem., 1995, 59(7): 1349~1351.
    107. Ohshiro T., Kojima T., Torii K., et al.. Dibenzothiophene degrading enzyme responsible for the first step of dibenzothiophene desulfurization by Rhodococcus erythropolis D-1: purification and charaterization. J. Ferment. Bioeng., 1997, 83(3): 233~237.
    108. Ohshiro T., Suzuki K., Izumi Y.. Regulation of dibenzothiophene degrading enzyme activity of Rhodococcus erythropolis D-1. J. Ferment. Bioeng., 1996, 81(2): 121~124.
    109. Oldfield C., Pogrebinsky O., Simmonds J., et al.. Elucidation of the metabolic pathway for dibenzothiophene desulphurization by Rhodococcus sp. Strain IGTS8 (ATCC 53968). Microbiology, 1997, 143: 2961~2973.
    110. Omori T., Monna L., Saiki Y., et al.. Desulfurization of dibenzothiophene by Corynebacterium sp. strain SY1. Appl. Environ. Microbiol., 1992, 58(3): 911~915.
    111. Onaka T., Konishi J., Ishii Y., et al.. Desulfurization characteristics of thermophilic Paenibacilsp. strain A11-2 against Asymmetrically Alkylated Dibenzothiophenes. J. Biosci. Bioeng., 2001, 92(2): 193~196.
    112. Piddington C.S., Kovavevich B.R., Rambosek J.. Sequence and molecular characterization of a DNA region encoding the dibenzothiophene desulfurization operon of Rhodococcus sp. Strain IGTS8. Appl. Environ. Microbial., 1995, 61(2): 468~475.
    113. Piddington C.S., Kovavevich B.R., Rambosek J.. Sequence and molecular characterizeation of a DNA region encoding the dibenzothiophene desulfurization operon of Rhodococcus sp. strain IGTS8. J. Bacteriol., 1996, 178: 6409~6418.
    114. Pope C.A., Burnett R.T., Thun M.J., et al.. Lung Cancer, Cardiopulmonary Mortality, and Long-term Exposure to Fine Particulate Air Pollution. J. Am. Med. Assoc.. 2002, 287(9) (Reprinted): 1132~1141.
    115. Rhee S.K., Chang J.H., Chang Y.K., et al.. Desulfurization of dbenzothiophene and diesel oils by a newly isolated Gordona strain, CYKS1. Appl. Environ. Microbiol., 1998, 64(6): 2327~2331.
    116. Rhods A.K.. Refinery Operating Variables Key to Enhanced Lube Oil Quality. Oil and Gas Journal.1993, 45~49.
    117. Sambrook J., Fritsch E.F., Maniatis T..Molecular Cloning. 2nd ed.金冬雁,黎孟枫译.北京:科学出版社, 1999: 6~69,575.
    118. Santos P.M., Blatny J.M., Di Bartolo I., et al.. Physiological analysis of the expression of the styrene degradation gene cluster in Pseudomonas fluorescens ST. Appl. Environ. Microbiol., 2000, 66(4): 1305~1310.
    119. Santos S.C.C., Alviano D.S., Alviano C.S., et al..Characterization of Gordonia sp. strain F.5.25.8 capable of dibenzothiophene desulfurization and carbazole utilization. Appl. Microbiol. Biotechnol., 2006, 71: 355~362.
    120. Serbolisca L., de Ferra F., Margarit I..Manipulation of the DNA coding for the desulfurizing activity in a new isolate of Arthrobacter sp.. Appl. Microbiol. Biotechnol., 1999, 52: 122~126.
    121. Shafi R., Hutchings G.J..Hydrodesulfurization of Hindered Dibenzothiophenes: An Overview. Catal. Today, 2000, 59(3): 423.
    122. Shao Z., Dick W.A., Benki R.M..An improved Escherichia coli-Rhodococcus shuttle vector and plasmid transformation in Rhodococcus sp. using electroporation. Letters in applied microbiology, 1995, 21(4): 261~266.
    123. Shao Z.Q., Behki R.. Characterization of the expression of the thcb gene, coding for a pesticide-degrading cytochrome P-450 in Rhodococcus strains. Appl. and environ. Microbiol., 1996, 62(2): 403~407.
    124. Shao Z.Q., Behki R.. Cloning of the genes for degradation of the herbicides eptc (s-ethyl dipropylthiocarbamate) and atrazine from Rhodococcus sp. strain TE1. Appl. and environ. Microbiol., 1995, 61(5): 2061~2065.
    125. Singer M.E., Finnerty W.R.. Construction of an Escherichia coli-Rhodococcus shuttle vectorand plasmid transformation in Rhodococcus spp. J. bacteriol., 1988, 170(2): 638~645.
    126. Soleimani M., Bassi A., Margaritis A..Biodesulfurization of refractory organic sulfur compounds in fossil fuels. Biotechnol. Adv., 2007, 25: 570~596.
    127. Song C..An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catal. Today , 2003, 86: 211~263.
    128. Srinivasaraghavan K., Sarma P.M., Lal B.. Comparative analysis of phenotypic and genotypic characteristics of two desulfurizing bacterial strains, Mycobacterium phlei SM120-1 and Mycobacterium phlei GTIS10. Lett. Appl. Microbiol., 2006, 42(5): 483~489.
    129. Steven C., Gilbert J.M., Sheena B., et al..Isolation of a unique benzothiophene desulphurizing bacterium, Gordona sp. strain 213E (NCIMB 40816), and characterization of the desulphurization pathway. Microbiol., 1998, 144: 2545~2553.
    130. Stipanuk M.H..Metabolism of sulfur-containing amino acids. Annu. Rev. Nutr. 1986, 6: 179~209.
    131. Tanaka Y., Onaka T., Matsui T., et al..Desulfurization of benzothiophene by the gram-negative bacterium, Sinorhizobium sp. KT55. Curr. Microbiol., 2001, 43(3): 187~191.
    132. Tanaka Y., Yoshikawa O., Maruhashi K., et al..The cbs mutant strain of Rhodococcus erythropolis KA2-5-1 expresses high levels of Dsz enzymes in the presence of sulfate. Arch. Microbiol., 2002, 178: 351~357.
    133. Van E.J.D., Duarte G.F., Keijzer W.A.. Analysis of the dynamics of fungal communities in soil via fungal-specific PCR of soil DNA followed by denaturing gradient gel electrophoresis. J. Microbiol. Methods, 2000, 43(2): 133~151.
    134. Van Hamme J.D., Singh A. , Ward O.P..Recent advances in petroleum microbiology. Microbiol. Mol. Biol. Rev., 2003, 67(4): 503~49.
    135. Wang P., Krawiec S..Kinetic analyses of desulfurization of dibenzothiophene by Rhodococcus. erythropolis in batch and fed-batch cultures. Appl. Environ. Microbiol., 1996, 62(5): 1670~1675.
    136. Watanabe K., Noda K.I., Ohta Y..Desulfurization of light gas oil by a novel recombinant strain from pseudomonas aeruginosa. Biotechnol. Lett., 2002, 24(11): 897~903.
    137. Watanabe K., Noda K., Maruhashi, K..Enhanced desulfurization in a transposon mutation strain of Rhodococcus erythropolis. Biotechnol. Lett., 2003, 25(16): 1299~1304.
    138. Wayne M.C., William E.L., Michael J.C., et al..DNA shuffleing method for generating highly recombined genes and evolved enzymes. Nature Biotechnology, 2001, 19(4): 354~359.
    139. Xiong X.C., Xing J.M., Li X., et al..Enhancement of biodesulfurization in two-liquid systems by heterogeneous expression of Vitreoscilla hemoglobin. Appl. Environ. Microbiol., 2007, 73(7): 2394~2397.
    140. Yu B., Xu P., Shi Q., et al..Deep desulfurization of diesel oil and crude oils by a newly isolated Rhodococcus erythropolis strain. Appl. Environ. Microbiol., 2006, 72(1): 54~58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700