基于虚拟现实的临场感遥操作工程机器人系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在分析国内外临场感遥操作机器人系统的基础上,设计了一种基于虚拟现实的临场感遥操作工程机器人系统。该系统采用主从操作方式,在系统主端建立工作现场的虚拟操作仿真环境为操作者提供临场感,使用力反馈操纵杆对从端的四自由度电液伺服工程机械手进行控制。主从端之间使用Internet作为控制信息与反馈信息的通信工具。系统工作时,工作现场端机械手上的位移传感器采集其位姿信息,同时立体视觉系统采集被操作物体的特征点坐标信息,这些信息通过Internet传输给主端的虚拟仿真环境,更新虚拟仿真环境中机械手及被操作物体的状态,以此作为系统的视觉反馈。从机械手上安装的压力传感器检测的机械手工作阻力信息经过相应的力反馈控制算法计算得到反馈力,并通过Internet传输给力反馈操纵杆,以此作为系统的力觉反馈。这种基于虚拟现实的遥操作方式与以现场图像作为视觉反馈的遥操作方式相比,能够大大地减小视觉反馈的时延,和实现视觉反馈与力觉反馈的同步。与基于虚拟预测环境技术进行预操作的遥操作方式相比,能够提供更真实的视觉反馈,避免了因视觉反馈不真实而造成的操作准确度不佳或操作失误。
     试验结果显示本系统的视觉反馈方式能够有效地减小遥操作系统中的时延,在实验室局域网的随机网络时延的情况下操纵杆具有符合实际情况的力反馈效果,并且操纵杆、真实机械手和虚拟机械手之间的位置同步性能良好,证明了本系统方案的可行性及有效性。
Teleoperation system with master-slave robot can work under uncertain or extreme environment instead of men. The telerobotic system with telepresence can provide the operators the visual and force feedback, which can make the operator make the right decision when taking the operation, enhance the efficiency and quanlity of the operation. The researches on the technology related with telepresence are being paid more and more attentions.
     This paper has set up a telerobot system with force telepresence and visual telepresence based on the analysis of many telerobot systems with telepresence in home and abroad. The system is mainly composed by manual controller with force feedback, 4-DOF construction robot, bilateral servo control subsystem including position servo subsystem and force telepresence subsystem, video telepresence subsystem, and the Internet communication subsystem. Also, the structures and functions of all subsystems are being discussed in great details.
     The telepresence telerobotic system based on Virtual Reality works like this: The length sensors and press sensors fitted on the robot used to measure positions of the robot joints and the resistance. These messages will be send to the virtual reality workspace to form the visual telepresence. In the meantime, the resistance will be transmitted to the manual control device and formed the force telepresence. Compared with operating with the prompt by image only, the massages are transmitted easier and quicker than the image, and the working efficiency will be improved greatly, the quality of the teleroperate will improves too. The operator can get the information on time and operator the robot on different view points. Compared with the pre-operate strategy, the visual feedback can show the real state of the robot.
     The experiments was taken in the LAN of JilinUniversity. And using the immediate force feedback control strategy, the results of the experiments show that this system has a good performance in force feedback effect and the position control, which prove that this system is efficacious and workable.
     Combining the research of theory and experiments, we have accomplished main research work as follow:
     1. Based on the research on the time delay features of telerobot systems, this paper designed a new kind of telerobot system based on Virtual Reality, and make the concept come true. The experiment shows that this system haves a good ability to control.
     2. The control information and the feedback information are transmitted by Internet based on TCP/IP protocol, which can make the stability and reliability of the data in transitions better. In the process of comunication, we set some restrain of of sending the control information, which can send only by receiving the feedback information.
     3. Analyze the kinematics formulation for 4DOF hydraulic construction robot, and established mathematics model for the relationship between hydraulic rod length and joint angle of the manipulator. These make the foundation of the 3D graphic simulation and high precision position control of the telerobot system.
     4. Build the visual feedback subsystem. The model of the robot and the scene of the work spot is build by Multigen Creator, and the information of the operating object is get by Stereo Visual System and rebuild by OpenGL, all the movements of the Virtual Reality units are driven by OpenGVS.
     5. Based on the analysis of the image feedback and virtual pre-operate telerobot system, we designed the experiment to test the time delay of the Internet and test the time delay of these teleoperate system. Through the experiment it can be see that the teleoperate system built in this paper has obvious advantages on saving the problem of time delay.
     The construction telerobotic system with telepresencebased on virtual reality gives the operator telepresence timely and effectively by the force feedback joystick and the visual feedback system, and decrease the impact of timedely on the telerobotic system efficiently. The strategy of the Internet communication and the visual feedback system has a big significance for solving the problem of the timedelay and improving the performance of telerobot system.
引文
[1] T.B.Sheridan.Telerobotics.Automatica.1989, 25(4): 487~507.
    [2] 黄玉明,遥科学-提高空间技术效益的新途径,宇航学报,1995, 16(1): 24~29.
    [3] Michael W. Telescience-A Space Station Goal. SPIE, 1985: Vol.580: 352~367.
    [4] David G, Hunter et al. Time-Delayed Remote Operation & Maintenance of Space Station Freedom. IAF-91-092, 1991.
    [5] Jungius C, et al. Towards A Telescience Program for Columbus. IAF-91-022, 1991.
    [6] 邓乐,赵丁选,李新,新的遥操作工程机器人的双向控制策略研究,工程机械,2005,7.
    [7] Ferrell W.R., Sheridan T.B., Supervisory control of remote manipulator[J], IEEE Spectrum, 81-88, 1967.
    [8] 宋爱国,黄惟一,临场感遥控作业系统的进展.高技术通讯,1996,6(6): 57~61.
    [9] 樊滨温,遥操作空间机器人系统研究,哈尔滨工业大学学报,1999,1: 111~113.
    [10] 张红芬,李科杰,申延涛,机器人触觉临场感系统研究,机器人,2000,22(5):365~370.
    [11] 田小锋,宋爱国,黄维一,力觉临场感遥操作机器人的预测控制系统设计,自动化仪表,2000,10.
    [12] 陈卫东,席裕庚,力觉临场感遥操作系统的双向控制,机器人,1998,20(3):214~219.
    [13] 邓乐,电液力反馈操纵杆及双向伺服控制技术研究,[博士学位论文],长春:吉林大学,2007,6.
    [14] 于涛,具有力觉反馈的遥操作机器人研究,[硕士学位论文],长春:吉林大学,2005,5.
    [15] 蔡鹤皋等,工业机器人与技术革命,哈尔滨工业大学科技情报,1985.
    [16] 顾俊仁译,遥控主从机械手,原子能出版社,1982.
    [17] 高松海,遥控机器人,原子能出版社,1981.
    [18] 蒋新松,机器人学导论,辽宁科学技术出版社,1994.
    [19] Frank C. Park. Computational Aspects of the Product-of-Exponentials Formula for Robot Kinematics. IEEE Transactions Automat Contr, 1994, 39(3): 643~647.
    [20] 汤宇松, 刘景泰,卢桂章,利用远程网络技术的机器人遥操作系统分析,机器人,2000,22(1):67~72.
    [21] 王庆鹏, 谈大龙, 陈宁,基于 Internet 的机器人控制中网络时延测试及分析,机器人,2001, 23(4): 316~321.
    [22] 倪涛,虚拟现实临场感遥操作工程机器人系统研究,[博士学位论文],长春:吉林大学,2002,2
    [23] 王亦红,黄惟一,宋爱国,力觉临场感遥控机器人的时延问题,自动化仪表,2002,7.
    [24] 陈俊杰,虚拟现实力觉临场感遥控作业系统理论与实验研究,[博士学位论文],南京:东南大学,2002,7.
    [25] 王树国,任倩,蔡鹤皋,利用虚拟现实和力反馈的遥现技术综述,中国机械工程,1999,10(7): 803~806.
    [26] 岳宏.基于虚拟现实触觉感知接口技术的研究与进展.机器人,2003,25(5):475~480.
    [27] 李会军,空间遥操作机器人虚拟预测环境建模技术研究, [博士学位论文],南京:东南大学,2005,9.
    [28] Furness T A., The super cockpit and its human factor challenges[M]. Proc. Bunan Factory Society,1986.
    [29] Sheridan T., Human Supervisory Control of Robot Systems[C], Proc. of IEEE Inter. Conf. on Rob. and Auto., Vol. 3, 808-812, 1986.
    [30] Bejczy A. K., Kim W. S. and Venema S. C., The Phantom Robot: Predictive Displays For Teleoperation With Time Delay[J]. IEEE Int. Conf. on Robotics and automation, 546-551,1990.
    [31] Ambrose R., Aldridge H., Askew R., Robonaut: NASA’s Space Humanoid[J], IEEE Intelligent Systems, 57-63, 2000.
    [32] Ambrose R., Savely R. T., Michael S., Mobile Manipulation using NASA’s Robonaut[C], IEEE Inter. Conf. on Robotics & Automation, 2104-2109, 2004.
    [33] Hirzinger G., Brunner B., Dietrich J., ROTEX-the first remotely controlled robot in space[C]. Proc. of IEEE Inter. Conf. on Rob. and Auto., 2604-2611, 1994.
    [34] 徐旭明,叶榛,陶品等,基于视觉临场感的机器人遥操作系统[J],高技术通讯,Vol.3, 57-60, 2000.
    [35] 王兆其,赵沁平,汪成为,虚拟仿真环境中物体物理特性的表示与处理,计算机研究与发展,35(2), 97-101, 1998.
    [36] 丑武胜,孟偲,陈建新等,空间科学实验机器人辅助?僮飨低砙J],中国空间科学技术,vol.6,7-13, 2003.
    [37] 朱广超,游松,刘毅敏,王田苗,张玉茹,张启先,机器人臂/手集成系统的图形仿真及其在遥控操作中的应用,《系统仿真学报》,Vol.12 No.6 Nov.2000.
    [38] 刘伟军,朱枫,董再励,虚拟现实辅助机器人遥操作技术研究[J],机器人,23(5),385-390,2001. [ 39] 刘威,基于虚拟现实的力觉临场感遥操作研究,[博士学位论文],南京:东南大学,2006.12.
    [40] 平尾隆行,TCP/IP 技术,北京:科学出版社,2003,2.
    [41] Laura A. Chappell, Ed Tittle 著,马海军等译,TCP/IP 协议原理与应用,清华大学出版社,北京,2005,3.
    [42] 蔡自兴,机器人学,清华大学出版社,2000,9.
    [43] 王庭树,机器人运动学及动力学.西安电子科技大学出版社,1990.
    [44] 熊有伦,机器人技术基础,华中理工大学出版社,1996,8
    [45] 蔡自兴,机器人学,清华大学出版社,2000,9.
    [46] 吴广玉,姜复兴,机器人工程导论.哈尔滨工业大学出版社,1988.3.
    [47] 孟繁华,机器人应用技术,哈尔滨工业大学出版社,1989.
    [48] 熊有伦,机器人技术基础,华中理工大学出版社,1996.8.
    [49] 王乘,周均清,李利君,Creator 可视化仿真建模技术,华中科技大学出版社,2005,3.
    [50] OpenGVS Programming Guide. Quantum 3D hrc.1999.
    [51] 刘浩,现代战斗机仿真架构与建模研究,西安:西北工业大学硕士论文,2003,02.
    [52] 任重,邵军力,立体视觉中的三目匹配方法研究,机器人,第 23 卷第 5期,2001,9.
    [53] 吕朝辉,张兆杨,安平.基于神经网络的立体视觉摄像机标定[J],机械工程学报,2003,39(9):93-96.
    [54] 孟凡,工程机器人立体视觉系统研究[D],[硕士学位论文],长春:吉林大学,2006.
    [55] 隋婧,金伟其,双目立体视觉技术的实现及其进展[J],电子技术应用,2004,30(10):4-6.
    [56] 高庆吉,洪炳熔,阮玉峰,基于异构双目视觉的全自主足球机器人导航[J],哈尔滨工业大学学报,2003,35(9):1029-1033.
    [57] 唐新星,基于立体视觉的工程机器人自主作业控制系统研究,[博士学位论文],长春:吉林大学,2008,1.
    [58] 谢海宴,立体视觉中的特点匹配算法研究,宿州学院学报,第 21 卷第 1期,2006,2:96-102.
    [59] Won S.Kim,Blake Hannaford and Antal K.Bejczy, Force-Reflection and Shared Compliant Control in Operation Telemanipulators with time delay. IEEE Transactions on Robotics and Automation Apr. 1992,176~185.
    [60] 刘毓敏,数字图声信息技术,科学出版社,2003,10.
    [61] 朱秀昌,图像通信应用系统,北京邮电大学出版社,2003,6.
    [62] 熊海国,基于 Internet 的机器人遥操作系统研究,[硕士学位论文],哈尔滨:哈尔滨理工大学,2005,3.
    [63] 巩明德,具有临场感的遥操作工程机器人系统研究,[博士学位论文],长春:吉林大学,2003.3.
    [64] Mason M. Compliance and Force Control for Computer Controlled Manipulators. IEEE Trans System Man and cybernetics,1981,SMC-11(6), 418~432.
    [66] Garentt A.Sohl, James E.Bobrow. Experiments and Simulations on the Nonlinear Control of a Hydraulic Servosystem. IEEE Transactions on ControlSystems Technology, Vol.7,No.2,March 1999,238~247.
    [67] Kron A.; Buss M.; Schmidt G. Exploration and manipulation of virtual environments using a combined hand and finger force feedback system. IEEE International Conference on Intelligent Robots and Systems Vol.2 Oct 31-Nov 5 2000, 1328~1333.
    [68] R.W.Daniel, P.R.Mcaree. Fundamental Limits of Performance for Force Reflection. International Journal of Robotics Research Aug. 1998, 811~830.
    [69] Matsuhira N, Asakura M, Bamba H. Manoeuvrability of a master-slave manipulator with different configurations and its evaluation tests [J]. Advanced Robotics, 1994,8(2): 185~203.
    [70] Wang W. et al. Passive Compliance Versus Active Compliance in Robot-based Automated Assembly Systems. Industrial Robot, 1998,25(1): 48~57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700