青藏高原狮泉河—永珠—嘉黎蛇绿混杂岩带的构造演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
狮泉河–永珠–嘉黎蛇绿混杂岩带是青藏高原一条重要的构造带,它与班公湖–怒江缝合带密切相关,均是青藏高原中部新特提斯洋演化的产物。目前,狮泉河–永珠–嘉黎蛇绿混杂岩带研究还很薄弱,在构造属性,演化时限和东段延伸等问题上存在很大争议,这直接制约了对青藏高原中部新特提斯洋演化历史的认识。
     本文选择了狮泉河–永珠–嘉黎蛇绿混杂岩带中西段发育较好的果芒错蛇绿混杂岩和中仓蛇绿混杂岩为重点研究对象,开展了详细的野外地质填图;对蛇绿混杂岩各端元岩石进行了岩相学、矿物化学、地球化学以及锆石LA–ICP–MS U–Pb定年和Lu–Hf同位素的研究;总结了狮泉河–永珠–嘉黎蛇绿混杂岩带和班公湖–怒江缝合带在蛇绿混杂岩方面已取得的研究成果,对它们的特征进行了对比分析;结合区域地层和岩浆岩等相关资料,探讨了狮泉河–永珠–嘉黎蛇绿混杂岩带的构造演化。
     果芒错蛇绿混杂岩发育完整的彭罗斯型蛇绿岩岩石组合,包括变质橄榄岩、镁铁质–超镁铁质堆晶岩、基性岩墙、枕状玄武岩、硅质岩以及少量块状铬铁矿。矿物化学和地球化学分析显示,果芒错蛇绿混杂岩形成于靠近大陆边缘具有强烈MORB特征的弧后盆地之中。部分基性岩墙具有典型E–MORB特征,可能是弧后盆地演化后期,板片回转引起地幔楔中形成新的地幔对流,导致受到俯冲板片熔体混染的地幔发生部分熔融形成E–MORB。单颗粒锆石定年结果初步限定,果芒错蛇绿混杂岩的形成时代为早侏罗世到早白垩世。果芒错蛇绿混杂岩的伴生岩石索尔碎屑岩,主要由蛇纹质碎屑和碳酸盐基质所组成,其角度不整合覆盖在果芒错变质橄榄岩之上。索尔碎屑岩的野外地质特征和岩相学特征显示,它可能是地幔橄榄岩发生破碎后受到碳酸盐热液流体交代所形成的。
     中仓蛇绿混杂岩是在达查沟地区进行1:5万区域地质调查过程中新发现的,主要由变质橄榄岩、堆晶辉长岩、辉长岩墙以及少量玄武岩和硅质岩组成。堆晶辉长岩和辉长岩墙同时具有MORB和IAB的特征,可能形成于洋内弧后盆地环境。地球化学和锆石Lu–Hf同位素特征显示,辉长岩可能是尖晶石二辉橄榄岩经过30%部分熔融形成的,并受到了俯冲流体和熔体的影响。堆晶辉长岩锆石U–Pb定年为114.3±1.4Ma和116.1±1.8Ma,辉长岩墙定年结果为113.4±1.7Ma。中仓蛇绿混杂岩可能形成于早白垩世洋内弧后盆地。
     前人在狮泉河–永珠–嘉黎蛇绿混杂岩中厘定的年龄为晚三叠世到早白垩世,镁铁质岩石主要以MORB和岛弧玄武岩特征为主,地幔源区为DDM和EM2;而班公湖–怒江缝合带中蛇绿混杂岩的形成时代为晚二叠世到早白垩世晚期,镁铁质岩石按照地球化学特征可分为MORB、岛弧玄武岩、碱性洋岛玄武岩和玻安岩,地幔源区为DDM、EM1和EM2。结合区域地层和岩浆岩等资料,班公湖–怒江缝合带可能代表了青藏高原中部新特提斯洋的主洋盆,从晚二叠世开始形成,并持续演化到早白垩世,狮泉河–永珠–嘉黎蛇绿混杂岩带为班公湖–怒江洋内弧后盆地的产物。
     狮泉河–永珠–嘉黎蛇绿混杂岩带在嘉黎以东汇入班公湖–怒江缝合带,早侏罗世晚期东段最终闭合。嘉黎以西的狮泉河–永珠–嘉黎蛇绿混杂岩带是班公湖–怒江洋南向俯冲形成的弧后盆地,规模有限、演化时限较短,在嘉黎–永珠段靠近大陆边缘,向西逐渐远离。狮泉河–永珠–嘉黎弧后盆地打开时间从晚三叠世到中侏罗世,具有东早西晚的穿时现象,晚侏罗世开始南向俯冲,至早白垩世最终闭合。
Shiquanhe–Yongzhu–Jiali ophiolitic mélange belt (SYJMB) is an important tectoniczone in Tibetan plateau and the relict of Neo–Tethys Ocean in central Tibet as well asBangong–Nujiang suture zone (BNSZ). The study of SYJMB is so limited that its attribute,evolutional time and eastward extend are still controversial, which has constituted an obstaclefor understanding the evolution of Neo–Tethys Ocean in central Tibet.
     In the thesis, the Guomangco and Zhongcang ophiolitic mélanges in middle and westernparts of SYJMB were investigated by fieldwork, petrology, mineral chemistry, geochemistry,zircon LA–ICP–MS U–Pb geochronology and Lu–Hf isotope. Based on the previous studieson ophiolitic mélanges, strata and magmatic rocks, the relation between SYJMB and BNSZand evolution of SYJMB were investigated.
     Guomangco ophiolitic mélange develops all subunits of a typical Penrose–type ophiolitepseudostratigraphy, including metamorphic peridotite, mafic–ultramafic cumulate, mafic dike,pillow basalt, siliceous and minor chromitite. Mineral chemical and geochemical analysesshow that Guomangco ophiolitic mélange are probably originated in a back–arc basin withstrong MORB–related characteristics near continental margin. The mafic dikes mostly haveE–MORB major and trace element signatures, and formed in late stage of evolution ofback–arc basin. With the evolution of back–arc basin, subducted slab gradually retreated, andnew mantle convection occurred in mantle wedge. The recycling may make themetasomatized mantle undergo high degrees of partial melting and generate E–MORBs.According to the single zircon U–Pb dating, the evolutional time of Guomangco ophioliticmélange is between Early Jurassic and Early Cretaceous. Suoer clastic rock covers theperidotite of Guomangco ophiolitic mélange in angular unconformity, and is mainly composed of clastic and groundmass. Based on the field and petrologic characteristics, anorigin of Suoer clastic rock is considered: Guomangco peridotites break and peridotitecalstics were metasomated by hydrothermal fluid of carbonate.
     Zhongcang ophiolitic mélange is new discovered during regional geological surveying inDachagou area. The ophiolitic sequence mainly consists of metamorphic peridotite, cumulategabbro and gabbro dike with minor basalt and siliceous. The cumulate gabbros and gabbrodikes have island arc and mid–ocean ridge basalt affinities, suggesting that they wereoriginated in an oceanic back arc basin. Whole rock geochemistry and high positive εNd(t)values show that these gabbros were derived from~30%partial melting of a spinel lherzolitemantle, which was enriched by interaction with slab–derived fluids and melt from sediment.U–Pb analyses of zircons from cumulate gabbros and gabbro dike yield weighted mean agesof114.3±1.4Ma,116.1±1.8Ma and113.4±1.7Ma, respectively. Zhongcang ophiolitic mélangewere probably formed in an Early Cretaceous oceanic back arc basin.
     The ages of SYJMB ophiolitic mélanges vary from Late Triassic to Early Cretaceous,and geochemistry and stratigraphic log could be connected to short–lived intra–oceanicback–arc basin origin. The ages from BNSZ ophiolitic mélanges are between Late Permianand Early Cretaceous. The BNSZ mafic rocks show variable mixing of components fromMORB–type to IAT and to OIB end–members, the mantle source of BNSZ is probablymainly composed of DDM and EM1with minor EM2. The BNSZ probably represents themain oceanic basin of Neo–Tethys ocean in central Tibet, which underwent a complexevolution.
     The SYJMB joins into BNSZ in the east of Jiali, which was closed in late Early Jurassic.The middle and western parts of SYJMB represent a short–lived back–arc basin caused bysouthward subduction of BNSZ, and the back–arc basin is near continental margin from Jialito Yongzhu. The back–arc basin opened earlier in the east and propagated westwards frommiddle Jurassic to early Cretaceous. In Late Jurassic, the back–arc basin subductedsouthward and finally closed in Early Cretaceous.
引文
1. Adachi, M., Yamamoto, K., Sugisaki, R.,1986. Hydrothermal chert and associated siliceous rocksfrom the northern Pacific their geological significance as indication od ocean ridge activity [J].Sedimentary Geology,47(1–2):125–148.
    2. Aitchison, J.C., Ali, J.R., Davis, A.M.,2007. When and where did India and Asia collide?[J]. Journalof Geophysical Research: Solid Earth,112(B5): B05423.
    3. Aitchison, J.C., Davis, A.M.,2006. The nature and age of oceanic rocks along the Bangong–Nujiangsuture zone in central Tibet,21st Himalaya–Karakoram–Tibet Workshop [J]. Journal of Asian EarthSciences, University of Cambridge, UK,122.
    4. Aldanmaz, E., Pearce, J.A., Thirlwall, M.F. et al.,2000. Petrogenetic evolution of late Cenozoic,post–collision volcanism in western Anatolia, Turkey [J]. Journal of Volcanology and GeothermalResearch,102(1–2):67–95.
    5. Allègre, C.J., Courtillot, V., Tapponnier, P. et al.,1984. Structure and evolution of the Himalaya–Tibetorogenic belt [J]. Nature,307(5946):17–22.
    6. Anonymous,1972. Penrose Field Conference on ophiolites [J]. Geotimes,17:24–25.
    7. Armstrong, H.A., Owen, A.W., Floyd, J.D.,1999. Rare earth geochemistry of Arenig cherts from theBallantrae Ophiolite and Leadhills Imbricate Zone, southern Scotland: Implications for origin andsignificance to the Caledonian Orogeny [J]. Journal of the Geological Society,156(3):549–560.
    8. Artemyev, D.A., Zaykov, V.V.,2010. The types and genesis of ophicalcites in Lower Devonianolistostromes at cobalt–bearing massive sulfide deposits in the West Magnitogorsk paleoisland arc(South Urals)[J]. Russian Geology and Geophysics,51(7):750–763.
    9. Ayuso, R.A., Haeussler, P.J., Bradley, D.C. et al.,2009. The role of ridge subduction in determiningthe geochemistry and Nd–Sr–Pb isotopic evolution of the Kodiak batholith in southern Alaska [J].Tectonophysics,464(1–4):137–163.
    10. Beccaluva, A.,1982. ophiolites and actualism: petrological constrains [J]. Ofioliti,7:109–112.
    11. Bezard, R., Hébert, R., Wang, C. et al.,2011a. Petrology and geochemistry of the Xiugugabuophiolitic massif, western Yarlung Zangbo suture zone, Tibet [J]. Lithos,125(1–2):347–367.
    12. Bezard, R., Hébert, R., Wang, C. et al.,2011b. Petrology and geochemistry of the Xiugugabuophiolitic massif, western Yarlung Zangbo suture zone, Tibet [J]. Lithos,125:347–367.
    13. Blichert–Toft, J., Albarède, F.,1997. The Lu–Hf isotope geochemistry of chondrites and the evolutionof the mantle–crust system [J]. Earth and Planetary Science Letters,148(1–2):243–258.
    14. Boudier, F., Nicolas, A.,1985. Harzburgite and lherzolite subtypes in ophiolitic and oceanicenvironments [J]. Earth and Planetary Science Letters,76(1–2):84–92.
    15. Burchfiel, B.C., Zhiliang, C., Yupinc, L. et al.,1995. Tectonics of the Longmen Shan and AdjacentRegions, Central China [J]. International Geology Review,37(8):661–735.
    16. Cabanis, B., Lecolle, M.,1989. Le diagramme La/10–Y/15–Nb/8: un outil pour la discrimination desseries volcaniques et lamise en evidence des processus demelange et/ou de contamination crustale [J].Compte Rendus de l'Academie des Sciences, Seris II,309:2023–2029.
    17. Caran,., oban, H., Flower, M.F.J. et al.,2010. Podiform chromitites and mantle peridotites of theAntalya ophiolite, Isparta Angle (SW Turkey): Implications for partial melting and melt–rockinteraction in oceanic and subduction–related settings [J]. Lithos,114(3–4):307–326.
    18. Chauvel, C., Lewin, E., Carpentier, M. et al.,2008. Role of recycled oceanic basalt and sediment ingenerating the Hf–Nd mantle array [J]. Nature Geoscience,1(1):64–67.
    19. chester钻石公司考察团, C.,1997.西藏罗布莎和东巧地幔橄榄岩中不存在原生或残留的金刚石[J].西藏地质(01):103–112.
    20. Chiu, H.Y., Chung, S.L., Wu, F.Y. et al.,2009. Zircon U–Pb and Hf isotopic constraints from easternTranshimalayan batholiths on the precollisional magmatic and tectonic evolution in southern Tibet [J].Tectonophysics,477(1–2):3–19.
    21. Choi, S.H., Shervais, J.W., Mukasa, S.B.,2008. Suprasubduction and abyssal mantle peridotites of thecoast range ophiolite, California [J]. Contributions to Mineralogy and Petrology,156(551–576).
    22. Chung, S.L., Chu, M.F., Zhang, Y. et al.,2005. Tibetan tectonic evolution inferred from spatial andtemporal variations in post–collisional magmatism [J]. Earth–Science Reviews,68(3–4):173–196.
    23. Cole, R.B., Nelson, S.W., Layer, P.W. et al.,2006. Eocene volcanism above a depleted mantle slabwindow in southern Alaska. Geological Society of America Bulletin [J],118(1–2):140–158.
    24. Coleman, R.G.,1984. The diversity of ophiolite [J]. Geologie en Mijnbouw,63:141–150.
    25. Coleman, R.G., Peterman, Z.E.,1975. Oceanic plagiogranite [J]. Journal of Geophysical Research,80(8):1099–1108.
    26. Coward, M.P., Kidd, W.S.F., Yun, P. et al.,1988. The Structure of the1985Tibet Geotraverse, Lhasato Golmud. Philosophical Transactions of the Royal Society of London [J]. Series A, Mathematicaland Physical Sciences,327(1594):307–333.
    27. Crawford, A.J.,1989. Classification, petrogenesis and tectonic setting of boninites [C]. In: Crawford,A.J.(Ed.), Boninites and related rocks. University Press, Cambridge, London,1–49.
    28. Dai, J.G., Wang, C.S., Hébert, R. et al.,2011. Petrology and geochemistry of peridotites in theZhongba ophiolite, Yarlung Zangbo Suture Zone: Implications for the Early Cretaceous intra–oceanicsubduction zone within the Neo–Tethys [J]. Chemical Geology,288(3–4):133–148.
    29. Dewey, J.F., Shackleton, R.M., Chengfa, C. et al.,1988. The Tectonic Evolution of the TibetanPlateau. Philosophical Transactions of the Royal Society of London [J]. Series A, Mathematical andPhysical Sciences,327(1594):379–413.
    30. Dilek, Y.,2003. Ophiolite concept and its evolution [J]. Geological Society of America Special Papers,373:1–16.
    31. Dilek, Y., Flower, M.F.J.,2003. Arc–trench rollback and forearc accretion:2. A model template forophiolites in Albania, Cyprus, and Oman [J]. Geological Society, London, Special Publications,218(1):43–68.
    32. Dilek, Y., Furnes, H.,2011. Ophiolite genesis and global tectonics: Geochemical and tectonicfingerprinting of ancient oceanic lithosphere [J]. Geological Society of America Bulletin,123(3–4):387–411.
    33. Dilek, Y., Furnes, H., Shallo, M.,2007. Suprasubduction zone ophiolite formation along the peripheryof Mesozoic Gondwana [J]. Gondwana Research,11(4):453–475.
    34. Dilek, Y., Furnes, H., Shallo, M.,2008. Geochemistry of the Jurassic Mirdita Ophiolite (Albania) andthe MORB to SSZ evolution of a marginal basin oceanic crust [J]. Lithos,100(1–4):174–209.
    35. Dilek, Y., Moores, E.M.,1990. Regional tectonics of the Eastern Mediterranean ophiolites [C]. In:Malpas, J., Moores, E.M., Panayiotou, A., Xenophontos, C.(Editors), Ophiolites, Oceanic CrustalAnalogues, Proceedings of the Symposium―Troodos1987‖. The Geological Survey Department,Nicosia, Cyprus,295–309.
    36. Dilek, Y., Thy, P.,1998. Structure, petrology and seafloor spreading tectonics of the KizildagOphiolite, Turkey [J]. Geological Society, London, Special Publications,148(1):43–69.
    37. Ding, L., Kapp, P., Wan, X.Q.,2005. Paleocene–Eocene record of ophiolite obduction and initialIndia–Asia collision, south central Tibet [J]. Tectonics,24: TC3001.
    38. Ding, L., Kapp, P., Zhong, D. et al.,2003. Cenozoic Volcanism in Tibet: Evidence for a Transitionfrom Oceanic to Continental Subduction [J]. Journal of Petrology,44(10):1833–1865.
    39. Dong, X., Zhang, Z., Santosh, M. et al.,2011. Late Neoproterozoic thermal events in the northernLhasa terrane, south Tibet: Zircon chronology and tectonic implications [J]. Journal of Geodynamics,52(5):389–405.
    40. Donnelly, K.E., Goldstein, S.L., Langmuir, C.H. et al.,2004. Origin of enriched ocean ridge basaltsand implications for mantle dynamics [J]. Earth and Planetary Science Letters,226(3–4):347–366.
    41. Dubois–C té, V., Hébert, R., Dupuis, C. et al.,2005. Petrological and geochemical evidence for theorigin of the Yarlung Zangbo ophiolites, southern Tibet [J]. Chemical Geology,214(3–4):265–286.
    42. Dupont–Nivet, G., Lippert, P.C., Van Hinsbergen, D.J.J. et al.,2010. Palaeolatitude and age of theIndo–Asia collision: palaeomagnetic constraints [J]. Geophysical Journal International,182(3):1189–1198.
    43. Ewart, A., Hawkesworth, C.J.,1987. The Pleistocene–Recent Tonga–Kermadec Arc Lavas:Interpretation of New Isotopic and Rare Earth Data in Terms of a Depleted Mantle Source Model [J].Journal of Petrology,28(3):495–530.
    44. Fang, Q., Bai, W., Yang, J. et al.,2009. Qusongite (WC): A new mineral [J]. American Mineralogist,94(2–3):387–390.
    45. Ferrari, O.M., Hochard, C., Stampfli, G.M.,2008. An alternative plate tectonic model for thePalaeozoic–Early Mesozoic Palaeotethyan evolution of Southeast Asia (Northern Thailand–Burma)[J]. Tectonophysics,451(1–4):346–365.
    46. Ferry, J.M., Watson, E.B.,2007. New thermodynamic models and revised calibrations for theTi–in–zircon and Zr–in–rutile thermometers [J]. Contributions to Mineralogy and Petrology,154(4):429–437.
    47. Fretzdorff, S., Livermore, R.A., Devey, C.W. et al.,2002. Petrogenesis of the Back–arc East ScotiaRidge, South Atlantic Ocean [J]. Journal of Petrology,43(8):1435–1467.
    48. Frey, F.A., Walker, N., Stakes, D. et al.,1993. Geochemical characteristics of basaltic glasses fromtheamar andfamous axial valleys, Mid–Atlantic Ridge (36°–37°N): Petrogenetic implications [J].Earth and Planetary Science Letters,115(1–4):117–136.
    49. Frezzotti, M.L., Selverstone, J., Sharp, Z.D. et al.,2011. Carbonate dissolution during subductionrevealed by diamond–bearing rocks from the Alps [J]. Nature Geoscience,4(10):703–706.
    50. Gansser, A.,1964. The Geology of the Himalayas. Wiley Interscience, London.
    51. Garfunkel, Z.,2006. Neotethyan ophiolites: formation and obduction within the life cycle of the hostbasins [J]. Geological Society, London, Special Publications,260(1):301–326.
    52. Gasperini, D., Blichert–Toft, J., Bosch, D. et al.,2000. Evidence from Sardinian basalt geochemistryfor recycling of plume heads into the Earth's mantle [J]. Nature,408(6813):701–704.
    53. Gehrels, G.E., DeCelles, P.G., Martin, A. et al.,2003. Initiation of the Himalayan Orogen as an EarlyPaleozoic Thin–skinned Thrust Belt [J]. GSA Today(9):4–9.
    54. Ghazi, J.M., Moazzen, M., Rahgoshay, M. et al.,2012. Geochemical characteristics of basaltic rocksfrom the Nain ophiolite (Central Iran); constraints on mantle wedge source evolution in an oceanicback arc basin and a geodynamical model [J]. Tectonophysics,574–575(0):92–104.
    55. Girardeau, J., Marcoux, J., Allegre, C.J. et al.,1984. Tectonic environment and geodynamicsignificance of the Neo–Cimmerian Donqiao ophiolite, Bangong–Nujiang suture zone, Tibet [J].Nature,307(5946):27–31.
    56. Girardeau, J., Marcoux, J., Fourcade, E. et al.,1985. Xainxa ultramafic rocks, central Tibet, China:Tectonic environment and geodynamic significance [J]. Geology,13(5):330–333.
    57. Girty, G.H., Hanson, A.D., Knaack, C., et al.,1994. Provenance determined by REE, Th, and Scanalyses of metasedimentary rocks, Boyden Cave roof pendant, central Sierra Nevada, California[J].Journal of Sedimentary Research,64(1b):68–73.
    58. Gribble, R.F., Stern, R.J., Bloomer, S.H. et al.,1996. MORB mantle and subduction componentsinteract to generate basalts in the southern Mariana Trough back–arc basin. Geochimica etCosmochimica Acta [J],60(12):2153–2166.
    59. Gribble, R.F., Stern, R.J., Newman, S. et al.,1998. Chemical and Isotopic Composition of Lavas fromthe Northern Mariana Trough: Implications for Magmagenesis in Back–arc Basins [J]. Journal ofPetrology,39(1):125–154.
    60. Griffin, W.L., Pearson, N.J., Belousova, E. et al.,2000. The Hf isotope composition of cratonicmantle: LAM–MC–ICPMS analysis of zircon megacrysts in kimberlites [J]. Geochimica etCosmochimica Acta,64(1):133–147.
    61. Grimes, C., John, B., Cheadle, M. et al.,2009. On the occurrence, trace element geochemistry, andcrystallization history of zircon from in situ ocean lithosphere [J]. Contributions to Mineralogy andPetrology,158(6):757–783.
    62. Gurenko, A.A., Chaussidon, M.,1995. Enriched and depleted primitive melts included in olivine fromIcelandic tholeiites: origin by continuous melting of a single mantle column [J]. Geochimica etCosmochimica Acta,59(14):2905–2917.
    63. Guynn, J.H., Kapp, P., Pullen, A. et al.,2006. Tibetan basement rocks near Amdo reveal―missing‖Mesozoic tectonism along the Bangong suture, central Tibet [J]. Geology,34(6):505–508.
    64. Hébert, R., Bezard, R., Guilmette, C. et al.,2012. The Indus–Yarlung Zangbo ophiolites from NangaParbat to Namche Barwa syntaxes, southern Tibet: First synthesis of petrology, geochemistry, andgeochronology with incidences on geodynamic reconstructions of Neo–Tethys [J]. GondwanaResearch,22(2):377–397.
    65. Hémond, C., Hofmann, A.W., Vlastélic, I. et al.,2006. Origin of MORB enrichment and relative traceelement compatibilities along the Mid–Atlantic Ridge between10°and24°N [J]. Geochemistry,Geophysics, Geosystems,7(12): Q12010.
    66. Hart, S.R.,1988. Heterogeneous mantle domains: signatures, genesis and mixing chronologies [J].Earth and Planetary Science Letters,90(3):273–296.
    67. Haskin, L.A., Haskin, M.A., Frey, F.A., et al.,1968. Relative and absolute terrestrial abundances ofthe rare earths[C]. In: Ahrens, L.H.(Ed.), Origin and distribution of the elements. Pergamon: Oxford,889–912.
    68. Hawkins, J.W.,2003. Geology of supra–subduction zones: Implications for the origin of ophiolites[C]. In: Dilek, Y., Newcomb, S.(Eds.), Ophiolite concept and the evolution of geological thought.Geological Society of America Special Paper,227–268.
    69. Hess, H.H.,1962. History of ocean basins [C]. In: Engel, A.E.J., James, H.L., Leonard, B.F.(Eds.),Petrologic studies: A volume in honor of A.F. Buddington. Geological Society of America, New York,599–620.
    70. Hoskin, P.W.O., Schaltegger, U.,2003. The Composition of Zircon and Igneous and MetamorphicPetrogenesis [J]. Reviews in Mineralogy and Geochemistry,53(1):27–62.
    71. Hsu, K.J., Pan, G., Seng r, A.M. et al.,1995. Tectonic evolution of the Tibetan Plateau: a workinghypothesis based on the archipelago model of orogenesis [J]. International Geological Review,37:473–508.
    72. Hu, D., Wu, Z., Jiang, W. et al.,2005. SHRIMP zircon U–Pb age and Nd isotopic study on theNyainqêntanglha Group in Tibet [J]. Science in China Series D: Earth Sciences,48(9):1377–1386.
    73. Hu, Z., Liu, Y., Gao, S. et al.,2012. Improved in situ Hf isotope ratio analysis of zircon using newlydesigned X skimmer cone and jet sample cone in combination with the addition of nitrogen by laserablation multiple collector ICP–MS [J]. Journal of Analytical Atomic Spectrometry,27(9):1391–1399.
    74. Huot, F., Hébert, R., Varfalvy, V. et al.,2002. The Beimarang mélange (southern Tibet) bringsadditional constraints in assessing the origin, metamorphic evolution and obduction processes of theYarlung Zangbo ophiolite [J]. Journal of Asian Earth Sciences,21(3):307–322.
    75. Ishiwatari, A.,1985. Igneous Petrogenesis of the Yakuno Ophiolite (Japan) in the context of thediversity of ophiolites [J]. Contributions to Mineralogy and Petrology,89(2–3):155–167.
    76. Jackson, M.G., Dasgupta, R.,2008. Compositions of HIMU, EM1, and EM2from global trendsbetween radiogenic isotopes and major elements in ocean island basalts [J]. Earth and PlanetaryScience Letters,276(1–2):175–186.
    77. Jarrard, R.D.,1986. Relations among subduction parameters [J]. Reviews of Geophysics,24(2):217–284.
    78. Kapp, P., Murphy, M.A., Yin, A. et al.,2003a. Mesozoic and Cenozoic tectonic evolution of theShiquanhe area of western Tibet [J]. Tectonics,22(4):1029.
    79. Kapp, P., Yin, A., Manning, C.E. et al.,2003b. Tectonic evolution of the early Mesozoicblueschist-bearing Qiangtang metamorphic belt, central Tibet [J]. Tectonics,22:1043.
    80. Lagabrielle, Y., Cannat, M.,1990. Alpine Jurassic ophiolites resemble the modern central Atlanticbasement [J]. Geology,18(4):319–322.
    81. Li, C., Zhai, Q., Dong, Y. et al.,2009. High–pressure eclogite–blueschist metamorphic belt andclosure of Paleo–Tethys Ocean in Central Qiangtang, Qinghai–Tibet Plateau [J]. Journal of EarthScience,20(2):209–218.
    82. Ludwig, K.R.,2003. ISOPLOT/Ex, version3, a geochronological toolkit for microsoft excel,4[M].Berkeley Geochronological Center Special Public.
    83. Lustrino, M.,2005. How the delamination and detachment of lower crust can influence basalticmagmatism [J]. Earth–Science Reviews,72(1–2):21–38.
    84. Lustrino, M., Rome, L.D.,2003. On the origin of EM–I end–member [J]. Journal of Mineralogy andGeochemistry,179(1):85–100.
    85. Marchig, V., Gundlach, H., Moller, P. et al.,1982. Some geochemistry indictors for discriminationbetween diagenetic and hydrothermal metalliferous sediments [J]. Marine Geology,50(3):241–256.
    86. Matte, P., Tapponnier, P., Arnaud, N. et al.,1996. Tectonics of Western Tibet, between the Tarim andthe Indus [J]. Earth and Planetary Science Letters,142(3–4):311–330.
    87. McKenzie, D., O'nions, R.K.,1991. Partial Melt Distributions from Inversion of Rare Earth ElementConcentrations [J]. Journal of Petrology,32(5):1021–1091.
    88. Metcalfe, I.,2009. Late Palaeozoic and Mesozoic tectonic and palaeogeographical evolution of SEAsia [J]. Geological Society, London, Special Publications,315(1):7–23.
    89. Metzger, E.P., Miller, R.B., Harper, G.D.,2002. Geochemistry and Tectonic Setting of the OphioliticIngalls Complex, North Cascades, Washington: Implications for Correlations of Jurassic CordilleranOphiolites [J]. The Journal of Geology,110(5):543–560.
    90. Miyashiro, A.,1974. Volcanic rock series in island arcs and active continental margins [J]. AmericanJournal of Science,274(4):321–355.
    91. Miyashiro, A.,1975. Classification, Characteristics, and Origin of Ophiolites [J]. The Journal ofGeology,83(2):249–281.
    92. Mo, X., Zhao, Z., Su, Z. et al.,2008. Complexity in ages and tectonic settings of Yarlung ZangboOphiolite Belt,33rd International Geological Congress Workshop. Abstract.
    93. Moores, E.M.,1982. origin and emplacement of ophiolites [J]. Reviews of Geophysics,20(4):735–760.
    94. Moores, E.M.,2003. A personal history of the ophiolite concept. Geological Society of AmericaSpecial Papers,373:17–29.
    95. Murray, R.W., Buchholtz Ten Brink, M.R., Gerlach, D.C., et al.,1991. Rare earth, major, and traceelements in chert from the Franciscan Complex and Monterey Group, California: Assessing REEsources to fine–grained marine sediments [J]. Geochimica et Cosmochimica Acta,55(7):1875–1895.
    96. Murray, R.W., Jone, D.L., Buchholtz Ten Brink, M.R.,1992. Diagenetic formation of bedded chert:Evidence f rom chemistry of the chert–shale couple [J]. Geology,20:271–274.
    97. Nakakuki, T., Mura, E.,2013. Dynamics of slab rollback and induced back–arc basin formation [J].Earth and Planetary Science Letters,361(0):287–297.
    98. Nie, S., Yin, A., Rowley, D.B. et al.,1994. Exhumation of the Dabie Shan ultra–high–pressure rocksand accumulation of the Songpan–Ganzi flysch sequence, central China [J]. Geology,22(11):999–1002.
    99. Niu, Y., Batiza, R.,1997. Trace element evidence from seamounts for recycled oceanic crust in theEastern Pacific mantle [J]. Earth and Planetary Science Letters,148(3–4):471–483.
    100. Niu, Y., O'Hara, M.J.,2003. Origin of ocean island basalts: A new perspective from petrology,geochemistry, and mineral physics considerations [J]. Journal of Geophysical Research: Solid Earth,108(B4):2209.
    101. Niu, Y.L.,2004. Bulk–rock Major and Trace Element Compositions of Abyssal Peridotites:Implications for Mantle Melting, Melt Extraction and Post–melting Processes Beneath Mid–OceanRidges [J]. Journal of Petrology,45(12):2423–2458.
    102. Niu, Y.L., Collerson, K.D., Batiza, R. et al.,1999. The origin of E–type MORB at ridges far frommantle plumes: The East Pacific Rise at11°20'N [J]. Journal of Geophysical Research104:7067–7087.
    103. Pan, G., Wang, L., Li, R. et al.,2012. Tectonic evolution of the Qinghai–Tibet Plateau [J]. Journal ofAsian Earth Sciences,53:3–14.
    104. Parkinson, I.J., Pearce, J.A.,1998. Peridotites from the Izu–Bonin–Mariana Forearc (ODP Leg125):Evidence for mantle melting and melt–mantle interaction in a supra–subduction zone setting [J].Journal of Petrology,39(9):1577–1618.
    105. Paulick, H., Bach, W., Godard, M. et al.,2006. Geochemistry of abyssal peridotites (Mid–AtlanticRidge,15°20′N, ODP Leg209): Implications for fluid/rock interaction in slow spreadingenvironments [J]. Chemical Geology,234(3–4):179–210.
    106. Pearce, J.A.,2008. Geochemical fingerprinting of oceanic basalts with applications to ophioliteclassification and the search for Archean oceanic crust [J]. Lithos,100(1–4):14–48.
    107. Pearce, J.A., Lippard, S.J., Roberts, S.,1984. Characteristics and tectonic significance ofsupra–subduction zone ophiolites [J]. Geological Society, London, Special Publications,16(1):77–94.
    108. Pearce, J.A., Parkinson, I.J.,1993. Trace element models for mantle melting: application to volcanicarc petrogenesis [J]. Geological Society Special Publications,76(1):373–403.
    109. Pearce, J.A., Peate, D.W.,1995. Tectonic Implications of the Composition of Volcanic ARC Magmas[J]. Annual Review of Earth and Planetary Sciences,23(1):251–285.
    110. Pearce, J.A., Robinson, P.T.,2010. The Troodos ophiolitic complex probably formed in a subductioninitiation, slab edge setting [J]. Gondwana Research,18(1):60–81.
    111. Pearce, J.A., Stern, R.J.,2006. Origin of back–arc basin magmas: Trace element and isotopeperspectives, back–Arc Spreading Systems: Geological, biological, chemical, and physicalinteractions [C]. Geophys. Monogr. Ser. AGU, Washington, DC,63–86.
    112. Pearce, J.A., Wanming, D.,1988. The Ophiolites of the Tibetan Geotraverses, Lhasa to Golmud (1985)and Lhasa to Kathmandu (1986). Philosophical Transactions of the Royal Society of London. SeriesA, Mathematical and Physical Sciences,327(1594):215–238.
    113. Polat, A.H., Herzberg, C., Munker, C. et al.,2006. Geochemical and petrological evidence for asuprasubduction zone origin of Neoarchean (ca.2.5Ga) peridotites,central orogenic belt,North Chinacraton [J]. Geological Society of America Bulletin,118(7/8):771–784.
    114. Pouchon, M.A., Curti, E., Degueldre, C. et al.,2001. The influence of carbonate complexes on thesolubility of zirconia: new experimental data [J]. Progress in Nuclear Energy,38(3–4):443–446.
    115. Pullen, A., Kapp, P., Gehrels, G.E. et al.,2008. Triassic continental subduction in central Tibet andMediterranean–style closure of the Paleo–Tethys Ocean [J]. Geology,36(5):351–354.
    116. Renna, M., Tribuzio, R.,2009. Petrology, geochemistry and U–Pb zircon geochronology of lowercrust pyroxenites from northern Apennine (Italy): insights into the post–collisional Variscan evolution[J]. Contributions to Mineralogy and Petrology,157(6):813–835.
    117. Rodkin, M.V., Rodnikov, A.G.,1996. Origin and structure of back–arc basins: new data and modeldiscussion [J]. Physics of the Earth and Planetary Interiors,93(1–2):123–131.
    118. Rowley, D.B., Pierrehumbert, R.T., Currie, B.S.,2001. A new approach to stable isotope–basedpaleoaltimetry: implications for paleoaltimetry and paleohypsometry of the High Himalaya since theLate Miocene [J]. Earth and Planetary Science Letters,188(1–2):253–268.
    119. Rudnick, R.L., Gao, S.,2003.3.01–Composition of the Continental Crust [C]. In: Heinrich, D.H.,Karl, K.T.(Eds.), Treatise on Geochemistry. Pergamon, Oxford,1–64.
    120. Sano, Y., Williams, S.N.,1996. Fluxes of mantle and subducted carbon along convergent plateboundaries [J]. Geophysical Research Letters,23(20):2749–2752.
    121. Schilling, J.G., Thompson, G., Kingsley, R. et al.,1985. Hotspot–migrating ridge interaction in theSouth Atlantic [J]. Nature,313(5999):187–191.
    122. Seewald, J.S., Seyfried Jr, W.E.,1990. The effect of temperature on metal mobility in subseafloorhydrothermal systems: constraints from basalt alteration experiments [J]. Earth and Planetary ScienceLetters,101(2–4):388–403.
    123. Seng r, A.M.C.,1984. The Cimmeride orogenic system and the tectonics of Eurasia [J]. GeologicalSociety of America Special Papers,195(1):1–74.
    124. Seng r, A.M.C.,1990. Plate tectonics and orogenic research after25years: Tethyan perspective [J].Earth Science Review,27:1–201.
    125. Seng r, A.M.C., Cin, A., Rowley, D.B. et al.,1993. Space–time patterns of magmatism along thetethysides: A preliminary study [J]. The Journal of Geology,101(1):51–84.
    126. Shervais, J.W.,1982. Ti–V plots and the petrogenesis of modern and ophiolitic lavas [J]. Earth andPlanetary Science Letters,59(1):101–118.
    127. Shervais, J.W.,2001. Birth, death, and resurrection: The life cycle of suprasubduction zone ophiolites[J]. Geochemistry Geophysics Geosystems,2:2000GC000080.
    128. Shervais, J.W., Schuman, M.M.Z., Hanan, B.B.,2005. The Stonyford volcanic complex: A forearcseamount in the northern Califonia Coast Ranges [J]. Journal of Petrology,46(10):2091–2128.
    129. Shi, R., Yang, J., Xu, Z. et al.,2008. The Bangong Lake ophiolite (NW Tibet) and its bearing on thetectonic evolution of the Bangong–Nujiang suture zone [J]. Journal of Asian Earth Sciences,32(5–6):438–457.
    130. Shi, R.D., Griffin, W.L., O'Reilly, S.Y. et al.,2012. Melt/mantle mixing produces podiform chromitedeposits in ophiolites: Implications of Re–Os systematics in the Dongqiao Neo–tethyan ophiolite,northern Tibet [J]. Gondwana Research,21:194–206.
    131. Shinjo, R., Chung, S.L., Kato, Y. et al.,1999. Geochemical and Sr–Nd isotopic characteristics ofvolcanic rocks from the Okinawa Trough and Ryukyu Arc: Implications for the evolution of a young,intracontinental back arc basin [J]. Journal of Geophysical Research: Solid Earth,104(B5):10591–10608.
    132. Sinton, J.M., Ford, L.L., Chappell, B. et al.,2003. Magma genesis and mantle heterogeneity in theManus back–arc basin, Papua New Guinea [J]. Journal of Petrology,44(1):159–195.
    133. Smith, A.G.,1993. Tectonic significance of the Hellenic–Dinaric ophiolites [J]. Geological Society,London, Special Publications,76(1):213–243.
    134. Stampfli, G.M., Borel, G.D.,2002. A plate tectonic model for the Paleozoic and Mesozoic constrainedby dynamic plate boundaries and restored synthetic oceanic isochrons [J]. Earth and PlanetaryScience Letters,196(1–2):17–33.
    135. Steinmann, G.,1927. Der ophiolitischen Zonen in der mediterranean Kettengebirgen [C].14thInternational Geological Congress in Madrid,2:638–667.
    136. Stern, R.J., Bloomer, S.H.,1992. Subduction zone infancy: Examples from the EoceneIzu–Bonin–Mariana and Jurassic California arcs [J]. Geological Society of America Bulletin,104(12):1621–1636.
    137. Sun, S.S., McDonough, W.F.,1989. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes [J]. Geological Society, London, SpecialPublications,42(1):313–345.
    138. Surour, A.A., Arafa, E.H.,1997. Ophicarbonates: calichified serpentinites from Gebel Mohagara,Wadi Ghadir area, Eastern Desert, Egypt [J]. Journal of African Earth Sciences,24(3):315–324.
    139. Tatsumi, Y.,2000. Continental crust formation by crustal delamination in subduction zones andcomplementary accumulation of the enriched mantle I component in the mantle [J]. Geochemistry,Geophysics, Geosystems,1(12):1053.
    140. Thirlwall, M.F., Smith, T.E., Graham, A.M. et al.,1994. High Field Strength Element Anomalies inArc Lavas: Source or Process?[J]. Journal of Petrology,35(3):819–838.
    141. Ulrich, M., Picard, C., Guillot, S. et al.,2010. Multiple melting stages and refertilization as indicatorsfor ridge to subduction formation: The New Caledonia ophiolite [J]. Lithos,115(1–4):223–236.
    142. Umino, S.S., Yanai, A.R., Jaman, Y. et al.,1990. The transition from spreading to subduction:Evidence from the Semail Ophiolite, northern Oman Mountains [C]. In: Malpas, J., Moores, E.M.,Panayiotou, A., Xenophontos, C.(Eds.), Ophiolites: Oceanic Crustal Analogues: Proceedings of theSymposium``Troodos1987''. Geological Survey Department, Nicosia, Cyprus,375–384.
    143. Volpe, A.M., Douglas Macdougall, J., Hawkins, J.W.,1987. Mariana Trough basalts (MTB): traceelement and SrNd isotopic evidence for mixing between MORB–like and Arc–like melts [J]. Earthand Planetary Science Letters,82(3–4):241–254.
    144. Wang, C., Liu, Z., Hébert, R.,2000. The Yarlung–Zangbo paleo–ophiolite, southern Tibet:implications for the dynamic evolution of the Yarlung–Zangbo Suture Zone [J]. Journal of AsianEarth Sciences,18(6):651–661.
    145. Wang, G., Wang, C.,2001. Disintegration and age metamorphic rocks in Qiangtang basement, Tibet,China [J]. Science in China(Series D),44(suppl):86–93.
    146. Wang, J.,2000. Geological Features of the Eastern Sector of the Bangong Co–Nujiang River SutureZone: Tethyan Evolution [J]. Acta Geologica Sinica–English Edition,74(2):229–235.
    147. Wang, W.L., Aitchison, J.C., Lo, C.H. et al.,2008. Geochemistry and geochronology of theamphibolite blocks in ophiolitic mélanges along Bangong–Nujiang suture, central Tibet [J]. Journal ofAsian Earth Sciences,33(1–2):122–138.
    148. Wang, Y., Deng, T., Biasatti, D.,2006. Ancient diets indicate significant uplift of southern Tibet afterca.7Ma [J]. Geology,34(4):309–312.
    149. Weislogel, A.L., Graham, S.A., Chang, E.Z. et al.,2010. Detrital zircon provenance from threeturbidite depocenters of the Middle–Upper Triassic Songpan–Ganzi complex, central China: Recordof collisional tectonics, erosional exhumation, and sediment production [J]. Geological Society ofAmerica Bulletin,122(11–12):2041–2062.
    150. Weislogel, A.L., Graham, S.A., Chang, E.Z. et al.,2006. Detrital zircon provenance of the LateTriassic Songpan–Ganzi complex: Sedimentary record of collision of the North and South Chinablocks [J]. Geology,34(2):97–100.
    151. Willbold, M., Stracke, A.,2010. Formation of enriched mantle components by recycling of upper andlower continental crust [J]. Chemical Geology,276(3–4):188–197.
    152. Winchester, J.A., Floyd, P.A.,1977. Geochemical discrimination of different magma series and theirdifferentiation products using immobile elements [J]. Chemical Geology,20(0):325–343.
    153. Woodhead, J.D., Eggins, S.M., Johnson, R.W.,1998. Magma Genesis in the New Britain Island Arc:Further Insights into Melting and Mass Transfer Processes [J]. Journal of Petrology,39(9):1641–1668.
    154. Workman, R.K., Hart, S.R., Jackson, M. et al.,2004. Recycled metasomatized lithosphere as theorigin of the Enriched Mantle II (EM2) end–member: Evidence from the Samoan Volcanic Chain [J].Geochemistry, Geophysics, Geosystems,5(4): Q04008.
    155. Wu, Y., Li, C., Xie, C. et al.,2013. Geochemistry and Tectonic Significance of the MetamorphicPeridotites from Longmuco–Shuanghu Ophiolitic Melange belt, Tibet [J]. Acta Geologica Sinica,87(2):801–840.
    156. Xia, B., Li, C., Ye, H.,2001. Blueschist–bearing metamorphic core complexes in the Qiangtang blockreveal deep crustal structure of northern Tibet: Comment [J]. Geology,29(7):633–634.
    157. Xu, R.H., Sch rer, U., Allègre, C.J.,1985. Magmatism and Metamorphism in the Lhasa Block (Tibet):A Geochronological Study [J]. The Journal of Geology,93(1):41–57.
    158. Xu, Y.G., Menzies, M.A., Thirlwall, M.F. et al.,2001. Exotic lithosphere mantle beneath the westernYangtze craton: Petrogenetic links to Tibet using highly magnesian ultrapotassic rocks [J]. Geology,29(9):863–866.
    159. Yamamoto, K.,1987. Geochimical characteristics and depositional environments of cherts andassociated rocks in the Franciscan and Shimanto terrenes [J]. Sedimentary Geology,52:65–108.
    160. Yang, J.S., Dobrzhinetskaya, L., Bai, W.J. et al.,2007. Diamond–and coesite–bearing chromititesfrom the Luobusa ophiolite, Tibet [J]. Geology,35(10):875–878.
    161. Yang, J.S., Chair, Y.C., Feng, B.G.,1991. Plume–type mid–ocean ridge basalt in the Bangong Lakeophiolite: geochemistry evidence [C]. In: Li, G.C., Zhou, W.Q., Nicolas, A.(Eds.), Geology of theHimalayas. Geological. Publishing House, Beijing,477–491.
    162. Yi, Z., Huang, B., Chen, J. et al.,2011. Paleomagnetism of early Paleogene marine sediments insouthern Tibet, China: Implications to onset of the India–Asia collision and size of Greater India [J].Earth and Planetary Science Letters,309(1–2):153–165.
    163. Yin, A., Harrison, T.M.,2000. Geologic Evolution of the Himalayan–Tibetan Orogen [J]. AnnualReview of Earth and Planetary Sciences,28(1):211–280.
    164. Yin, J., Xu, J., Liu, C. et al.,1988. The Tibetan Plateau: Regional Stratigraphic Context and PreviousWork. Philosophical Transactions of the Royal Society of London [J]. Series A, Mathematical andPhysical Sciences,327(1594):5–52.
    165. Zhai, Q.G., Jahn, B.M., Zhang, R.Y. et al.,2011. Triassic Subduction of the Paleo–Tethys in northernTibet, China: Evidence from the geochemical and isotopic characteristics of eclogites and blueschistsof the Qiangtang Block [J]. Journal of Asian Earth Sciences,42(6):1356–1370.
    166. Zhang, K.J., Xia, B.D., Wang, G.M. et al.,2004. Early Cretaceous stratigraphy, depositionalenvironments, sandstone provenance, and tectonic setting of central Tibet, western China [J].Geological Society of America Bulletin,116(9–10):1202–1222.
    167. Zhang, Y.C., Shi, G.R., Shen, S.C.,2012. A review of Permian stratigraphy, palaeobiogeography andpalaeogeography of the Qinghai–Tibet Plateau [J]. Gondwana Research,24(1):56–76.
    168. Zhao, J.H., Zhou, M.F.,2007. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihuadistrict (Sichuan Province, SW China): Implications for subduction–related metasomatism in theupper mantle [J]. Precambrian Research,152(1–2):27–47.
    169. Zhou, M.F., Robinson, P.T., Malpas, J. et al.,1996. Podiform Chromitites in the Luobusa Ophiolite(Southern Tibet): Implications for Melt–Rock Interaction and Chromite Segregation in the UpperMantle [J]. Journal of Petrology,37(1):3–21.
    170. Zhou, M.F., Malpas, J.G., Robinson, P.T. et al.,1997. The dynamothermal aureole of the Donqiaoophiolite (northern Tibet)[J]. Canadian Journal of Earth Sciences,34(1):59–65.
    171. Zhu, D.C., Mo, X.X., Niu, Y. et al.,2009. Zircon U–Pb dating and in–situ Hf isotopic analysis ofPermian peraluminous granite in the Lhasa terrane, southern Tibet: Implications for Permiancollisional orogeny and paleogeography [J]. Tectonophysics,469(1–4):48–60.
    172. Zhu, D.C., Zhao, Z.D., Niu, Y. et al.,2011. The Lhasa Terrane: Record of a microcontinent and itshistories of drift and growth [J]. Earth and Planetary Science Letters,301(1–2):241–255.
    173. Zou, D.B., Chen, L.K., Rao, R.B. et al.,1984. On the Triassic turbidite in the southern BayanharMountain region [J]. Contributions to the Geology of the Qinghai–Xizang (Tibet) Plateau,15:27–39.
    174.白文吉,任玉峰,杨经绥,等.2006.记录地幔中存在氧元素的自然铁2方铁矿组合[J].地球学报,27(1):43–49.
    175.白志达,徐德斌,陈梦军,等.2009.西藏安多地区粗面岩的特征及其锆石SHRIMP U–Pb定年[J].地质通报,28(09):1229–1235.
    176.白志达,徐德斌,张绪教,等.2005.中华人民共和国区域地质调查报告安多县幅比例尺1:250000[R].未发表.
    177.鲍佩声,王希斌,彭根永,1999a.中国铬铁矿床[M].科学出版社,北京.
    178.鲍佩声,肖序常,苏犁,等.2007.西藏洞错蛇绿岩的构造环境:岩石学、地球化学和年代学制约[J].中国科学(D辑:地球科学),37(03):298–307.
    179.鲍佩声,肖序常,王军,1996.西藏洞错蛇绿岩的地球化学及其生因[C].In:张旗(Ed.),蛇绿岩与地球动力学研究.地质出版社,北京,190–194.
    180.鲍佩声,肖序常,王军,等.1999b.西藏中北部双湖地区蓝片岩带及其构造涵义[J].地质学报,73(4):302–314.
    181.曹圣华,邓世权,肖志坚,等.2006.班公湖–怒江结合带西段中特提斯多岛弧构造演化[J].沉积与特提斯地质,26(4):25–32.
    182.曹圣华,廖六根,邓世权,等.2005.西藏班公湖蛇绿岩组合层序、地球化学及其成因研究[J].沉积与特提斯地质,25(03):101–110.
    183.曹晓明,邹国庆,2011.藏北东巧地区地幔岩流变学特征及构造演化[J].资源调查与环境,32(3):187–192.
    184.曾菁,李亚林,王立成,2011.西藏洞错盆地古近系丁青湖组烃源岩评价[J].新疆石油地质,32(1):11–13.
    185.曾庆高,毛国政,王保弟,等.2006.中华人民共和国区域地质调查报告改则幅比例尺1:250000[R].未发表.
    186.曾庆高,毛国政,王保弟,等.2011.中华人民共和国区域地质调查报告日干配错幅比例尺1:250000[R],武汉:中国地质大学出版社.
    187.常承法,郑锡澜,1973.中国西藏南部珠穆朗玛峰地区地质构造特征以及青藏高原东西向诸山系形成的探讨[J].中国科学(02):190–201.
    188.陈炳蔚,李永森,曲景川,1991.三江地区主要大地构造问题及其与成矿的关系[M].地质出版社,北京.
    189.陈莉,徐军,苏犁,2005.场发射环境扫描电子显微镜上阴极荧光谱仪特点及其在锆石研究中的应用[J].自然科学进展,15(11):1403–1408.
    190.陈奇,谢琳,肖志坚,2007.青藏高原西部班公湖蛇绿混杂岩带的基本特征与构造演化[J].东华理工学院学报,30(02):107–112.
    191.陈松永,2012.西藏拉萨地块中古特提斯缝合带的厘定[D].中国地质科学院
    192.陈文,张彦,陈克龙,等.2005.青海玉树哈秀岩体成因及40Ar/39Ar年代学研究[J].岩石矿物学杂志,24(5):393–396.
    193.陈文西,王剑,2009.藏北羌塘盆地晚三叠世地层特征与对比[J].中国地质,36(4):809–818.
    194.陈宣华,尹安,George,G.,等.2011.柴达木盆地东部基底花岗岩类岩浆活动的化学地球动力学[J].地质学报,85(2):157–171.
    195.陈应明,尹光侯,侯世云,等.2003.西藏察隅地区区域地层研究进展[C],中国古生物学会第21届学术年会.
    196.陈玉禄,陈国荣,张宽忠,等.2002.中华人民共和国区域地质调查报告班戈县幅比例尺1:250000[R].未发表.
    197.陈玉禄,江元生,2002.西藏班戈–切里错地区早白垩世火山岩的时代确定及意义[J].地质力学学报,8(1):43–49.
    198.陈玉禄,张宽忠,勾永东,等.2006a.中华人民共和国区域地质调查报告物玛幅比例尺1:250000[R].未发表.
    199.陈玉禄,张宽忠,李关清等,2005.班公湖一怒江结合带中段上三叠统确哈拉群与下伏岩系角度不整合关系的发现及意义[J].地质通报,24(7):621–624.
    200.陈玉禄,张宽忠,杨志民,等.2006b.青藏高原班公湖–怒江结合带中段那曲县觉翁地区发现完整的蛇绿岩剖面[J].地质通报,25(06):694–699.
    201.程立人,陈寿铭,张以春,2007.藏北羌塘南部发现早古生代地层及意义[J].地球科学,32(1):59–62.
    202.崔建堂,边小卫,王炬川,等.2006.西昆仑康西瓦南部甜水湖一带下志留统与中泥盆统不整合界面的发现[J].地质通报,25(12):1437–1440.
    203.戴紧根,2012.西藏雅鲁藏布蛇绿岩带及邻区若干关键问题的研究[D],中国地质大学(北京).
    204.邓万明,1984.藏北东巧一怒江基性,超基性岩带的岩石成因[C].In:喜马拉雅地质文集编辑委员会(Ed.),喜马拉雅地质Ⅱ.地质出版社,北京.
    205.邓万明,尹集祥,呙中平,1996.羌塘茶布一双湖地区基性超基性岩、火山岩研究[J].中国科学(D辑),26(4):296–301.
    206.董永胜,李才,2009.藏北羌塘中部果干加年山地区发现榴辉岩[J].地质通报,28(9):1197–1200.
    207.杜德道,曲晓明,王根厚,等.2011.西藏班公湖–怒江缝合带西段中特提斯洋盆的双向俯冲:来自岛弧型花岗岩锆石U–Pb年龄和元素地球化学的证据[J].岩石学报,27(7):1993–2002.
    208.段其发,王建雄,何龙清等,2006.青海南部金沙江缝合带二叠纪硅质岩地球化学特征及沉积环境[J].华南地质与矿产(3):24–30.
    209.樊帅权,史仁灯,丁林,等.2010.西藏改则蛇绿岩中斜长花岗岩地球化学特征、锆石U–Pb年龄及构造意义[J].岩石矿物学杂志,29(05):467–478.
    210.冯彩霞,2011.班公湖–怒江缝合带西段改则硅质岩地球化学特征及沉积环境[J].矿床地质,30(05):773–786.
    211.冯晔,廖六根,徐平,2005.西藏班公湖蛇绿岩地质特征及形成时代[J].资源调查与环境,26(03):185–192.
    212.付修根,2008.北羌塘中生代沉积盆地演化及油气地质意义[D].中国地质科学院
    213.高顺宝,郑有业,王进寿,等.2011.西藏班戈地区侵入岩年代学和地球化学:对班公湖–怒江洋盆演化时限的制约[J].岩石学报,27(7):1973–1982.
    214.耿全如,潘桂棠,王立全,等.2011.班公湖–怒江带、羌塘地块特提斯演化与成矿地质背景[J].地质通报,30(8):1261–1274.
    215.耿全如,王立全,潘桂棠,等.2007.西藏冈底斯带石炭纪陆缘裂陷作用:火山岩和地层学证据[J].地质学报,18(9):1259–1276.
    216.郭铁鹰,梁定益,张宜智,等.1991.西藏阿里地质[M].中国地质大学出版社,武汉.
    217.和钟铧,杨德明,王天武,2006a.西藏嘉黎断裂带凯蒙蛇绿岩的年代学、地球化学特征及大地构造意义[J].岩石学报,22(02):653–660.
    218.和钟铧,杨德明,王天武,等.2006b.西藏比如盆地竟柱山组沉积–火山岩形成环境及构造意义[J].沉积与特提斯地质,26(1):8–12.
    219.侯青叶,赵志丹,张本仁,等.2006.青藏高原东北缘特提斯构造域界线的探讨[J].岩石学报,22(3):567–577.
    220.胡承祖,1990.狮泉河—古昌—永珠蛇绿岩带特征及其地质意义[J].成都地质学院学报,17(01):23–30.
    221.胡健民,孟庆任,石玉若,等.2005.松潘–甘孜地体内花岗岩锆石SHRIMP U–Pb定年及其构造意义[J].岩石学报,21(3):867–880.
    222.黄启帅,史仁灯,丁炳华,等.2012.班公湖MOR型蛇绿岩Re–Os同位素特征对班公湖–怒江特提斯洋裂解时间的制约[J].岩石矿物学杂志,31(4):465–478.
    223.黄婉康,王岩国,张旗,等.1993.丁青和新喀里多尼亚玻安岩类的辉石及其超微结构[J].矿物学报,13(02):115–123,198–199.
    224.简平,汪啸风,何龙清,1999.金沙江蛇绿岩中斜长岩和斜长花岗岩的U–Pb年龄及地质意义[J].岩石学报:590–594.
    225.江新胜,董永胜,罗建宁,等.2006.喜马拉雅-冈底斯造山带地层与古生物.未发表.
    226.姜春发,杨经绥,1984.班公湖蛇绿混杂带特征简介[J].中国地质(06):26–27.
    227.蒋光武,谢尧武,白珍平,等.2009.青藏高原班公湖–怒江缝合带丁青–碧土段大地构造演化[J].地质通报,28(9):1259–1266.
    228.金贵善,2006.西金乌兰–金沙江缝合带西段部分岩浆岩地质年代学及地球化学特征[D].中国地质科学院
    229.康志强,许继峰,董彦辉,等.2008.拉萨地块中北部白至纪则弄群火山岩Slainajap洋南向俯冲的产物?[J].岩石学报,24(2):303–314.
    230.康志强,许继峰,王保弟,等.2010.拉萨地块北部去申拉组火山岩:班公湖–怒江特提斯洋南向俯冲的产物?[J].岩石学报,26(10):3106–3116.
    231.康志强,许继峰,王保弟,等.2009.拉萨地块北部白垩纪多尼组火山岩的地球化学:形成的构造环境[J].地球科学——中国地质大学学报,34(1):89–103.
    232.赖绍聪,刘池阳,2003.青藏高原安多岛弧型蛇绿岩地球化学及成因[J].岩石学报,19(04):675–682.
    233.黎彤,1987.地壳元素丰度的若干统计特征[J].地质与勘探,28(10):1–7.
    234.李才,1987.龙木错–双湖–澜沧江板块缝合带与石炭二叠纪冈瓦纳北界[J].长春地质学院学报,17(2):155–166.
    235.李才,2003.羌塘基底质疑[J].地质论评,49(1):5–9.
    236.李才,2008.青藏高原龙木错一双湖一澜沧江板块缝合带研究二十年[J].地质论评,54(1):105–119.
    237.李才,程立人,胡克,1995.西藏龙木错一双湖古特提斯缝合带研究[M].地质出版社,北京.
    238.李才,程立人,张以春,等.2004a.西藏羌塘南部发现奥陶纪一泥盆纪地层[J].地质通报,23(5–6):602–604.
    239.李才,和钟铧,李惠民,2004b.青藏高原南羌塘基性岩墙群U–Pb和Sm–Nd同位素定年及构造意义[J].中国地质,31(4):384–389.
    240.李才,翟刚毅,王立全,等.2009.认识青藏高原的重要窗口──羌塘地区近年来研究进展评述(代序)[J].地质通报,28(9):1169–1177.
    241.李才,翟庆国,陈文,2007.藏高原龙木错一双湖板块缝合带闭合的沉积学证据——来自果干加年山蛇绿岩与流纹岩Ar–Ar和SHRIMP年龄制约[J].岩石学报,23(5):911–918.
    242.李才,翟庆国,程立人,等.2005.青藏高原羌塘地区几个关键地质问题的思考[J].地质通报,24(4):295–301.
    243.李才,翟庆国,董永胜,等.2006.青藏高原羌塘中部发现榴辉岩及其意义[J].科学通报,51(1):70–74.
    244.李达周,张旗,张魁武,1988.西藏丁青地区与玻镁安山岩类有关的蛇绿岩的矿物学特征[J].岩石矿物学杂志(03):235–243.
    245.李德威,2008.青藏高原及邻区三阶段构造演化与成矿演化[J].地球科学-中国地质大学学报,33(6):723–742.
    246.李光明,雍永源,2000.藏北那曲盆地中–上侏罗统拉贡塘组浊流沉积特征及微量元素地球化学[J].地球学报21(4):373–378.
    247.李红生,1988.西藏丁青地区早侏罗世放射虫[J].微体古生物学报,5(03):323–330.
    248.李化启,2009.拉萨地体中的印支期造山作用及其地质意义[D].中国地质科学院
    249.李秋生,王建平,1996.西藏东部丁青——怒江蛇绿混杂岩带的地质特征[C].In:张旗(Ed.),蛇绿岩与地球动力学研究.地质出版社,北京,195–198.
    250.李伟,2012.西藏改则地区去申拉组火山岩地球化学特征及锆石年代学制约[D],中国地质大学(北京).
    251.李星学,姚兆奇,朱家楠等,1982.西藏北部双湖地区晚二叠世植物群.西藏古生物(第五分册)[M].科学出版社,北京.
    252.李永飞,王娟,2005.羌塘地块南界班公湖–丁青断裂构造带火山岩地球化学及其形成构造环境[J].西北地质,38(01):15–25.
    253.李永铁,罗建宁,卢辉楠等,2001.青藏高原地层[M].科学出版社,北京.
    254.梁定益,聂泽同,董文彤,等.2000.藏南聂拉木地区上三叠统与侏罗系中伸展不整合以及各组地层的厘[J].现代地质,14(9):333–341.
    255.林文第,陈德泉,1990.藏北改则—色哇地区的蛇绿岩特征[J].成都地质学院学报,17(02):17–25.
    256.刘登忠,陶晓风,马润则,等.2003.中华人民共和国区域地质调查报告措勤县幅比例尺1:250000[R].未发表.
    257.刘飞,陈岳龙,苏本勋,等.2006.松潘–甘孜地区三叠系碎屑沉积岩地球化学特征及其锆石年龄研究[J].地球学报,27(4):289–296.
    258.刘文斌,钱青,岳国利,等.2002.西藏丁青弧前蛇绿岩的地球化学特征[J].岩石学报,18(03):392–400.
    259.刘训,傅德荣,姚培毅,1992.青藏高原不同地体的地层,生物区系及沉积构造演化史[M].地质出版社,北京.
    260.刘增乾,徐宪,潘桂棠,1990.青藏高原大地构造与形成演化[M].地质出版社,北京.
    261.卢书炜,张良,杜凤军,等.2004.尼玛区幅、热布喀幅地质调查新成果及主要进展[J].地质通报,23(5–6):516–519.
    262.路凤香,桑隆康,2002.岩石学[M].地质出版社,北京.
    263.罗伟,2010.西藏日土蛇绿岩中超基性岩地球化学特征及其含矿性评价[D].成都理工大学.
    264.罗照华,莫宣学,万渝生,等.2006.青藏高原最年轻碱性玄武岩SHRIMP年龄的地质意义[J].岩石学报,22(3):578–584.
    265.吕杰,2010.青藏高原侏罗纪羌塘盆地构造–古地理和盆地演化[D],成都理工大学.
    266.莫宣学,董国臣,赵志丹,等.2005.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息[J].高校地质学报,11(3):281–290.
    267.尼玛次仁,谢尧武,沙昭礼,等.2005.中华人民共和国区域地质调查报告那曲县幅比例尺1:250000[R].未发表.
    268.潘桂棠,陈智梁,李兴振等,1997.东特提斯地质构造形成演化[M].地质出版社,北京.
    269.潘桂棠,丁俊,姚东生,等.2004a.青藏高原及邻区1:1500000地质图说明书[M].成都:成都地图出版社.
    270.潘桂棠,莫宣学,侯增谦,等.2006.冈底斯造山带的时空结构及演化[J].岩石学报,22(3):521–533.
    271.潘桂棠,朱弟成,王立全,等.2004b.班公湖—怒江缝合带作为冈瓦纳大陆北界的地质地球物理证据[J].地学前缘,11(4):371–382.
    272.潘裕生,1984.班公湖–怒江带中段构造性质探讨[J].地质科学(2):139–148.
    273.彭兴阶,陈应明,2000.西藏察隅地区中侏罗世马里组——兼论―春节桥组‖的时代[J].中国区域地质,19(3):272–275.
    274.强巴扎西,谢尧武,吴彦旺,等.2009.藏东丁青蛇绿岩中堆晶辉长岩锆石SIMS U–Pb定年及其意义[J].地质通报,28(9):1253–1258.
    275.邱瑞照,邓晋福,周肃,等.2005.青藏高原西部蛇绿岩类型:岩石学与地球化学证据[J].地学前缘,12(2):277–291.
    276.邱瑞照,肖润,周肃,等.2002.藏北班公湖——怒江带舍玛拉沟蛇绿岩中辉长岩Sm–Nd定年和Sr、Nd同位素研究[J].地质论评,48(S1):64–68.
    277.邱瑞照,周肃,邓晋福,等.2004.西藏班公湖—怒江西段舍马拉沟蛇绿岩中辉长岩年龄测定——兼论班公湖—怒江蛇绿岩带形成时代[J].中国地质,31(3):262–268.
    278.曲晓明,王瑞江,辛洪波,等.2009.西藏西部与班公湖特提斯洋盆俯冲相关的火成岩年代学和地球化学[J].地球化学,38(6):523–535.
    279.曲晓明,辛洪波,赵元艺,等.2010.西藏班公湖中特提斯洋盆的打开时间:镁铁质蛇绿岩地球化学与锆石U–Pb LAICPMS定年结果[J].地学前缘(3):53–63.
    280.曲永贵,刘贵忠,郑春子,等.2003a.西藏北部班戈地层分区下白垩统郎山组、康曲组和余穷组地层层序研究[J].地层学杂志27(3):220–226.
    281.曲永贵,王永胜,段建祥,等.2011.中华人民共和国区域地质调查报告多巴区幅比例尺1:250000[R],武汉:中国地质大学出版社.
    282.曲永贵,张树岐,郑春子,等.2003b.西藏北部永珠蛇绿岩带晚侏罗世—早白垩世日拉组、日拉组索尔碎屑岩及生物群特征[J].地质通报,22(11–12):959–963.
    283.饶荣标,徐继范,陈永明,1987.青藏高原的三叠系[M].地质出版社,北京.
    284.任纪舜,1999.中国及邻区大地构造图[M].地质出版社,北京.
    285.施倪承,白文吉,李国武,等.2009.雅鲁矿:一种金属碳化物新矿物[J].地质学报,83(1):25–30.
    286.施倪承,白文吉,马喆生,等.2002.西藏罗布莎铬铁矿床中的金刚石包体X射线衍射研究[J].地质学报,76(4):496–500.
    287.史仁灯,2005.西藏班公湖MOR型和SSZ型两套蛇绿岩的厘定及大地构造意义[D].中国地质科学院.
    288.史仁灯,2007.班公湖SSZ型蛇绿岩年龄对班–怒洋时限的制约[J].科学通报,52(02):223–227.
    289.史仁灯,杨经绥,许志琴,等.2004.西藏班公湖蛇绿混杂岩中玻安岩系火山岩的发现及构造意义[J].科学通报,49(12):1179–1184.
    290.孙立新,白志达,徐德斌,等.2011.西藏安多蛇绿岩中斜长花岗岩地球化学特征及锆石U–PbSHRIMP年龄[J].地质调查与研究,34(01):10–15.
    291.汤耀庆,王方国,1984.藏北湖区蛇绿岩形成环境浅析[C].In:喜马拉雅地质文集编辑委员会(Ed.),喜马拉雅地质Ⅱ.地质出版社,北京,115–139.
    292.唐峰林,黄建村,罗小川,等.2004.藏北阿索构造混杂岩的发现及其地质意义[J].东华理工学院学报,27(03):245–250.
    293.涛,孙.,王成善,李亚林,等.2013.西藏尼玛盆地古近系牛堡组烃源岩生烃潜力及分子地球化学特征[J].矿物岩石地球化学通报,32(2):243–251.
    294.汪啸风,Ian,M.,平,简.,等.1999.金沙江缝合带构造地层划分及时代厘定[J].中国科学(D辑),29(4):289–297.
    295.王保弟,许继峰,曾庆高,等.2007.西藏改则地区拉果错蛇绿岩地球化学特征及成因[J].岩石学报,23(06):1521–1530.
    296.王成善,戴紧根,刘志飞,等.2009.西藏高原与喜马拉雅的隆升历史和研究方法:回顾与进展[J].地学前缘,16(3):1–30.
    297.王成善,胡承祖,吴瑞忠,等.1987.西藏北部查布—查桑裂谷的发现及其地质意义[J].成都地质学院学报,14(2):33–46.
    298.王成善,李祥辉,胡修棉,2003.再论印度–亚洲大陆碰撞的启动时间[J].地质学报,77(1):16–24.
    299.王成善,刘志飞等,1999.西藏日喀则弧前盆地与雅鲁藏布江缝合带[M].地质出版社,北京.
    300.王成善,伊海生,李勇等,2001.羌塘盆地地质演化与油气远景评价[M].地质出版社,北京.
    301.王根厚,梁定益,刘文灿,等.2000.藏南海西以来伸展运动及伸展作用[J].现代地质,14(2):443–453.
    302.王根厚,张维杰,周详,等.2008.西藏东部嘉玉桥变质杂岩内中侏罗世高压剪切作用:来自多硅白云母的证据[J].岩石学报,24(02):395–400.
    303.王恒升,白文吉,王炳熙,1983.中国铬铁矿床及成因[M].科学出版社,北京.
    304.王鸿祯,1985.中国古地理图集[M].地图出版社,北京.
    305.王建平,2003.西藏东部特提斯地质[M].科学出版社,北京.
    306.王建平,刘彦明,李秋生,等.2002.西藏班公湖–丁青蛇绿岩带东段侏罗纪盖层沉积的地层划分[J].地质通报,21(07):405–410.
    307.王剑,谭富文,李亚林等,2004.青藏高原重点沉积盆地油气资源潜力分析[M].地质出版社,北京.
    308.王权,董挨管,段春森等,2004.西藏北部拉竹龙地区泥盆纪岩石地层划分与时代讨论[J].沉积与特提斯地质,24(3):30–37.
    309.王权,续世朝,魏荣珠,2006a.青藏高原羌塘北部托和平错一带二叠系展金组火山岩的特征及构造环境[J].地质通报,25(1–2):295–301.
    310.王权,续世朝,魏荣珠,等.2006b.青藏高原羌塘北部托和平错一带二叠系展金组火山岩的特征及构造环境[J].地质通报,25(1–2):295–301.
    311.王希斌,鲍佩声,邓万明,等.1987.喜马拉雅岩石圈构造演化–西藏蛇绿岩[M].地质出版社,北京.
    312.王希斌,鲍佩声,戎合,1995.中国蛇绿岩中变质橄榄岩的稀土元素地球化学[J].岩石学报,11(增刊):24–41.
    313.王永锋,郑有业,金振民,2005.西藏东巧方辉橄榄岩的显微构造特征及其流变学意义[J].地球科学,30(01):52–60.
    314.王永胜,曲永贵,吕鹏,等.2003.西藏永珠蛇绿岩带地质特征[J].吉林地质,22(02):1–14.
    315.王永胜,张树岐,谢元和,等.2012a.中华人民共和国区域地质调查报告昂达尔错幅比例尺1:250000[R],武汉:中国地质大学出版社.
    316.王永胜,张树岐,谢元和,等.2012b.中华人民共和国区域地质调查报告帕度错幅比例尺1:250000[R],武汉:中国地质大学出版社.
    317.王永文,王玉德,李善平,等.2004.西金乌兰构造混杂岩特征[J].西北地质,37(3):15–20.
    318.王玉净,王建平,刘彦明,等.2002a.西藏丁青蛇绿岩特征、时代及其地质意义[J].微体古生物学报,19(04):417–420.
    319.王玉净,王建平,裴放,2002b.西藏丁青蛇绿岩带中一个晚三叠世放射虫动物群[J].微体古生物学报,19(04):323–336.
    320.王忠恒,王永胜,谢元和,等.2005.西藏班公湖–怒江缝合带中段塔仁本洋岛型玄武岩的发现及地质意义[J].沉积与特提斯地质,25(1–2):155–162.
    321.韦振权,2007.西藏蓬湖西蛇绿岩岩石学、地球化学和榴辉岩中的出溶物及其构造意义.博士Thesis,中国科学院研究生院(广州地球化学研究所).
    322.韦振权,夏斌,张玉泉等,2006.西藏休古嘎布蛇绿岩中辉绿岩锆石SHRIMP定年及其地质意义[J].大地构造与成矿学(1):93–97.
    323.韦振权,夏斌,周国庆,等.2007.西藏丁青宗白蛇绿混杂岩地球化学特征及其洋中脊叠加洋岛的成因[J].地质论评,53(2):187–197.
    324.吴浩,李才,胡培远,等.2013.西藏尼玛县塔色普勒地区去申拉组火山岩的发现及其地质意义[J].地质通报,32(7):1014–1026.
    325.吴浩若,1993.滇西金沙江带早石炭世深海沉积的发现[J].地质科学,4:395–397.
    326.吴浩若,2000.西藏南部下鲁硅质岩晚侏罗世罩笼虫(放射虫)新材料[J].现代地质,14(3):301–306.
    327.吴李泉,曹代勇,2002.藏北地区中上侏罗统接奴群沉积特征及油气远景[J].地球学报,23(5):447–452.
    328.吴彦旺,2013.龙木错-双湖-澜沧江洋历史记录--寒武纪-二叠纪的蛇绿岩[D],吉林大学.
    329.武景龙,2011.班公湖—怒江结合带地质特征[J].内蒙古石油化工(01):130–131.
    330.武景龙,朱利东,杨文光,等.2011.尼玛盆地南部古近系牛堡组沉积特征及其地质意义[J].华南地质与矿产,27(1):59–63.
    331.西藏地矿局,1995.1:20万波密幅区域地质调查报告,未发表.
    332.西藏地质矿产局,1997.西藏自治区岩石地层[M].中国地质大学出版社,武汉.
    333.西藏自治区地质矿产局,1993.西藏自治区区域地质志[M].地质出版社,北京.
    334.西藏自治区地质调查院,2005.中华人民共和国区域地质调查报告丁青县幅比例尺1:250000[R].未发表.
    335.夏斌,1993.喜马拉雅及邻区蛇绿岩和地体构造图说明书[M].甘肃科学技术出版社,兰州.
    336.夏斌,李建峰,刘立文等,2008a.西藏桑桑蛇绿岩辉绿岩SHRIMP锆石U–Pb年龄:对特提斯洋盆发育的年代学制约[J].地球化学(4):399–403.
    337.夏斌,徐力峰,韦振权,等.2008b.西藏东巧蛇绿岩中辉长岩锆石SHRIMP定年及其地质意义[J].地质学报,82(04):528–531.
    338.夏军,钟华明,童劲松等,2006.藏北龙木错东部三岔口地区下奥陶统与泥盆纪的不整合界面.地质通报,25(1–2):113–117.
    339.向树元,泽仁扎西,田立富,等.2005b.中华人民共和国区域地质调查报告边坝县幅比例尺1:250000[R].未发表.
    340.肖序常,1995.从扩张速率试论蛇绿岩的类型划分[J].岩石学报,11(增刊):10–23.
    341.肖序常,李廷栋,李光岑等,1988.喜马拉雅岩石圈构造演化一总论[J].地质出版社,北京.
    342.谢国刚,廖思平,罗小川,等.2003.西藏尼玛地区古近纪美苏组的建立[J].地质通报,22(5):341–345.
    343.谢国刚,邹爱建,袁建芽,等.2002.中华人民共和国区域地质调查报告邦多区幅比例尺1:250000[R].未发表.
    344.谢尧武,彭兴阶,陈德泉,等.2007a.中华人民共和国区域地质调查报告八宿县幅、贡觉县幅、然乌区幅、芒康县幅比例尺1:250000[R].未发表.
    345.谢尧武,彭兴阶,陈应明,等.2007b.中华人民共和国区域地质调查报告巴昔卡幅、察隅县幅、德钦县幅、巴沙幅、曼加得幅比例尺1:250000[R].未发表.
    346.熊,唐.,陶晓风,2009.措勤地区竟柱山组沉积特征及构造意义[J].沉积与特提斯地质,29(1):53–57.
    347.熊盛青,周伏洪,姚正煦等,2001.青藏高原中西部航磁调查[M].地质出版社,北京.
    348.徐力峰,夏斌,李建峰,等.2010.藏北湖区拉弄蛇绿岩枕状玄武岩地球化学特征及其成因[J].大地构造与成矿学,34(01):105–113.
    349.徐平,梅丽辉,江俊杰,等.2010.西藏班公湖蛇绿混杂岩带演化特征[J].地质学刊,34(02):117–122.
    350.徐向珍,2009.藏南康金拉豆荚状铬铁矿和地幔橄榄岩成因研究[D].中国地质科学院
    351.徐向珍,杨经绥,巴登珠,等.2008.雅鲁藏布江蛇绿岩带的康金拉铬铁矿中发现金刚石[J].岩石学报,24(7):1453–1462.
    352.许荣科,邛,茨.,庞振甲,等.2004.中华人民共和国区域地质调查报告斯诺乌山幅、狮泉河幅比例尺1:250000[R].未发表.
    353.许志琴,候立炜,王宗秀等,1992.中国松潘一甘孜造山带的造山过程[M].地质出版社,北京.
    354.许志琴,杨经绥,梁凤华,等.2005.喜马拉雅地体的泛非一早古生代造山事件年龄记录[J].岩石学报,21(1):1–12.
    355.杨超,2010.柴达木盆地构造特征及石炭系勘探前景[D],中国石油大学.
    356.杨德明,胡波,董清水,等.2009.西藏嘉黎巴嘎地区早白垩世多尼组地层特征与沉积环境[J].世界地质,28(3):280–283.
    357.杨经绥,白文吉,方青松,等.2008.西藏罗布莎蛇绿岩铬铁矿中的超高压矿物和新矿物(综述)[J].地球学报,29(3):263–274.
    358.杨经绥,白文吉,方青松,等.2004.西藏罗布莎豆荚状铬铁矿中发现超高压矿物柯石英[J].地球科学——中国地质大学学报,29(6):651–660.
    359.杨经绥,徐向珍,李源,等.2011.西藏雅鲁藏布江缝合带的普兰地幔橄榄岩中发现金刚石:蛇绿岩型金刚石分类的提出[J].岩石学报,27(11):3171–3178.
    360.杨经绥,许志琴,耿全如,等.2006.中国境内可能存在一条新的高压/超高压(?)变质带——青藏高原拉萨地体中发现榴辉岩带[J].地质学报,80(12):1787–1792.
    361.杨日红,才,李.,迟效国,等.2003.西藏永珠–纳木湖蛇绿岩地球化学特征及其构造环境初探[J].现代地质,17(1):14–19.
    362.杨瑞英,黄忠祥,邓万明,1986.藏北火山岩的微量元素特征——关于弧后盆地演化的地球化学证据[J].核技术(02):17–20+59.
    363.姚正煦,周伏洪,薛典军,等.2001.雅鲁藏布江航磁异常带性质及其意义[J].物探与化探,25(4):241–252.
    364.叶培盛,吴珍汉,胡道功,等.2004b.西藏东巧蛇绿岩的地球化学特征及其形成的构造环境[J].现代地质,18(03):309–315.
    365.叶培盛,吴珍汉,胡道功,等.2004a.西藏纳木错西岸蛇绿岩的地球化学特征及其形成环境[J].现代地质,18(2):237–243.
    366.叶培盛,吴珍汉,胡道功,等.2005.西藏永珠–果芒错蛇绿岩的地球化学特征及其构造意义[J].现代地质,19(4):508–514.
    367.尹福光,潘桂棠,方,万.,等.2006.西南―三江‖造山带大地构造相.沉积与特提斯地质[J],26(4):33–39.
    368.尹集祥,1988.青藏高原南特提斯地层地质演化轮廓,中国科学院地质研究所集刊(3)[M].科学出版社,北京,5–30.
    369.尹集祥,1997.青藏高原及邻区冈瓦纳相地层地质学[M].地质出版社,北京.
    370.游再平,1997.西藏丁青蛇绿混杂岩40Ar–39Ar年代学[J].西藏地质(2):24–30.
    371.于炳松,Dong,H.,Widom,E.,等.2004.塔里木盆地北部下寒武统底部黑色页岩的Re–Os和Nd同位素特征及其与扬子地台的对比[J].中国科学D辑地球科学,34(增刊):83–88.
    372.于红,2011.陕西商南松树沟橄榄岩矿物地球化学特征及成因机理示踪[D],中国地质大学(北京).
    373.翟庆国,李才,程立人,等.2004.西藏羌塘角木日地区二叠纪蛇绿岩地质特征及构造意义[J].地质通报,23(12):22–24.
    374.张国伟,张本仁,袁学诚,等.2001.秦岭造山带与大陆动力学[M].科学出版社,北京.
    375.张宽忠,陈玉禄,2007.古昌蛇绿岩中的斜长花岗岩特征[J].沉积与特提斯地质,27(1):32–37.
    376.张能,李剑波,杨云松,等.2012.金沙江缝合带弯岛湖蛇绿混杂岩带的岩石地球化学特征及其构造背景[J].岩石学报,28(4):1291–1304.
    377.张旗,1983.丁青蛇绿岩新知[J].地质科学(1):101–102.
    378.张旗,1990.蛇绿岩的分类[J].地质科学,1:54–61.
    379.张旗,杨瑞英,1985.西藏丁青蛇绿岩中玻镁安山岩类的深成岩及其地质意义[J].科学通报(16):1243–1245.
    380.张旗,杨瑞英,1987.西藏丁青蛇绿岩中玻镁安山岩类侵入岩的地球化学特征[J].岩石学报(02):64–74.
    381.张旗,周国庆,2001.中国蛇绿岩[M].科学出版社,北京.
    382.张万平,2012.雅鲁藏布江缝合带东段朗县蛇绿岩的地质特征—年代学及大地构造意义[J],中国地质大学(北京).
    383.张向飞,2011.班公湖蛇绿混杂岩带酸性侵入岩特征及成因[D],成都理工大学.
    384.张修政,董永胜,解超明,等.2010.安多地区高压麻粒岩的发现及其意义[J].岩石学报,26(07):2106–2112.
    385.张玉修,2007.班公湖—怒江缝合带中西段构造演化[D].中国科学院研究生院(广州地球化学研究所).
    386.张玉修,张开均,夏邦栋,等.2006.西藏羌塘地体三叠纪—侏罗纪海相砂岩颗粒组分及其构造意义[J].沉积学报,24(2):165–174.
    387.张云湘,骆耀南,杨崇,1988.攀西裂谷[M].地质出版社,北京.
    388.张泽明,董昕,耿官升,等.2010.青藏高原拉萨地体北部的前寒武纪变质作用及构造意义[J].地质学报,84(4):449–456.
    389.赵永久,袁超,周美夫,等.2007.川西老君沟和孟通沟花岗岩的地球化学特征、成因机制及对松潘–甘孜地体基底性质的制约[J].岩石学报,23(5):995–1006.
    390.赵政璋,李永铁,叶和飞,等.2001.青藏高原大地构造特征及盆地演化[M].科学出版社,北京.
    391.郑海翔,潘桂棠,徐跃荣,等.1982.怒江构造带超基性岩新知——一个完整的蛇绿岩套的确定[J].青藏高原地质文集(2):191–199.
    392.郑来林,董瀚,耿全如,等.2003a.中华人民共和国区域地质调查报告墨脱县幅比例尺1:250000[R].未发表.
    393.郑来林,耿全如,董翰,等.2003b.波密地区帕隆藏布残留蛇绿混杂岩带的发现及其意义[J].沉积与特提斯地质,23(1):27–30.
    394.郑巧荣,1983.由电子探针分析值计算Fe3+和Fe2+[J].矿物学报(1):55–62.
    395.郑一义,1983.西藏丁青地区蛇绿岩—混杂岩的发现[J].青藏高原地质文集(02):177–189.
    396.郑有业,何建社,李维军,等.2003.中华人民共和国区域地质调查报告日兹格塘错幅比例尺1:250000[R].未发表.
    397.郑有业,许荣科,何来信,等.2004.西藏狮泉河蛇绿混杂岩带——一个新的多岛弧盆系统的厘定及意义[J].沉积与特提斯地质,24(1):13–20.
    398.郑有业,许荣科,马国桃,等.2006.锆石SHRIMP测年对狮泉河蛇绿岩形成和俯冲的时间约束[J].岩石学报,22(4):895–904.
    399.周国庆,2008.蛇绿岩研究新进展及其定义和分类的再讨论[J].南京大学学报(自然科学),44(1):1–24.
    400.周肃,2003.西藏冈底斯岩浆岩带及雅鲁藏布蛇绿岩带关键地段同位素年代学研究[D],中国地质大学(北京).
    401.周详,王根厚,普布次仁,等.1997.西藏东部嘉玉桥拆离系核部杂岩构造特征及其大地构造意义[J].特提斯地质(21):58–63.
    402.周志广,刘文灿,梁定益,2004.藏南康马奥陶系及其底砾岩的发现并初论喜马拉雅沉积盖层与统一变质基底的关系[J].地质通报,23(7):655–663.
    403.朱宝清,王来生,王连晓,1987.准噶尔西南地区古生代蛇绿岩[J].中国地质科学院西安地质矿产研究所所刊,17:3–64.
    404.朱弟成,2003.特提斯喜马拉雅带中段晚古生代以来的火山岩及其意义[D].中国地质科学院
    405.朱弟成,莫宣学,王立全,等.2009.西藏冈底斯东部察隅高分异I型花岗岩的成因:锆石U–Pb年代学、地球化学和Sr–Nd–Hf同位素约束.中国科学(D辑),39(7):833–848.
    406.朱弟成,潘桂棠,莫宣学,等.2006.青藏高原中部中生代OIB型玄武岩的识别:年代学、地球化学及其构造环境[J].地质学报,80(9):1312–1328.
    407.朱弟成,潘桂棠,王立全,等.2008.西藏冈底斯带侏罗纪岩浆作用的时空分布及构造环境[J].地质通报,27(4):458–468.
    408.朱弟成,赵志丹,牛耀龄,等.2012.拉萨地体的起源和古生代构造演化[J].高校地质学报,18(1):1–15.
    409.朱占祥,潘云唐,1986.西藏洛隆、丁青地区拉贡塘组与多尼组时代的确定[J].成都地质学院学报,13(4):71–81.
    410.朱志勇,2004.西藏永珠—纳木错蛇绿岩地球化学特征及其构造环境[D].吉林大学.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700