用户名: 密码: 验证码:
ITO薄膜红外低发射率机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用直流磁控溅射的方法,在柔性PET基片上制备不同工艺条件下的Indium Tin Oxide (ITO)薄膜材料样品。利用X射线衍射,台阶仪,紫外-可见-近红外分光光度计,傅立叶红外光谱仪,霍尔效应测试仪等设备对ITO薄膜样品的基本结构,可见及红外波段的光学性质以及电学性质进行表征和分析,得到不同工艺参数对ITO薄膜有关性质可能产生的影响。综合分析了ITO薄膜结构及光电各种性质之间的内在联系,研究了ITO薄膜材料发射率机理及影响因素,主要包括以下工作:
     一.不同溅射参数对ITO薄膜性质的影响。(1)随着溅射时间的增加,薄膜层的厚度呈线性增加,表现出非晶态的特征。ITO薄膜电学性能有显著的提高,电阻率明显下降,最小值约为4.79×10-3Ωcm,电学性质提升的主要原因是其载流子浓度的增加。在可见-近红外波段,薄膜的透过率有一定的减小;在近红外波段,出现特征吸收峰;吸收率曲线中更加明显地看出在近红外波段的特征吸收峰值随着溅射时间的增加不断提高,且向短波段移动。在中红外波段,薄膜到达一定厚度其透过率可以忽略。(2)随着溅射功率的增加,薄膜出现了明显的(400)取向的特征衍射峰。ITO薄膜的电阻率明显不断下降,最小达到1.2×10-3Ωcm,主要原因是迁移率的增加。在可见-近红外波段,薄膜透过率有较大程度的下降。在中红外波段,薄膜的反射率随着溅射功率的增加不断增加,最大达到0.8以上。(3)随着溅射气压的增加,薄膜的厚度出现先增加再减小的变化趋势,在1.1Pa时厚度达到最大值。ITO薄膜的电阻率也出现了先增加再减小的变化。ITO薄膜的光学性质的变化相对其它参数影响较小,然而还是出现了与电学性质相关的变化规律。(4)最为重要的,通过实验测试和有关理论分析,得到了ITO薄膜红外发射率与其电学性质有着紧密的联系,分析ITO薄膜电学性质就显得格外重要。
     二.ITO薄膜晶化情况对其表面和电学性质的影响。非晶态ITO薄膜的电阻率随着薄膜体系的表面形貌的变化将有一定的变化,特别在粗糙度增加的情况下,电阻率将出现不同程度的增加;晶化ITO薄膜的电阻率随着结晶的出现和晶化程度的提高将会很大程度上减小,在对应表面形貌上可能出现随着粗糙度的增加,电阻率下降的情况。结合ITO薄膜表面形貌,利用Kronig-Penney模型和Neugebauer-Webb模型较好地解释了实验结果。
     三.ITO薄膜光学能带结构与其电学和光学性质的联系。ITO薄膜中可能出现直接和间接跃迁这两种常见的带间跃迁形式,而且薄膜的界面和表面形貌对不同的能带结构具有一定的影响作用。同时,通过对ITO薄膜材料光学禁带及费米能级迁移率边等的计算,可以解释ITO薄膜材料的电学性质以及有关光学性质的变化原因。
In this paper, ITO thin film samples were deposited on polyethylene terephthalate (PET) substrate by DC magnetron sputtering with different deposition conditions. Their structural, optical and electrical properties were measured by X-ray diffraction (XRD), stylus profiler, UV-Vis-NIR spectrophotometer, FT-IR spectrometer and Hall Effect measurement, respectively. The effects of several parameters on the properties of ITO films were studied. In addition, the author analyzed the relationships between structural and other functional properties of ITO thin films and tried to explain the reasons for their low infrared emissivity. Several important results were obtained:
     Firstly, the influence of different sputtering conditions on the properties of ITO thin films was discussed. (1) With the sputtering time increasing, a linear growth of the film thickness was observed and the films are amorphous. The resisitivity of the samples also decreased with increasing deposition time, reaching a minimum of 4.79×10-3Ωcm in this research. The increased carrier concentration might be the main reason. The transmission of the samples went down in the visible and near infrared region and some characteristic absorption peaks appeared in the near infrared region, so in the spectra, the absorption peak grew stronger with longer sputtering time and moved to the shorter wavelength. In the middle infrared region, the transmission tended to stay even with different film thickness. (2) With increasing sputtering power, the (400) oriented XRD peak was observed. The resisitivity decreased to a minimum of 1.2×10-3Ωcm, because the mobility became much bigger with higher power. The transmission decreased in visible region and the reflection increased to over 0.8 in middle infrared region. (3) With increasing sputtering pressure, the thickness and resistivity first increased and then decreased, reaching their minimums at the pressure of 1.1Pa. Comparatively, the influence of this parameter on the optical properties was not so significant. (4) What’s more important, there was a very valuable relationship between the resistivity and infrared emissivity, according to both the experimental and theoretical analysis. As a result, detailed study about the electrical properties of ITO thin films could become a key point for explaining their infrared emissivity.
     Secondly, the relations of crystalline properties and the surface and electrical properties were discussed. For amorphous ITO films, the resistivity generally increased with growing surface roughness. Classical Kronig-Penney model and Neugebauer-Webb model were introduced to explain this phenomenon. However, for crystal ones, the variation would be different, because of the grain growth and their different effect on the electrical properties.
     Thirdly, the correlations of band structure and optical and electrical properties of ITO thin films were discussed. Both direct and indirect transitions could be observed in ITO films, which might be related with the surface and interface conditions. At the same time, some calculations about the Fermi level and mobility edge could effectively explain some fine experimental results.
引文
[1] K. Badeker. Transparent conducting CdO obtained by thermal oxidation of sputtered Cd films. Ann. Phys., 1907, 22:749-751
    [2] D. S. Ginley, C. Bright. Transparent Conducting Oxides. MRS Bulletin, 2000, 25:15-17
    [3] H. Kawazoe. Transparent p-type conducting oxides: design and fabrication of p-n heterojunctions. MRS Bulletin, 2000, 25:28-31
    [4] N. W. Asheroft, N. D. Mermin. Solid state physics. Harcourt College Publisher, 1976.7
    [5] N. W. Asheroft, N. D. Mermin. Solid state physics. Harcourt College Publisher, 1976.18
    [6] B. G. Lewis, D. C. Paine. Applications and processing of transparent conducting oxides. MRS Bulletin, 2000, 25:22-26
    [7] V. Bulovic, P. Tian, P. E. Burrows. A surface-emitting vacuum-deposited organic light emitting device. Appl. Phys. Lett., 1997, 70:2954-2959
    [8] J. P. Zheng, H. S. Kwok. Indium tin oxide films formation by laser ablation. Appl. Phys. Lett., 1993, 63:1-5
    [9] G. Rupprecht. Untersuchungen der elektrischen und lichtelektrischen Leitfahigkeit dunner Indiumoxyd-schichten. Z. Phys., 1954, 139:504-506
    [10] I. Hamberg, C. G. Grangvist. Evaporated Sn-doped In2O3 films: Basic optical properties and applications to energy-effient windows. J. Appl. Phys., 1986, 60:R123-125
    [11] K. L. Chopra, S. Major, D. K. Pandya. Transparent conductors—A status review. Thin Solid Films, 1983, 102:1-4
    [12] H. Kim. Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices. J. Appl. Phys., 1999, 86:6451-6453
    [13] R. W. G. Wyckoff. Crystal Structures. New York: Wiley, 1964. 2:2-5
    [14] J. C. C. Fan, J. B. Goodenough. X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films. J. Appl. Phys., 1977, 48:3524-3527
    [15] R. B. H. Tahar. Tin doped indium oxide thin films :Electrical properties. J. Appl. Phys., 1998, 83:2631-2633
    [16] L. J. Meng, A. Macarico, R. Martins. Study of annealed indium tin oxide films prepared by RF reactive magnetron sputtering. Vacuum, 1995, 46:673-675
    [17] G. Frank, H. Kostlin. Electrical properties and defect model of Tin-doped Indium Oxide layers. Appl. Phys. A: Solids Surf., 1982, 27:197-199
    [18] B. K. Ridley. Quantum Processes in Semiconductors. United Kingdom: Oxford Press, 1993.176-179
    [19] C. Nunes de Carvalho. Effect of thickness on the properties of ITO thin films deposited by RF-PERTE on unheated, flexible, transparent substrates. Surface and Coating Technology, 2002, 151-152:252-256
    [20] D. Kim, S. J. Kim. AFM observation of ITO thin films deposited on polycarbonate substrates by sputter type negative metal ion source. Surface and Coating Technology, 2003, 176:23-29
    [21] C. Guillen, J. Herrero. Comparison study of ITO thin films deposited by sputtering at room temperature onto polymer and glass substrates. Thin Solid Films, 2005, 480-481:129-132
    [22] Y. S. Kim. Influence of O-2 admixture and sputtering pressure on the properties of ITO thin films deposited on PET substrate using RF reactive magnetron sputtering. Surface and Coatings Technology, 2003, 173:299-308
    [23] P. F. Carcia. Influence of energetic bombardment on stress , resistivity, and microstructure of indium tin oxide films grown by radio frequency magnetron sputtering on flexible polyester substrates. J. Vac. Sci. Technol., 2003, 21 (3):745-751
    [24] G. B. González. Defect structure studies of bulk and nano-indium-tin oxide. J. Appl. Phys., 2004, 96:7-10
    [25] H. Han. Influence of defects and processing parameters on the properties of indium tin oxide films on polyethylene napthalate substrate. J. Appl. Phys., 2007, 102:063710-063712
    [26] R. B. H. Tahar. Tin doped indium oxide thin films: Electrical properties. J. Appl. Phys., 1998, 83:2631-2633
    [27] J. C.C. Fan. Thin-Film VO2 Submillimeter-Wave Modulators and Polarizers. Appl. Phys. Lett., 1977, 31:11-13
    [28] K. S. Ramaiah. Optical, Structural and Electrical Properties of Tin Doped Indium Oxide Thin Films Prepared by Spray-Pyrolysis Technique. Semicond. Sci. Technol., 2000, 15:676-678
    [29] D. Mergell. Correlation of lattice distortion with optical and electrical properties of In2O3:Sn films. J. Appl. Phys., 2004, 95:5608-5610
    [30] S. Ray. Modelling of experimentally measured optical characteristics of ITO/TiO2 transparent multi-layer heat shields. J. Phys. D: Appl. Phys., 2007, 40:2445-2448
    [31] P. Pigeat. Calculation of thermal emissivity for thin films by a direct method. Physical Review.B., 1998, 57: 9293-9295
    [32] C. D. Wen. Modeling the effects of surface roughness on the emissivity of aluminum alloys. International Journal of Heat and Mass Transfer, 2006, 49:4279
    [33]胡亚兰,刁训刚,赫维昌,等.基底温度对ITO薄膜红外发射特性的影响.红外, 2004, 1:21-25
    [34]张维佳,王天民,钟立志,等. ITO导电膜红外发射率理论研究.物理学报, 2005, 54(9):4439-4445
    [35] R. E. Hummel. Electronic Properties of Materials. New York: Springer-Verlag. 1985,135
    [36]刘景生.红外物理,北京:兵器工业出版社,1992.8
    [37] H. Han. Characterization of the physical and electrical properties of Indium tin oxide on polyethylene napthalate. J. Appl. Phys., 2005, 98:083705-083707
    [38] A. I. Rogozin. Effect of deposition parameters on properties of ITO films prepared by reactive middle frequency pulsed dual magnetron sputtering. J. Vac. Sci. Technol. A, 2004, 22:349-351
    [39] H. Kim. Effect of film thickness on the properties of indium tin oxide thin films. J. Appl. Phys., 2000, 88:6021-6023
    [40] H. Kim, C. M. Gilmore. Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices. J. Appl. Phys., 1999, 86:6451-6452
    [41] D. Kim. Preparation of high quality ITO films on a plastic substrate using RF magnetron sputtering. Surface & Coatings Technology, 2006, 201:927-928
    [42] L. Kerkache. Physical properties of RF sputtered ITO thin films and annealing effect. J. Phys. D: Appl. Phys., 2006, 39:184-185
    [43] H. Lee. Electron scattering mechanisms in indium–tin-oxide thin films prepared at the various process conditions. Applied Surface Science, 2006, 252:3428–3435
    [44] J. H. Shin. Properties of dc magnetron sputtered indium tin oxide films on polymeric substrates at room temperature. J. Appl. Phys., 2001, 89:5199-5201
    [45] S. Guptaa. Optimization of process parameters to achieve high quality as-deposited indium-tin oxide films for display applications. J. Vac. Sci. Technol. A, 2005, 23:1173-1175
    [46] Y. Shigesato, S. Takaki, T. Haranoh. Electrical and structural properties of low resistivity tin-doped indium oxide films. J. Appl. Phys., 1992, 71:3356-3357
    [47] M. Buchanan. Preparation of conducting and transparent thin films of tin-doped indium oxide by magnetron sputtering. Appl. Phys. Lett., 1980, 37:213-215
    [48] H. Kim. Indium tin oxide thin films grown on flexible plastic substrates by pulsed-laserdeposition for organic light-emitting diodes. Appl. Phys. Lett., 2001, 79:284-286
    [49] S. Ray. Properties of tin doped indium oxide thin films prepared by magnetron sputtering. J. Appl. Phys., 1983, 54:3497-3499
    [50] S. B. Lee. Electronic and optical properties of room temperature sputter deposited indium tin oxide. J. Vac. Sci. Technol. A, 1993, 11:2742-2745
    [51] H. Nanto. Electrical and optical properties of indium tin oxide thin films prepared on low-temperature substrates by rf magnetron sputtering under an applied external magnetic field. J. Appl. Phys., 1988, 63:2711-2713
    [52] J. szczyrbowski. New low emissivity coating based on TwinMag sputtered Ti02 and Si3N4 layers. Thin Solid Films, 1999, 352:254-256
    [53]宋兴华.红外低发射率ATO粉末的制备及其特性研究.红外技术, 2003, 25:49-52
    [54] M. Cerruti. Influence of indium-tin oxide surface structure on the ordering and coverage of carboxylic acid and thiol monolayers. J. Phys. D: Appl. Phys. 2007, 40:4212-4214
    [55] L. Kerkache. Physical properties of RF sputtered ITO thin films and annealing effect. J. Phys. D: Appl. Phys., 2006, 39:184-186
    [56] K. Fuchs. The Conductivity of Thin Metallic Films According to the Electron Theory of Metals. Proc. Cambridge Philos. Soc., 1938, 34:100-102
    [57] E. H. Sondheimer. The Mean Free Path of Electrons in Metals. Adv. Phys., 1952, 1:1-4
    [58] A. F. Mayadas. Electrical-resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces. Appl. Phys. Lett., 1969, 14:345-347
    [59] K. M. Leung. Electrical resistivity of metallic thin films with rough surfaces. Phys. Rev. B, 1984, 30:647-649
    [60] J. G. Swanson. A study of electrical conduction in island structure nickel and 80:20 nickel-chromium films. Thin Solid Films, 1967/1968, 1:325-327
    [61] C. Kittle. Introduction to solid state physics. Hoboken, NJ: Wiley. 2005
    [62] C. A. Neugebauer, M. B. Webb. Electrical conduction mechanism in ultrathin, evaporated metal films. J. Appl. Phys., 1962, 33:74-75
    [63] S. H. Kim. Relationship between indium tin oxide surface treatment and hole injection in C60 modified devices. Appl. Phys. Lett., 2006, 89:253501-253503
    [64] F. Ruggeberg, A. Klein. The In2O3/CdTe interface: A possible contact for thin film solar cells? Appl. Phys. A, 2006, 82:281-284
    [65] V. S. Reddy. The effect of substrate temperature on the properties of ITO thin films for OLEDapplications. Semicond. Sci.Technol., 2006, 21:1747-1749
    [66] J. G. Lu. Structural, optical, and electrical properties of (Zn,Al)O films over a wide range of compositions. J. Appl. Phys., 2006, 100:073714-073716
    [67] J. Tauc. Amorphous and Liquid Semiconductors. New York: Plenum. 1974
    [68] M. H. Brodsky. Amorphous Semiconductors. New York: Springer. 1979
    [69] R. Kubo. A General Expression for the Conductivity Tensor. Can. J. Phys., 1956, 34:1274-1276
    [70] D. A. Greenwood. The Boltzmann Equation in the Theory of Electrical ConductionMetals. Proc. Phys. Soc., 1958, 71:585-587
    [71] P. W. Anderson. Absence of Diffusion in Certain Random Lattices. Phys. Rev., 1958, 109:1492-1495
    [72] H. Ohta. Surface morphology and crystal quality of low resistive indium tin oxide grown on yittria-stabilized zirconia. J. Appl. Phys., 2002, 91:3547-3549
    [73] C. W. Ow-Yang. Interfacial stability of an indium tin oxide thin film deposited on Si and Si0.85Ge0.15. J. Appl. Phys., 2000, 88:3717-3720
    [74] F. Matino. Electronic structure of indium-tin-oxide films fabricated by reactive electron-beam deposition. Phys. Rev. B, 2005, 72:085437-085439
    [75] E. Burstein. Anomalous optical absorption limit in InSb. Phys. Rev., 1954, 93:632-635
    [76] J. I. Pankove. Optical processes in semiconductors. Englewood Clifts: Prentice-Hall. 1971

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700