基于PCVD法间歇生长模式下纳米金刚石膜的制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
围绕纳米金刚石膜生长的二次形核理论,我们提出了人工干预诱导二次形核的技术方案,设计出一种通过调解激励电压来改变等离子体激励状态的间歇生长模式。
     本文利用直流热阴极PCVD技术,通过微晶金刚石膜传统的连续生长模式生长实验与间歇生长模式实验的对比,研究了人工干预诱导二次形核的机理;并研究了生长和间歇周期、反应压强、温度、缓冲气体及甲烷浓度等参数在直流热阴极PCVD方法间歇生长模式条件下对制备纳米金刚石膜的影响。
     研究工作表明,人工干预二次形核由两种因素共同作用导致。工作气压或生长温度的降低,使等离子体激励能量减弱,导致二次形核基团比例增加,成为人工干预二次形核的内在诱因;激励电压的人工调节,导致等离子体能量状况的改变,有利于二次形核行为的引导,同时也会部分增加二次形核基团,成为人工干预二次形核的外在诱因。人工干预的方法,在微晶金刚石膜连续生长模式常用的一些生长条件下,都可以实现二次形核现象的有效诱导,制备出纳米金刚石膜。
     通过对相关生长参数的研究,形成了直流热阴极PCVD方法间歇生长模式制备纳米金刚石膜的工艺条件: CH4:H2=(3-5):200 SCCM温度:650-700℃气压:6 kPa(或10 kPa)辅助气体:Ar=20 SCCM(或N2=0.5 SCCM)沉积周期:20-30 min间歇周期:<10 min
     人工干预二次形核的提出和间歇生长模式的实验,探索出了制备纳米金刚石膜的新的工艺方法,拓展了直流热阴极PCVD技术的应用范围。
While we understand some of the essential content of second nucleation, an enlightenment is given, so we think an idea to induce second nucleation action by manual adjust, the brief is that we change the state of plasma by adjusting the operating voltage, we name this method intermission mode.
     In this paper, using DC hot cathode glow discharge PCVD method, the continue mode and the intermission mode are contrasted, we research the mechanism of second nucleation by manual adjustment , and we research the effect of growth condition, these parameter include the growth and intermission cycle、pressure、temperature、dilution gas and methane concentration.
     The result shows that second nucleation by manual inducement is induced by co-action of two factors. The reduction of working pressure or growth temperature, can weaken the energy of excite plasma, this factor is the intrinsic reason of second nucleation by manual inducement; manual adjust of excite voltage can change the state of plasma, this is benefit for guide of second nucleation action, and can increase second nucleation radical, this factor is the external reason of second nucleation by manual inducement. We can implement valid manual inducement of second nucleation and prepare nanocrystalline diamond films at the condition of tradition microcrystalline diamond film growth by the way of manual inducement.
     We analysis the experiment samples and have obtained the technics condition of preparation of nanocrystalline diamond films under the intermission mode of DC hot cathode glow discharge PCVD method: CH4: H2=(3-5): 200 SCCM / temperature: 650-700℃/ pressure: 6 kPa(or 10 kPa)/ dilution gas: Ar=20 SCCM(or N2=0.5 SCCM)/ deposition cycle: 20-30 min / Intermission cycle : <10 min.
     Second nucleation by manual inducement and the intermission mode, is a novel technics for preparing nanocrystalline diamond film, furthermore it can expand the application field of DC hot cathode glow discharge PCVD method.
引文
[1] K. Suzuki, A. Sawabe, H. Yazuki, et al. Growth of diamond thin films by dc plasma chemical vapor depostion[J]. Apply Physics Letter, 1987, 50(12):728-729.
    [2] P. Hartmann, R. Haubner, B. Luk. Deposition of thick diamond films by plused dc glow discharge CVD[J]. Diamond and Related Materials, 1996, 5:850-856.
    [3] Y. J. Baik, J.K. Lee, W.K. Lee, et al. Large area deposition of thick diamond films by direct-current PACVD[J]. Thin Solid Film, 1999, 341:202-206.
    [4] Lee Joc-Kap, Eun Kwang-Yong, ChaoHee-Baik, et al. Free-standing diamond wafers deposited by multi-cathode, direct-current, plasma-assisted chemical vapor deposition[J]. Diamond and Related Materials, 2000, 9:364-367.
    [5] S.H. Kim, Y.S.Park, I.T.Han, et al. Effect of the cyclic growth/etching time ratio on the {100}-oriented texture growth of a diamond film[J]. Thin Solid Films, 1996, 2: 161-164.
    [6] J.W.Lee, S.H.Kim, Y.S.Park and I.T.Han. Cyclic technique for the enhancement of highly oriented diamond film growth[J]. Thin solid films, 1997, 303: 264-268.
    [7] Y.Hayashi, Y.Matsushita, T.Soga, M.Umeno, et al. Role of cyclic process in the initial stage of diamond deposition during bias enhanced nucleation[J]. Apply Physics, 2002, 91:9752 -9755.
    [8] I.U. Hassan, C.A. Rego, N. Ali, W. Ahmed, I.P. O'Hare. An investigation of the structural properties of diamond films deposited by pulsed bias enhanced hot filament CVD[J]. Thin Solid Films, 1999, (355-356): 134-138.
    [9]周灵平,李绍禄.CVD金刚石膜表面晶粒度的研究[J].炭素, 1999, 2:17-19.
    [10]马丙现,姚宁,杨仕娥等.氢的强化刻蚀对金刚石薄膜品质的影响与SP2杂化碳原子的存在形态[J].物理学报, 2004, 53:2287-2291.
    [11] D.M.Bhusari, J.R.Yang, T.Y.Wang, et al. Novel two stage method for growth of highly transparent nano-crystalline diamond films[J]. Chemical Materials Letter. 1998, 36:279-283.
    [12] S.T.Lee, H.Y.Peng, et al. Nucleation site and mechanism leading to epitaxial growth of diamond films[J]. Science, 2000, 287:104-107.
    [13] P.Hollman, O.Wanstrand, et al. Friction Properties of smooth nanosrystalline diamond coatings[J].Diamond and Related Materials, 1998, (7):1471-1477.
    [14]邵乐喜,谢二庆,等.纳米金刚石颗粒涂层的场电子发射[J].兰州大学学报, 1996, 35(2):160-164.
    [15] R.Locher, J. Wagner, F. Fuchs, M. Maier, P. Gonon, P. Koidl. Optical and electrical characterization of boron-doped diamond films[J].Diamond and Related Materials, 1995, 4 (5-6):678-683.
    [16] Sumio Lijima, Yumi Aikawa and Kazuhiro Baba. Early formation of chemical vapor deposition diamond films[J]. Apply Physics Letter, 1990, 57:2646-2648.
    [17] D.M. Gruen, S. Liu, A.R. Krauss,et al. Buckyball microwave plasmas: Fragmentation and diamond film growth[J]. Apply Physics, 1994, 75:1785-1791.
    [18] D.M.Gruen. Nanocrystalline diamond films[J]. Annual. Review Materials Science, 1999, 29: 211-259.
    [19] D.M. Gruen, S. Liu, A.R. Krauss, J. Luo, X. Pan. Fullerenes as precurors for diamond film growth without hydrogen or oxygen additions[J]. Apply Physics Letter, 1994, 64:1502-1504.
    [20] D.M. Gruen, C.D. Zuiker, A.R.Krauss, et al. Carbon dimmer, C2, as a growth species for diamond films from methane/hydrogen/argon microwave plasma[J]. Vacuum Science Technology, 1995, 13:1628-1632.
    [21] D.M.Gruen, A.R.Krauss, C.D.Ziuker, et al. Characterization of nanocrystalline diamond films by core-level photo absorption[J]. ApplyPhysics Letter, 1996, 68: 1640-1643.
    [22] D.M.Gruen, X.Pan, A.R.Krauss, S.Liu, J.Luo, et al. Deposition and characterization of nanocryatalline diamond films[J]. Vacuum Science Technology. 1994, A 12 (4): 1491-1495.
    [23] J. Xiang, C.P.Klages, R.Zachai, et al. Epitaxial diamond films on (001) silicon substrates[J]. Apply Physics Letter, 1993, 62: 3438-3440.
    [24] T.Sharda, T.Soga, et al, Biased enhanced growth of nanocrystalline diamond films by microwave plasma chemical vapor deposition[J]. Diamond and Related Materials, 2000, (9): 1331-1335.
    [25] T.Sharda, T.Soga, et al. Growth of nanocrystalline diamond films by biased enhanced mic rowave plasma chemical vapor deposition[J]. Diamond and Related Materials, 2001, 10: 1592-1596.
    [26] H ironmichi Y, oshikawa, C edric, et al. Synthesis of nanocrystalline diamond films using micorwave plasma CVD[J].Diamond and Related Materials, 2001,(10):1588-1591.
    [27] N.Jiang, S. Kujime, et a, .Gorwth and structural analysis of nano-diamond films deposited on Si substrate spretreated by various methods[J].Crystal Growth, 2000, 281:265-271.
    [28] S.Hogmark, P.Hollman, A. Alahelisten , P.Hedenqvist. Direct current bias applied to hot flame diamond deposition produces smooth low friction coatings [J]. Wear, 1996, 200: 225-232.
    [29] D.Zhou, A.R.Kauss, L.C. Qin, et al. Synthesis and electron field emission of nanocrystalline diamond thin films grown from N2/CH4 microwave plasma[J]. Apply Physics, 1997, 82(9): 4546-4550.
    [30] H.Yagi, T.Ide, H.Toyota, Y.Mori. Generation of microwave plasma under high pressure and fabrication of ultrafine carbon particles[J]. Journal of Materials Research, 1998, 13:1724-1729.
    [31] K.Wu, E.G. Wang, Z.X. Cao, et al. Microstructure and its effect on field electron emission of grain-size-controlled nanocrystalline diamond films[J].Apply Physics, 2000, 88(5): 2967-2974.
    [32] H.W.Xin, Z.M.Zhang, X.Ling, et al. Composite diamond films with smooth surface and the structural influence on dielectric properties[J]. Diamond and Related Materials, 2002, 11: 228-233.
    [33] D.M,Bhusari,J.R.Yang,T.Y.Wang,K.H.Chen,5.T.Lin,L.C.Chen. Effeets of substrate pretreatment and methane fraction on the optical Transparency of nanocrystaline diamond thin films[J].Journal of Materials Research,(1998),13(7),1769-1773.
    [34]张宇锋.纳米金刚石薄膜的形核与生长[D].北京大学硕士学位论文, 2007.
    [35] W.B.Yang, X.Kong, S.Yang, X.F.Duan, F.X.L.Nanocrystalline Diamond films Prepared by microwave argon plasma vapor deposition on optical glass[J].Vacuum, 2003, 68: 49-55.
    [36] M.Amaral, A.J.S. Fernandes, M.Vila, F.J.Oliveira, R.F.Silv. Growth rate improvements in the hot-filament CVD deposition of nanocrystalline diamond[J]. Diamond & Related Materials, 2006, 15:1822-1827.
    [37] J. R. Rabeau, P. John, J. I. B.Wilson, and Y. Fan.The role of C2 in nanocrystalline diamond growth[J]. Apply Physics, 2004, 96: 6724-6732.
    [38] P. W. May, Yu. A. Mankelevich. Experiment and modeling of the deposition of ultrananocrystalline diamond films using hot filament chemical vapor deposition and Ar/CH4/H2 gas mixtures: A generalized mechanism for ultrananocrystalline diamond growth[J]. Apply Physics, 2006, 100, 024301:1-9.
    [39] P. W. May, J. A. Smith,Yu. A. Mankelevich. Deposition of NCD diamond films using hot filament CVD and Ar/CH4/H2 gas mixtures[J] .Diamond and Related Materials, 2006, 15:345-352.
    [40]李飞跃等.我国纳米金刚石复合涂层技术成功实现了产业化[J].工业金刚石, 2006, 1: 10.
    [41]阎逢元,薛群基,徐康,等.一种新型的减磨耐磨复合电镀层[J].材料研究学报, 1994, 8(6):573-576.
    [42]冶银平,陈建民,徐康,等.含纳米金刚石复合镍刷镀层的摩擦学特征[J].表面技术, 1996, 25(4):27-29.
    [43] Wilson, et al. diamond, SiC and Nitride Wide Band Gap semiconductors. Materials Research Society, pittsburg, PA, 1994, 601-606.
    [44] M.Frenklach , K.E.Spear , Growth mechanism of vapor-deposited diamond[J]. Journal of Materials Research, 1988, 3(l):133-140.
    [45] P.W.May. Diamond thin films: a 21st-century material[M].Philosophical Transactions of the Royal Society London,Series A(Mathematical,Physical and Engineering Sciences)2000, 358:473-495.
    [46] P.K. Bachmann, D.Leers, H.Lydtin. Towards a general concept of diamond chemical vapour deposition[J]. Diamond and Related Materials, 1991, 1:1-12.
    [47] P.K.Bachmann, H.J.Hagemann, H.Lade. Materials Research Society Symposium Proceedings, 1994, 339(2):267-273.
    [48] B.V.Spitsyn. Handbook of Crysta1growth[M]. E1sevier, Science B.V, 1994, 3, 10:419.
    [49] R.C.Devries,Synthesis of diamond under metastable conditions Annu。Annual Review Materials Science, 1987, 17, 161-187 .
    [50] M.Sommer, F.Smith. Thermodynamic analysis of the chemical vapor deposition of diamond films[J]. Solid State communication, 1989, 69(7):775-778.
    [51] A.Walter, Yarbrough, R. Messier. Current Issues and Problems in the Chemical Vapor Deposition of Diamond[c]. Science, 1990, 247, 688 -696.
    [52] Y.Bar-Yam, T.D.Moustakas, Defect-induced stabilization of diamond films[J]. Nature, 1989, 342:786.
    [53] J.T.Wang,J.O.Car1sson. A thermochemical model for diamond growth from the vapor phase[J]. Surface Coating Technology, 1990, 43/44:1-9.
    [54] M.E.Coltrin, D.S.Dandy, Analysisof diamond growth in sub-atmospheric dcplasma-gun reactors[J]. Apply Physics Letter, 1993, 74(9): 5803-5820.
    [55] P. C. Redfern, D. A. Horner, L. A. Curtiss, and D. M. Gruen, Theoretical Studies of Growth of Diamond (110) from Dicarbon[J] Journal of Physics Chemical, 1996, 100(28): 11654-11663.
    [56] J.P.Peng, A.Robert, J.R.Freitas. et al.Theoretical analysis of diamond mechanosynthesis.part1.Stability of C2 mediated growth of nanocryatalline diamond C(110)surface [J]. Journal of Computational and Theoretical Nanoscience, 2004, 1:62-70.
    [57] I.Y. Konyashin, M.B.Guseva. Thin films comparable with WC-Co cemented carbides as underlaycers for hard and superhard coatings: the state of the art[J].Diamond and Related Materials, 1996, 5:575-579.
    [58] Z.Sun, J.R.Shi, et al. UV Raman characteristics of nanocrystalline diamond films with diferent grain size[J].Diamond and Related Materials, 2000, 9:1979-1983.
    [59] L.Chow, D.Zhou, et al. Chemical vapor deposition of novel carbon materials[J].Thin Solid Films, 2000, 368:193-197.
    [60] F .H.Sun, Z.M.Zhang, M.Chen, et al. Fabrication and Application of High Quality Diamond - Coated Tools[J]. Journal of Materials Proceedings Technology, 2002, 129: 435 - 440.
    [61] S. Matsumoto, Y. Manabe. Diamond deposition using an X-Y stage in a DC plasma jet chemical vapor deposition[J]. Journal of Materials Science, 1992, 27(8): 5905-5908.
    [62]周祖源,陈广超,戴风伟,兰昊等,直流电弧等离子喷射CVD中控制生长(111)晶面占优的金刚石膜[J].人工晶体学报, 2006, 35(3):478-480.
    [63] H.Yusa. Nanocrystalline diamond directly transformed from carbon nanotubes under high pressure[J]. Diamond and Related Materials, 2002, 11:87~91.
    [64] S.N.Kundu, M.Basu, A.B.Maity, S.Chaudhuri, A.K.Pal. Nanocrystallinediamond films deposited by high pressure sputtering of vitreous carbon[J].Materials Letters, 1997, 31: 303-309.
    [65] Reijiro Ikada, Satoru Iizuka. Nanocrystalline diamond formation by using an inductively coupled radio-frequency CH4/H2/Ar plasma [J]. Diamond and Related Materials, 2005, 14: 446–450.
    [66]胡志强.气体电子学[M].北京:电子工业出版社, 1985.
    [67]姜志刚.高气压直流辉光放电及其等离子体化学气相沉积金刚石厚膜的生长特性与应用研究[D].吉林大学博士学位论文, 2004, 5.
    [68] P. Nectoux, R. Derai, J. Danon. Chemical effects of low-energy electron impacton hydrocarbons in the gas phase[J]. IV. Methane, Chemical Physics, 1979, 37(2): 229-238.
    [69] M.Heintze, M.Magureanu, M.Kettlitz. Mechanism of C2 hydrocarbon formation from methane in a pulsed microwave plasma[J]. Journal of Apply Physics, 2002, 92(12): 7022-7031.
    [70] J.R Fincke, R.P.Anderson, T.Hyde, et al. Plasma thermal conversion of methane to acetylene. Plasma [J]. Chemical Plasma Process, 2002, 22(1): 105-136.
    [71]孙永志,杨鸿生,孙德坤,沈长圣.微波等离子体条件下甲烷偶联制乙炔的特性研究[J].应用科学学报, 2007, 25(2): 152—156.
    [72]贺建勋,胡淼,李艳辉,韩媛媛,陆治国.甲烷在直流放电等离子体中的分解产物[J].天然气化工, 2004, 29:20-22.
    [73]胡淼.在直流放电等离子体中甲烷体转化为碳二烃的研究[D].西北大学硕士学位论文, 2005.06.
    [74] H.K.Song, J.W.Choi, H.Lee. Methane conversion in a gliding arc discharge[C]. The 5th International Symposium on Pulsed Power and Plasma Applications, 2004, 375-378.
    [75]程文.非平衡等离子体强化甲烷转化制碳二烃过程研究[D].天津大学硕士学位论文, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700