飞秒激光烧蚀金属材料特性与微零件制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用飞秒激光微细加工系统,开展了飞秒激光烧蚀与微细加工新型金属材料-非晶合金特性的实验研究;结合理论模拟,开展了飞秒激光微细加工不锈钢、镍等金属材料的工艺优化与微型零件制备及应用的实验研究。全文的主要研究内容、结论与创新性如下:
     (1)总结分析了飞秒激光烧蚀金属材料的一般物理过程与物理机制,采用结合双温模型的分子动力学模拟方法,初步数值模拟了飞秒激光烧蚀单质金属镍的物理过程,揭示了在高低不同的两种脉冲能量密度下存在两种不同的烧蚀机制。并数值模拟了实验室参数条件下飞秒激光烧蚀金属镍的物理过程及特征。
     (2)介绍了飞秒激光微细加工系统的组成与工作原理,特别是光路装置的设计搭建。测试分析了加工系统中光束传输变换过程中脉冲宽度、光斑大小与光强空间分布等飞秒激光的主要参数。
     (3)首次系统地研究了飞秒激光烧蚀Zr基非晶合金的特性及微细加工工艺。采用光学显微镜、扫描电镜(SEM)与其附件电子能谱仪(EDX)、透射电镜(TEM)与其附件电子衍射仪(EDD)等方法与技术,确定了飞秒激光烧蚀Zr基非晶合金的单脉冲烧蚀阈值,分析了飞秒激光烧蚀非晶合金的表面形貌、表面氧化现象与无晶化微细加工条件。结果显示:单脉冲烧蚀时的典型表面形貌为周围隆起的圆形弹坑;多脉冲烧蚀时,在烧蚀表面出现周期性波纹结构与积雪状形貌,在高的能量密度下会发生表面氧化,氧化层的厚度在纳米量级;在选择合适参数的条件下,首次实现了微米级的飞秒激光无晶化微细打孔与切割。表明飞秒激光微细加工是一种极有前途的非晶合金无晶化微细加工手段。
     (4)开展了不锈钢与镍的飞秒激光微细加工工艺参数优化及微零件制备与应用的实验研究。研究了飞秒激光微细切割不锈钢与金属镍的工艺与参数优化,采用优化后的工艺参数加工出了高质量的微型悬臂梁;首次将飞秒激光加工的不锈钢与镍微型悬臂梁在NaCl溶液中进行了腐蚀疲劳实验,得出了对MEMS金属零件的可靠性设计与应用有重要指导意义的结果;以研究飞秒激光直接加工技术的柔性为目的,开展了飞秒激光在不锈钢箔片上直接微细加工多种微型图案、结构与零件的研究,并制备出高质量的用于脉冲激光沉积(PLD)实验的电极掩模板。
Using the femtosecond (fs) laser micromachining system, the experimental investigations of fs laser ablating and micromachining the new type of metallic material—amorphous alloy were performed. Combined with the theoretical simulation, the parameter optimization of fs laser micromachining stainless steel and nickel was conducted for fabrication and application of metallic microcomponents. The main contents, research conclusions and contributions to innovation are summarized as following:
     (1) The general physical processes and mechanisms of fs laser ablating metallic materials in the previous works were systematically analyzed and summarized. With the method of molecular dynamic simulation combined with the two-temperature model, the physical process of fs laser ablating nickels was theoretically simulated. The results show two regimes of fs laser ablation nickel under high and low fluences.
     (2) The architecture and working principle of the fs laser micromachining system, especially, the optics propagation and processing device, were described detailedly. Checking and analyzing of the fs laser parameters and their changes, such as pulse duration, spot size and spatial distribution of intensity were performed while the laser beam propagated through the system.
     (3) Femtosecond laser ablating and micromachining of a Zr-based amorphous alloy in air were investigated in detail for the first time. Laser-induced ablation and related effects were examined by means of scanning electron microscopy (SEM),energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM) and electron diffraction diagram (EDD). The ablation threshold of fs laser ablating the Zr-based amorphous alloy was determined. The results show that the surface morphology of single-pulse ablation region seems like a circular crater with edge upheaved; in the multi-pulse ablation region surface, periodic ripples and firn-like morphology appeared; slight oxidation occurred at high laser fluences, and the thickness of the oxidation layer is determined to be nano-scale. With selected parameters, micron-size scale holes and trenches machined without crystallization around the ablated region were achieved for the first time. The results show that femtosecond laser ablation with selected parameters is a promising method for non-crystalline micromachining of amorphous alloys.
     (4) Femtosecond laser direct fabrication of stainlesssteel and Ni microcantilever was investigated, and the laser processing parameters were optimized. The metallic microcantilevers of good quality with structure and dimensions according commendably with that of the designed cantilever were obtained. Using the fs laser fabricated metallic microcantilever, the cyclic fatigue test under corrosion was investigated for the first time. The testing results are very important for the design and application of metallic MEMS devices. Femtosecond laser direct fabricating various stainless steel micro-patterns, microstructures and components were also conducted to investigate the flexibility of fs laser micromachining technology. A microhole electrode mask was successfully fabricated for pulse laser deposition (PLD) experiments.
引文
[1] R. Ell, U. Morgner, F. X. K?rtner et al. Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser. Optics Letters, 2001, 26(6): 373~375
    [2] K. Yamane, Z. G. Zhang, K. Oka et al. Optical pulse compression to 3.4 fs in the monocycle region by feedback phase compensation. Optics Letters, 2003, 28(22): 2258~2260
    [3] E. Matsubara, K. Yamane, T. Sekikawa et al. Generation of 2.6 fs optical pulses using induced-phase modulation in a gas-filled hollow fiber. J. Opt. Soc. Am. B, 2007, 24(4): 985~989
    [4] U. Keller. Recent developments in compact ultrafast lasers. Nature, 2003, 424: 831~838
    [5] V. V. Lozhkarev, G. I. Freidman, v. N. Ginzburg et al. 200 TW 45 fs laser based on optical parametric chirped pulse amplification. Optics Express, 2006, 14(1): 446~454
    [6] V. V. Lozhkarev, K. Yamakawa, Y. Akahane et al. 0.85-PW, 33-fs Ti:sapphire laser. Optics Letters, 2003, 28(17): 1594~1596
    [7] T. Tajima, G. Mourou. Zettawatt-exawatt lasers and their applications in ultrastrong-field physics. Physical Review Special Topics-Accelerators and Beams, 2002, 5: 031301
    [8]杨建军.飞秒激光超精细“冷”加工技术及其应用(I)*.激光与光电子学进展, 2004, 41(3): 42~57
    [9] J. R. Goldman, J. A. Prybyla. Ultrafast Dynamics of Laser-Excited Electron Distribution in Silicon. Physical Review Letters, 1994, 72(9): 1364~1367
    [10] D. Von der Linde, K. Sokolowski-Tinten, J. Bialkowski. Laser-solid interaction in the femtosecond time regime. Applied Surface Science, 1997, 109/110: 1~10
    [11] R. L. Fork, B. I. Greene, C. V. Shank. Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking. Appl. Phys. Lett., 1981, 38(9): 671~672
    [12] R. L. Fork, C. H. Brito Cruz, P. C. Becker et al. Compression of optical pulses to six femtoseconds by using cubic phase compensation. Optics Letters, 1987, 12(7): 483~485
    [13] U. Keller, W. H. Knox, G. W.’tHooft. Ultrafast Solid-State Mode-Locked Lasers Using Resonant Nonlinearities. IEEE Journal of Quantum Electronics, 1992, 28(10): 2123~2133
    [14] R. Roy, P. A. Schulz, A. Walther. Acousto-optic modulator as an electronically selectable unidirectional device in a ring laser. Optics Letters, 1987, 12(9): 672~674
    [15] N. Sarukura, Y. Ishida, H. Nakano et al. CW passive mode locking of a Ti:sapphire laser. Appl. Phys. Lett., 1990, 56(9): 814~815
    [16] P. M. W. French, S. M. J. Kelly, J. R. Taylor. Mode locking of a continuous-wave titanium-doped sapphire laser using a linear external cavity. Optics Letters, 1990, 15(7): 378~380
    [17] K. Naganuma, K. Mogi. 50-fs pulse generation directly fron a colliding-pulse mode-locked Ti:sapphire laser using an antiresonant ring mirror. Optics Letters, 1991, 16(10): 738~740
    [18] D. E. Spence, P. N. Kean, W. Sibbett. 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. Optics Letters, 1991, 16(1): 42~44
    [19] H. A. Haus, J. g. Fujimoto, E. P. Ippen. Structures for additive pulse mode locking. J. Opt. Soc. Am. B, 1991, 8(10): 2068~2076
    [20] I. D. Jung, F. X. K?rtner, N. Matuschek et al. Self-starting 6.5-fs pulses from a Ti:saphhire laser. Optics Letters, 1997, 22(13): 1009~1011
    [21] D. H. Sutter, G. Steinmeyer, L. Gallmann et al. Semiconductor saturable-absorber mirror-assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime. Optics Letters, 1999, 24(9): 631~633
    [22] V. L. Kalashnikov, D. O. Krimer, I. G. Poloyko. Soliton generation and picosecond collapse in solid-state lasers with semiconductor saturable absorbers. J. Opt. Soc. Am. B, 2000, 17(4): 519~523
    [23] D. Strickland, G. Mourou. Compression of amplified chirped optical pulses. Optics Communications, 1985, 56(3) : 219~221
    [24] A. Sullivan, H. Hamster, H. C. Kapteyn et al. Multiterawatt, 100-fs laser. Optics Letters, 16(18): 1406~1408
    [25] C. P. J. Barty, T. Guo, C. Le Blanc et al. Generation of 18-fs, multiterawatt pulses by regenerative pulse shaping and chirped-pulse amplification. Optics Letters, 1996,21(9): 668~670
    [26] K. Yamakawa, M. Aoyama, S. Matsuoka et al. 100-TW sub-20-fs Ti:sapphire laser system operating at a 10-Hz repetition rate. Optics Letters, 1998, 23(18): 1468~1470
    [27] M. Martinez, E. Gaul, T. Ditmire et al. The Texas Petawatt Laser. Proc. Of SPIE, 2005, 5991: 59911N
    [28] N. Blanchot, W. Bignon, H. Coic et al. Multi-Petawatt High Energy Laser Project on the LIL Facility in Aquitaine. Proc. of SPIE, 2006, 5975: 29750C
    [29] K. Moutzouris, F. Adler, F. Sotier et al. Multimilliwatt ultrashort pulses continuously tunable in the visible from a compact fiber source. Optics Letters, 2006, 31(8): 1148~1150
    [30] F. R?ser, J. Rothhard, B. Ortac et al. 131 W 220 fs fiber laser system. Optics Letters, 2005, 30(20): 2754~2756
    [31] J. Limpert, F. R?ser, T. Schreiber et al. High-Power Ultrafast Fiber Laser Systems. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(2): 233~244
    [32] W. W. Duley. Laser Processing and Analysis of Materials. New York: Plenum Press, 1983. 50~80
    [33] G. Y. Liu, D. J. Toncich, E. C. Harvey. Evaluation of excimer laser ablation of thin Cr film on glass substrate by analyzing acoustic emission. Optics and Lasers in Engineering, 2004, 42: 639~651
    [34] S. K. Lee, S. J. Na. KrF excimer laser ablation of thin Cr film on glass substrate. Applied Physics A, 1999, 68: 417~423
    [35]宋威廉.激光加工技术的发展.激光与红外, 2006, 36: 755~758
    [36] B. C. Stuart, M. D. Feit, S. Herman et al. Nanosecond-to-femtosecond laser-induced breakdown in dielectrics. Physical Review B, 53(4): 1749~1761
    [37] M. Li, S. Menon, J. P. Nibarger et al. Ultrafast Electron Dynamics in Femtosecond Optical Breakdown of Dielectrics. Physical Review Letters, 1999, 82(11): 2394~2397
    [38] R. Stoian, A. Rosenfeld, D. Ashkenasi et al. Surface Charging and Impulsive Ion Ejection during Ultrashort Pulsed Laser Ablation. Physical Review Letters, 2002, 88(9): 097603
    [39] S. S. Mao, F. Quéré, S. Guizard et al. Dynamics of femtosecond laser interactionswith dielectrics. Appl. Phys. A, 2004, 79(7): 1695~1709
    [40] N. M. bulgakova, R. Stoian, a. Rosenfeld et al. Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials. Physical Review B, 2004, 69: 054102
    [41] N. M. Bulgakova, R. Stolan, A. Rosenfeld et al. A general continuum approach to describ fast electronic transport in pulsed laser irradiated materials: The problem of Coulomb explosion. Appl. Phys. A, 2005, 81: 345~356
    [42] H. P. Cheng, J. D. Gillaspy. Nanoscale modification of silicon surfaces via Coulomb explosion. Physical Review B, 1997, 55(4): 2628~2636
    [43] M. Henyk, D. Wolfframm, J. Reif. Ultra short laser pulse induced chaged partical emission fron wide bandgap crystals. Applied Surface Science, 2000, 168: 263~266
    [44] R. Stoian, D. Ashkenasi, A. Rosenfeld et al. Coulomb explosion in ultrashort pulsed laser ablation of Al2O3. Physical Review B, 2000, 62(19): 13167~13173
    [45] M. Lenner, A. Kaplan, R. E. Palmer. Nanoscopic Coulomb explosion in ultrafast graphite ablation. Applied Physics Letters, 2007, 90: 153119
    [46] H. Dachraoui, W. Husinsky, G. Betz. Ultra-short laser ablation of metals and semiconductors: evidence of ultra-fast Coulomb explosion. Appl. Phys. A, 2006, 83: 333~336
    [47] L. Jiang, H. L. Tsai. A Plasma Model with Quantum Treatments for Femtosecond Laser Ablation of Glasses. Proc. of SPIE, 2004, 5662: 603~608
    [48] L. Jiang, H. L. Tsai. Energy transport and material removal in wide bandgap materials by a femtosecond laser pulse. International Journal of Heat and Mass Transfer, 2005, 48: 487~499
    [49] L. Jiang, H. L. Tsai. Prediction of crater shape in femtosecond laser ablation of dielectrics. J. Phys. D: Appl. Phys., 2004, 37: 1492~1496
    [50] T. E. Glover. Hydrodynamics of particle formation following femtosecond laser ablation. J. Opt. Soc. Am. B, 2003, 20(1): 125~131
    [51] T. E. Itina, J. Hermann, Ph. Delaporte et al. Modeling of metal ablation induced by ultrashort laser pulses. Thin Solid Films, 2004, 453-454: 513~517
    [52] T. E. Itina, F. Vidal, Ph. Delaporte et al. Numerical study of ultra-short laser ablation of metals and laser plume dynamics. Applied Physics A, 2004, 79: 1089~1092
    [53] H. Furukawa, M. Hashida. Simulation on femto-second laser ablation. Appied Surface Science, 2002, 197-198: 114~117
    [54] J. Ph. Colombier, P. Combis, H. Huot et al. Suited simulations for optimal ultrafast laser processing of metals. Proc. of SPIE, 2006, 6106: 61060L
    [55] S. I. Anisimov, B. L. Kapeliovich, T. L. Perelman. Electron emission from metal surfaces exposed to ultra-shortlaser pulses. Sov. Phys. JETP, 1974, 39: 375~377
    [56] J. G. Fujimoto, J. M. Liu, E. P. Ippen et al. Femtosecond Laser Interaction with Metallic Tungsten and Nonequilibrium Electron and Lattice Temperatures. Physical Review Letters, 1984, 53(19): 1837~1840
    [57] H. E. Elsayed-Ali, T. B. Norris, M. A. Pessot et al. Time-Resolved Observation of Electron-Phonon Relaxation in Copper. Physical Review Letters, 1987, 58(12): 1212~1215
    [58] P. B. Corkum, F. Brunel, N. K. Sherman. Thermal Response of Metals to Ultrashort-Pulse Laser Excitation. Physical Review Letters, 1988, 61(25): 2886~ 2889
    [59] B. N. Chichkov, C. Momma, S. Nolte et al. Femtosecond, picosecond and nanosecond laser ablation of solids. Applied Physics A, 1996, 63: 109~115
    [60] S. Nolte, C. Momma, H. Jacobs et al. Ablation of metals by ultrashort laser pulses. J. Opt. Soc. Am. B, 1997, 14(10): 2716~2722
    [61] J. K. Chen, J. E. Beraun, L.E. Grimes et al. Modeling of femtosecond laser-induced non-equilibrium deformation in metal films. International Journal of Solids and Structures, 2002, 39: 3199~3216
    [62] H. Ki, J. Mazumder. Numerical simulation of femtosecond laser interaction with silicon. Journal of Laser Applications, 2005, 17(2): 110~117
    [63] B. Wu, Y. C. Shin. A simple model for high fluence ultra-short pulsed laser metal ablation. Applied Surface Sciece, 2007, 253: 4079~4084
    [64] H. L. Tsai, L. Jiang. Fundamentals of energy cascade during ultrashort laser-material interactions. Proc. of SPIE, 2005, 5713: 343~357
    [65] L. Jiang, H. L. Tsai. Improved Two-Temperature Model and Its Application in Ultrashort Laser Heating of Metal Films. Journal of Heat Transfer, 2005, 127: 1167~1173
    [66] H. H?kkinen, U. Landman. Superheating, Melting, and Annealing of Copper Surfaces. Physical Review Letters, 1993, 71(7): 1023~1027
    [67] C. Cheng, X. Xu. Molecular dynamic study of volumetric phase change induced by a femtosecond laser pulse. Appl. Phys. A, 2004, 79: 761~765
    [68] L. V. Zhigilei, B. J. Garrison. Microscopic mechanisms of laser ablation of organic solids in the thermal and stress confinement irradiation regimes. Journal of Applied Physics, 2000, 88(3): 1281~1298
    [69] H. O. Jeschke, M. E. Garcia, K. H. Bennemann. Theory for the Ultrafast Ablation of Graphite Films. Physical Review Letters, 2001, 87(1): 015003
    [70] H. O. Jeschke, M. E. Garcia. Theoretical description of the ultrafast ablation of diamond and graphite: dependence of thresholds on pulse duration. Applied Surface Science, 2002, 197-198: 107~113
    [71] D. Perez, L. J. Lewis. Ablation of Solids under Femtosecond Laser Pulses. Physical Review Letters, 2002, 89(25): 255504
    [72] P. A. Atanasov, N. N. Nedialkov, S. E. Imamova et al. Laser ablation of Ni by ultrashort pulses: molecular dynamics simulation. Applied Surface Science, 2002, 186: 369~373
    [73] N. N. Nedialkov, S. E. Imamova, P. A. Atanasov et al. Mechanism of ultrashort laser ablation of metals: molecular dynamics simulation. Applied Surface Sciece, 2005, 247: 243~248
    [74] S. E. Imamova, P. A. Atanasov, N. N. Nedialkov et al. Molecular dynamics simulation using pair and many body interatomic potentials: ultrashort laser ablation of Fe. Nuclear Instruments and Methods in Physics Research B, 2005, 227: 490~498
    [75] D. Perez, L. J. Lewis. Molecular-dynamics study of ablation of solids under femtosecond laser pulses. Physical Review B, 2003, 67: 184102
    [76] C. R. Cheng, X. F. Xu. Mechanisms of decomposition of metal during femtosecond laser ablation. Physical Review B, 2005, 72: 165415
    [77] Y. Hirayama, M. Obara. Molecular dynamics simulation of heat-affected zone of copper metal ablated with femtosecond laser. Proc. of SPIE, 2005, 5714: 271~282
    [78] Y. Yamashita, T. Yokomine, S. Ebara et al. Heat transport analysis for femtosecond laser ablation with molecular dynamics-two temperature model method. FusionEngineering and Design, 2006, 81: 1695~1700
    [79] Y. Yamashita, T. Yokomine, S. Ebara et al. Heat Transport Analysis of Femtosecond Laser Ablation with Full Lagrangian Modified Molecular Dynamics. International Journal of Thermophysics, 2006, 27(2): 627~646
    [80] M. B. Agranat, S. I. Anisimov, S. I. Ashitkov et al. Dynamics of Plume and crater formation after action of femtosecond laser pulse. Applied Surface Science, 2007, 253: 6276~6282
    [81] R. Fedosejevs, S. E. Kirkwood, R. Holenstein et al. Femtosecond Interaction Processes Near Threshold: Damage and Ablation. Proc. of SPIE, 2007, 6403: 640302
    [82] Y. V. Afanasiev, B. N. Chichkov, N. N. Demchenko et al. Ablation of metals by ultrashort laser pulses: theoretical modeling and computer simulations. Proc. of SPIE, 2000, 3885: 266~274
    [83] E. G. Gamaly, A. V. Rode, B. L. Davies et al. Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics. Physics of Plasma, 2002, 9(3): 949~957
    [84] S. Kawata, H. B. Sun, T. Tanaka et al. Finer features for functional microdevices. Nature, 2001, 412: 697~698
    [85] J. Serbin, A. Egbert, A. Ostendorf et al. Femtosecond laser induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics. Optics Letters, 2003, 28(5): 301~303
    [86] M. Farsari, G. Filippidis, C. Fotakis. Fabrication of three-dimensional structures by three-photon polymerization. Optics Letters, 2005, 30(23): 3180~3182
    [87] C. Reinhardt, S. Passinger, B. N. Chichkov et al. Laser-fabricated dielectric optical componnets for surface plasmon polaritons. Optics Letters, 2006, 31(9): 1307~1309
    [88] B. H. Cumpston, S. P. Ananthavel, S. Barlow et al. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature, 1999, 398: 51~54
    [89] F. Korte, s. Nolte, B. N. Chichkov et al. Far-field and near-field material processing with femtosecond laser pulses. Applied Physics A, 1999, 69: S7~S11
    [90] D. B. Wolfe, J. B. Ashcom, J. C. Hwang et al. Customization of Poly (dimethylsiloxane) Stamps by Micromachining Using a Femtosecond-Pulsed Laser.Advanced Materials, 2003, 15(1): 62~65
    [91] J. H. Klein-Wiele, J. Bekesi, P. Simon. Sub-micron patterning of solid materials with ultraviolet femtosecond pulses. Appl. Phys. A, 2004, 79: 775~778
    [92] S. J. Mihailov, C. W. Smelser, P. Lu et al. Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation. Optics Letters, 2003, 28(12): 995~997
    [93] F. Korte, J. Serbin, J. Koch et al. Towards nanostructuring with femtosecond laser pulses. Appl. Phys. A, 2003, 77: 229~235
    [94] K. Miura, J. R. Qiu, H. Inouye et al. Photowritten optical waveguides in various glasses with ultrashort pulse laser. Appl. Phys. Lett., 1997, 71(23): 3329~3331
    [95] K. Kawamura, N. Sarukura, M. Hirano et al. Holographic encoding of fine-pitched micrograting structures in amorphous SiO2 thin films on silicon by a single femtosecond laser pulse. Appl. Phys. Lett., 2001, 78(8): 1038~1040
    [96] Y. Cheng, H. L. Tsai, K. Sugioka et al. Fabrication of 3D microoptical lenses in photosensitive glass using femtosecond laser micromachining. Appl. Phys. A, 2006, 85: 11~14
    [97] N. Takeshima, Y. Narita, S. H. Tanaka et al. Fabrication of high-efficiency diffraction gratings in glass. Optics Letters, 2005, 30(4): 352~354
    [98] S. J. Mihailov, D. Grobnic, H. Ding et al. Femtosecond IR Laser Fabrication of Bragg Gratings in Photonic Crystal Fibers and Tapers. IEEE Photonics Technology Letters, 2006, 18(17): 1837~1839
    [99] E. N. Glezer, M. Milosavjevic, L. Huang et al. Three-dimensional optical storage inside transparent materials. Optics Letters, 1996, 21(24): 2023~2025
    [100] F. T. He, G. H. Cheng, X. Q. Feng et al. Three-dimensional optical data storge using a solid immersion lens to focus a femtosecond laser pulse. Chinese Optics Letters, 2004, 2(7): 423~425
    [101] S. Juodkazis, A. V. Rode, E. G. Gamaly et al. Recording and reading of three-dimensional optical memory in glasses. Appl. Phys. B, 2003, 77: 361~368
    [102] U. Demirci, M. Toner. Direct etch method for microfludic channel and nanoheight post-fabrication by picoliter droplets. Appl. Phys. Lett., 2006, 88: 053117
    [103] C. G. Khan Malek. Laser processing for bio-microfluidics applications (part I). Anal. Bioanal. Chem., 2006, 385(8): 1351~1361
    [104] H. Y. Zheng, H. Liu, S. Wan et al. Ultrashort pulse laser micromachined microchannels and their application in an optical switch. Int. J. Adv. Manuf. Technol., 2005, 27(9-10): 925~929
    [105] J. Bonse, J. M. Wrobel, J. Krüger et al. Ultrashort-pulse laser ablation of indium phosphide in air. Appl. Phys. A, 2001, 72: 89~94
    [106] A. Borowiec, H. K. Haugen. Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses. Appl. Phys. Lett., 2003, 82(25): 4462~4464
    [107] R. A. Myers, R. Farrell, A. M. Karger et al. Enhancing near-infrared avalanche photodiode performance by femtosecond laser microstructuring. Applied Optics, 2006, 45(35): 8825~8831
    [108] M. a. Sheehy, L. Winston, J. E. Carey et al. Role of the Background Gas in the Morphology and optical Properties of Laser-Microstructured Silicon. Chem. Mater., 2005, 17: 3582~3586
    [109] N. B?rsch, K. K?rber, A. Ostendorf et al. Ablation and cutting of planar silicon devices using femtosecond laser pulses. Appl. Phys. A, 2003, 77: 237~242
    [110] A. Ostendorf, G. Kamlage, U. Klug et al. Femtosecond versus picosecond laser ablation. Proc. of SPIE, 2005, 5713: 1~8
    [111] A. Borowiec, H. K. Haugen. Femtosecond laser micromachining of grooves in indium phosphide. Appl. Phys. A, 2004, 79(3): 521~529
    [112] E. Dupont, X. Zhu, S. Chiu et al. In situ repair of optoelectronic devices with femtosecond laser pulses. Semicond. Sci. Technol., 2000, 15: L15~L18
    [113] K. Furusawa, K. Takahashi, H. Kumagai et al. Ablation characteristics of Au, Ag, and Cu metals using a femtosecond Ti:sapphire laser. Appl. Phys. A, 1999, 69: S359~S366
    [114] R. Leharzic, D. Breitling, M. Weikert et al. Ablation comparison with low and high ernergy densities for Cu and Al with ultra-short laser pulses. Appl. Phys. A, 2005, 80: 1589~1593
    [115] J. C. Wang, C. L. Guo. Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals. Appl. Phys. Lett., 2005, 87: 251914
    [116] A. Y. Vorobyev, C. L. Guo. Shot-to-shot correlation of residual energy and opticalabsorptance in femtosecond laser ablation. Appl. Phys. A, 2007, 86: 235~241
    [117] M. Groenendijk, J. Meijer. Microstructuring using femtosecond pulsed laser ablation. Journal of Laser Applications, 2006, 18(3): 227~235
    [118] G. Kamlage, T. Bauer, A. Ostendorf et al. Deep drilling of metals by femtosecond laser pulses. Appl. Phys. A, 2003, 77: 307~310
    [119] K. Venkatakrishnan, B. K. A. Ngoi, P. Stanley et al. Laser writing techniques for photomask fabrication using a femtosecond laser. Appl. Phys. A, 2002, 74: 493~496
    [120] Y. Nakata. Generation of new nanomaterials by interfering femtosecond laser processing and its applications. Proc. of SPIE, 2006, 6106: 61060M
    [121] D. J. Hwang, A. Chimmalgi, C. P. Grigoropoulos. Abaltion of thin metal films by short-plused lasers coupled through near-field scanning optical microscopy probes. Journal of Applied Physics, 2006, 99: 044905
    [122] J. P. Sylvestre, A. V. Kabashin, E. Sacher et al. Femtosecond laser ablation of gold in water : influence of the laser-produced plasma on the nanoparticle size distribution. Appl. Phys. A, 2005, 80: 753~758
    [123] J. Sun, J. P. Longtin. Inert gas beam delivery for ultrafast laser micromachining at ambient pressure. Journal of Applied Physics, 2001, 89(12): 8219~8224
    [124] W. Perrie, M. Gill, G. Robinson et al. Femtosecond laser micro-structuring of aluminium under helium. Applied Surface Science, 2004, 230: 50~59
    [125] A. Plech, V. Kotaidis, M. Lorenc et al. Femtosecond laser near-field ablation from gold nanoparticles. Nature Physics, 2006, 2: 44~47
    [126] S. No?l, J. Hermann, T. Itina. Investigation of nanoparticle generation during femtosecond laser ablation of metals. Applied Surface Science, 2007, 253: 6310~ 6315
    [127] G. Dumitru, B. Lüscher, M. Krack et al. Laser processing of hardmetals: Physical basics and applications. International Journal of Refractory Metals & Hard Materials, 2005, 23: 278~286
    [128] Q. Feng, Y. N. Picard, H. Liu et al. Femtosecond laser micromachining of a single-crystal superalloy. Scripta Materialia, 2005, 53: 511~516
    [129] B. Rethfeld, K. Sokolowski-Tinten et al. Timescales in the response of materials to femtosecond laser excitation. Appl. Phys. A, 2004, 79: 767~769
    [130] B. Rethfeld, A. Kaiser. Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation. Physical Review B, 2002, 65: 214303
    [131] B. Rethfeld, A. Kaiser, M. Vicanek et al. Femtosecond laser-induced heating of electron gas in aluminium. Appl. Phys. A, 1999, 69: S109~S112
    [132] Roger Kelly, Antonio Miotello. Comments on explosive mechanisms of laser sputtering. Applied Surface Science, 1996, 96-98: 205~215
    [133] S. Amoruso, X. Wang et al. Thermal and nonthermal ion emission during high-fluence femtosecond laser ablation of metallic targets. Applied Physics Letters, 2000, 77: 3728~3730
    [134] J. Yang, Y. Zhao, X. Zhu. Transition between nonthermal and thermal ablation of metallic targets under the strike of high-influence ultrashort laser pulses. Applied Physics Letters, 2006, 88: 094101
    [135] H. Dachraoui, W. Husinsky. Thresholds of Plasma Formation in Silicon Identified by Optimizing the Ablation Laser Pulse Form. Physical Review Letters, 2006, 97: 107601
    [136] A. M. Prokhorov, V. I. Konov, I. Ursu et al. Laser Heating of metals (books). New York: IOP Publishing Ltd, 1990. 158~173
    [137] S. S. Wellershoff, J. Hollfeld. The role of electron-phonon coupling in femtosecond laser damage of metals. Appl. Phys. A, 1999, 69: S99~S107
    [138] Dmitriy S. Ivanov, Leonid V. Zhigilei. Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films. Physical Review B, 2003, 68: 064114
    [139] Loup Verlet. Computer“Experiments”on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Physical Review, 1967, 159: 98~103
    [140] L. A. Girifalco, V. G. Weizer. Application of the Morse Potential Function to Cubic Metals. Physical Review, 1959, 114: 687~690
    [141] P. Duwez, R. H. Willens, W. Klement. Continuous Series of Metastable solidSolutions in Silver-Copper alloys. J. Appl. Phys., 1960, 31(6): 1136
    [142] W. H. Wang, C. Dong, C. H. Shek. Bulk metallic glasses. Materials Science and Engineering R, 2004, 44: 45~89
    [143] Akihisa Inoue, Akira Takeuchi. Recent progress in bulk glassy, nanoquasicrystallineand nanocrystalline alloys. Materials Science and Engineering A, 2004, 375-377: 16~30
    [144] Jorg F. Loffler. Bulk metallic glasses. Intermetallics, 2003, 11: 529~540
    [145] G. P. Zhang, Y. Liu, B. Zhang. Effect of annealing close to Tg on notch fracture toughness of Pd-based thin-film metallic glass for MEMS applications. Scripta Materialia, 2006, 54: 897~901
    [146] T. Fukushige, S. Hata, A MEMS Conical Spring Actuator Array. Journal of microelectromechanical systems, 2005, 14: 243~253
    [147] M. Bakkal, A J. Shih, S B. McSpadden, C. T. Liu, R O. Scattergood. Light emission, chip morphology, and burr formation in drilling the bulk metallic glass. International Journal of Machine tools & manufacture, 2004, 45: 741~752
    [148] M. Sorescu. Comparative characterization of the irradiation effects induced in metallic glasses by pulsed laser and alpha particle beams. Journal of Alloys and Compounds, 1999, 284: 232~236
    [149] J. Jia, M. Li and C V. Thompson. Amorphization of silicon by femtosecond laser pulses. Applied Physics Letters, 2004, 84: 3205~3207
    [150] P. T. Mannion, J. Magee, E. Coyne et al. The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air. Appliced Surface Science, 2004, 233: 275~287
    [151] J. Bonse, P. Rudolph, J. Kruger et al. Femtosecond pulse laser processing of TiN on silicon. Applied Surface Science, 2000, 154-155: 659~663
    [152] S. E. Kirkwood, A. C. Van Popta, Y. Y. TSUI et al. Single and multiple shot near-infrared femtosecond laser pulse ablation thresholds of copper. Appl. Phys. A, 2004, 81: 729~735
    [153] S. Schneider. Bulk metallic glasses, J. Phys.: Condens. Matter, 2001, 13: 7723~7736
    [154] N. V. Lavrik, M J. Sepaniak, Panos G. Datskos. Cantilever transducers as a platform for chemical and biological sensors. Review of Scientific Instruments, 2004, 75: 2229~2253
    [155] R. Berger, Ch. Gerber, and J. K. Gimzewski. Thermal analysis using a micromechanical calorimeter. Appl. Phys. Lett., 1996, 1: 40~42
    [156] R. Raiteri, M. Grattarola, H. Butt et al. Micromechanical cantilever-based biosensors. Sensors and Actuators B, 2001, 79: 115~126
    [157] Y. Yang, B. I. Imasogie, S. M. Allameh et al. Mechanisms of fatigue in LIGA Ni MEMS thin films. Materials Science and Engineering A, 2007, 444:39~50
    [158] JS. Kim, K. Jiang and I. Chang. A net shape process for metallic microcomponent fabrication using Al and Cu micro/nano powders. J. Micromech. Microeng., 2006, 16: 48~52
    [159] S. Amoruso, G. Ausanio, C. de Lisio et al. Synthesis of nickel nanoparticles and nanoparticles magnetic films by femtosecond laser ablation in vacuum. Applied Surface Science, 2005, 247: 71~75
    [160] K. P. Larson, A. A. Rasmussen, J. T. Ravnkilde, M. Ginnerup and O. Hansen. MEMS device for bending test: measurements of fatigue and creep of electroplate nickel Sens. Actuator A-Phys., 2003, 103: 156~164
    [161] M. A. Haque and M. T. Saif. Microscale materials testing using MEMS actuators. J. Microelectromech. Syst., 2001, 10: 146~152
    [162] C. L. Muhlstein, S. B. Brown and R. O. Ritchie. High-crcle fatigue of single-crystal silicon thin films J. Microelectromech. Syst., 2001, 10: 593~600
    [163] C J Wilson, A Ormeggi and M Narbutovskih. Fracture testing of silicon microcantilever beams J. Appl. Phys., 1996, 79: 2386~2393
    [164] Z. F. Wang, J. Li, J. Q. Wang et al. The influence of loading waveform on corrosion fatigue crack propagation. Corrosion Sci., 1995, 37: 1551~65
    [165] W. Merlijn van Spengen. MEMS reliability from a failure mechanisms perspective. Microelectron. Reliab., 2003, 43: 1049~60
    [166] N. Wang, Z. Wang, K. T. Aust and U. Erb. Room temperature creep behavior of nanocrystalline nickel produced by an electrodeposition technique. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 1997, 237: 150~8
    [167] J.W. Schultze and A. Bressel. Principles of electrochemical micro- and nano-system technologies. Electrochim. Acta., 2001, 47: 3~21
    [168] J.W. Schultze and V. Tsakova. Electrochemical microsystem technologies: from fundamental research to technical systems. Electrochim. Acta., 1999, 44: 3605~3627
    [169] S. A. Shipilov. Solving some key failure analysis problems using advanced methodsfor materials testing. Engineering Failure Analysis, 2007, 14: 1550~1573
    [170] X. Li and B. Bhushan. Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques. Ultramicroscopy, 2003, 97: 481~498
    [171] X. Li and B. Bhushan. A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Charact., 2002, 48: 11~36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700