光学相干层析系统光源及系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光学相干层析(OCT)技术能够对活体组织进行实时、高分辨率断层成像,对活体组织内部机构的生理、病理变化过程作精确的分析和诊断,对它的开发研究,将为生物医学领域提供一种全新的重要诊断手段。本论文针对OCT硬件系统的核心部件OCT光源及系统本身,结合现有条件进行了如下的研究工作:
     一、非线性偏振旋转(NPR)被动锁模光纤激光器(PMLFL)的数值模拟和实验研究
     1.理论分析了被动锁模光纤激光器光腔参数对输出脉冲特性的影响。
     2.对NPR被动锁模光纤激光器进行了数值模拟分析,提出并分析了一种有效的避免多脉冲现象的方法。
     3.在环形腔PMLFL中,利用光谱边带测量法计算腔内总色散,通过改变腔内普通单模光纤(SMF)的长度实现色散匹配,获得了重复频率25MHz,脉宽520.5fs,中心波长1558.4nm,3dB带宽29.5nm的超短脉冲,输出功率1.81mW。
     4.在σ形PMLFL中实现了脉冲宽度670.5fs,重复频率为6.2MHz,中心波长1562.3nm的稳定锁模输出,输出功率为1.5mW,并将其封装成实验室样机。
     二、光纤中产生超连续谱的数值模拟分析和实验研究
     1.通过数值计算,从光纤的各种非线性效应、光纤参数以及泵浦脉冲参数等方面分析了影响超连续光谱特性的因素。
     2.将不同的光纤作为非线性介质产生超连续谱,对实验结果进行分析比较。
     3.采用不同种光纤匹配连接的方法产生超连续谱,比较光谱特性,得出了第一段被泵浦光纤的色散和非线性特性最大程度上影响光谱质量的结论,在高非线性光纤(HNLF)后接入色散位移光纤(DSF)或SMF来平衡光谱的平均功率,谱宽和平坦度等性能指标,以便应用于相关领域。在泵浦120m HNLF+4.57km DSF+2.04km SMF时得到生物体探测窗口~1300nm 3dB谱宽为140.6nm的宽带光谱。用该光源作为光学相干层析系统光源,理论上可以得到<4.1μm的纵向分辨率。
     三、频域OCT系统的实验研究
     1.讨论了一阶Born近似的傅里叶衍射层析定理及频域OCT的测量原理。
     2.根据频域OCT的基本原理,搭建起一套频域OCT系统。对平面镜和三层叠放在一起的盖玻片进行探测,对探测到的干涉信号进行处理从而得到被探测点的深度信息,发现系统纵向分辨率可以达到16.4μm或者更高。
Optical coherence tomography (OCT) technology can carry out real-time and high-resolution imaging of living tissue. It can be used to analysis and diagnosis physiological and pathological changes of internal in-vivo tissues. It will provide a new important method of diagnosis for the biomedical field to research and develop the technology. This dissertation was focused on OCT optical source which was the key component of OCT system and system itself, which included:
     1. Nonlinear polarization rotation (NPR) passively mode-locked fiber laser (PMLFL).
     1) Influence of cavity parameters on output pulse width, chirp, bandwidth and stability was investigated numerically.
     2) NPR passively mode-locked fiber laser was numerical simulated and analysed, an effective method for avoiding multipulse was put forward.
     3) Dispersion-matched condition of PMLFL was determined by spectrum sideband measuring. By changing the length of total single mode fiber (SMF) in the ring cavity, self-starting 520.5fs mode-locked pulse train at 25MHz repetition rate with 1.81mW output power was obtained in PMLFL which was centered at 1558.4nm with 29.5nm 3dB spectrum width.
     4) Aσ-cavity PMLFL was presented. Experimentally, self-starting 670.5fs mode-locked pulse train at 6.2MHz repetition rate with 1.5mW average output power was obtained, which was centered at 1562.3nm with 19.2nm 3dB bandwidth.
     2. Supercontinuum (SC) generated in nonlinear fiber.
     1) The influences of nonlinear effects of fiber, fiber parameters and pump pulse parameters on SC spectrum were studied numerically.
     2) SC was generated in different fibers and the experimental results were analyzed and compared.
     3) SC generated from the combination of fiber with different characteristics was researched. It was showed that the spectrum quality was mainly affected by dispersion and nonlinear characteristics of the first segment fiber. Dispersion shifted fiber (DSF) was connected after highly nonlinear fiber (HNLF) to optimize spectral shape. Widely broadened SC spectra were generated in the combination of 120m HNLF+4.57km DSF+2.04km single mode fiber (SMF) with 55 mW average pump power. 140.6nm 3 dB bandwidth spectrum on the left side of pump wavelength was obtained. About 4.1μm longitudinal resolution could be obtained around ~1300nm by using this SC spectrum as the optical source of optical coherence tomography system.
     3. Frequency domain OCT (FDOCT) system.
     1) Fourier diffraction theorem for tomography which based on the first order Born approximation and measuring principle of FDOCT system were studied.
     2) A FDOCT system was put up based on the basic principle of FDOCT. Dielectric mirror and three-layer-covered-glass were used as OCT samples respectively. It was found that the vertical resolution of the system reached 16.4μm or even more precise by analyzing the depth information of the point detected from the interference signal.
引文
[1] G. P. Agrawal, Applications of nonlinear fiber optics Academic Press, Rochester, University of Rochester, 2001, 229-232
    [2] E. A. De Souza, C. E. Soccolich, W. Pleibel et al. Saturable absorber modelocked polarization maintaining erbium-doped fiber laser. IEEE Electron. Lett., 1993, 29(5): 447- 449
    [3] N. Xiang, M. D. Guina, A. M. Vainionpaa et al. Broadband semiconductor saturable absorber mirrors in the 1.55μm wavelength range for pulse generation in fiber lasers. IEEE Quantum. Electron., 2002, 38(4): 369-374
    [4] Y. Deng, M. W. Koch, F. Lu et al. Colliding pulse passive harmonic mode-locking in a femtosecond Yb-doped fiber laser with a semiconductor saturable absorber. Opt. Express, 2004, 12(16): 3872-3877
    [5] J. Mark, L. Y. Liu, K. L. Hall et al. Femtosecond pulse generation in a laser with a nonlinear external resonator. Optics Letters. 1989, 14(1): 48-50
    [6] D. J. Richardson, R. L. Laming, D. N. Payne et al. Pulse repetition rates in passive, selfstarting, femtosecond soliton fiber laser. IEEE Electron. Lett., 1991, 27(16): 1451-1452
    [7] T. O. Tsun, M. K. Islam, P. L. Chu, High-energy femtosecond figure-eight fiber laser. Opt. Comun., 1997, 141(1-2): 65-68
    [8] A. J. Stentz, R. W. Boyd, Figure-eigure fiber laser with largely unbalanced central coupler. IEEE Electron. Lett., 1994, 30(16): 1302-1303
    [9] N. H. Seong, D. Y. Kim, Experimental observation of stable bound solitons in a figure-eight fiber laser. Opt. Lett., 2002, 27(15): 1321-1323
    [10] V. J. Matas, T. P. Newson, D. J. Richardson et al. Self-starting passively mode-locked fiber ring soliton laser exploiting nonlinear polarization rotation, IEEE Electron.Lett., 1992, 28(15): 1391-1393
    [11] K. Tamura, H. A. Haus, E. P. Ippen, Self-starting additive pulse mode-locked erbium fiber ring laser, IEEE Electron.Lett., 1992, 28(24): 2226-2228
    [12] K. Tamura, L. E. Nelson, H. A. Haus et al. Soliton versus nonsoliton operation of fiber ring lasers, Appl. Phys. Lett., 1994, 64(2): 149-151
    [13]刘东峰,陈国夫,王贤华,自起振被动锁模掺Er3+光纤环形腔孤子激光器的实验研究,中国科学(A辑),1999, 29(7): 656-661
    [14] K. S. Abedin, J. T. Gopinath, L. A. Jiang et al. Self-stabilized passive, harmonically mode-locked stretched-pulse erbium fiber ring laser, Optic. Let., 2002, 27(20): 1758-1760
    [15] H. Lim, F. O. Iiday, F. W. Wise, Generation of 2-nJ pulses from a femtosecond ytterbium fiber laser, Optic. Lett., 2003, 28(8): 660-662
    [16] S. Li, X. Chen, D. V. Kuksekov et al. Wavelength tunable stretched-pulse mode-locked all-fiber erbium ring laser with single polarization fiber. Opt. Express, 2006, 14(13): 6098-6102
    [17] Bülend Ortac, Jens Limpert, Andreas Tünnermann, High-energy femtosecond Yb-doped fiber laser operating in the anomalous dispersion regime. Optics Letters, 2007, 32(15): 2149-2151
    [18] Jian Chen, Jason W. Sickler, Erich P. Ippen et al. High repetition rate, low jitter, low intensity noise, fundamentally mode-locked 167 fs soliton Er-fiber laser. Optics Letters, 2007, 32(11): 1566-1568
    [19] D. Y. Tang, L. M. Zhao, Generation of 47-fs pulses directly from an erbium-doped fiber laser. Optics Letters, 2007, 32(1): 41-43
    [20] V. V. Afanasjev, B. A. Malomed, P. L. Chu, Stability of bound states of pulses in the Ginzburg-Landau equations, Physical Review E, 1997, 56(5): 6020-6025
    [21] L. M. Zhao, D. Y. Tang, T. H. Cheng et al. Bound states of dispersion-managed solitons in a fiber laser at near zero dispersion. Applied Optics, 2007, 46(21): 4768-4773
    [22] L. M. Zhao, D. Y. Tang, X. Wu et al. Bound states of gain-guided solitons in a passively mode-locked fiber laser. Optics Letters, 2007, 32(21): 3191-3193
    [23] L. M. Zhao, D. Y. Tang, T. H. Cheng et al. Period-doubling of dispersion-managed solitons in an Erbium-doped fiber laser at around zero dispersion. Optics Communications, 2007, 278(2): 428-433
    [24] L.M.Zhao, D.Y.Tang, T.H.Cheng et al. Period-doubling of multiple solitons in a passively mode-locked fiber laser, Optics Communications, 2007, 273(2): 554-559
    [25] William H. Renninger, Andy Chong, Frank W. Wise, Giant-chirp oscillators for short-pulse fiber amplifiers. Optics Letters, 2008, 33(24): 3025-3027
    [26] A. Cabasse, B. Ortac, G. Martel et al. Dissipative solitons in a passively mode-locked Er-doped fiber with strong normal dispersion. Optics Express, 2008, 16(23): 19322-19329
    [27] K. Kieu, W. H. Renninger, A. Chong et al. Sub-100fs pulses at watt-level powers from a dissipative-soliton fiber laser. Optics Letters, 2009, 34(5): 593-595
    [28]贾东方,黄超,宋立军等.超连续光脉冲的产生及应用.光通信研究, 2000, 6(5): 22-27
    [29] Jay E. Sharping, Marco Fiorentino, Prem Kumaar et al. All-optical switching based on cross-phase modulation in microstructure fiber. IEEE Photon. Technol.Lett., 2002, 14(1): 77-79
    [30] Lee W S, Zhu Y J, Shaw B et al. 2.56Tb/s capacity, 0.8b/s/Hz·s DWDM transmission over 120km NDSF using polarization-bit-interleaved 80Gb/ s OTDM signal. OFC′01, USA: OSA, 2001, TuU1-1-TuU1-4
    [31] Sotobayashi H, Konishi A, Chujo W et al. Simultaneously generated 3.24Tbit/s (81WDM×40Gbit/s) carrier suppressed RZ transmission using a single supercontinuum source. ECOC′01, Amsterdam, Holand: 2001, 56-57
    [32] E. Yamada, H. Takara, T. Ohara et al. 150channel supercontinuum CW optical source with high SNR and precise 25GHz spacing for 10Gbit/s DWDM systems.Electron. Lett., 2001, 37(5): 304-306
    [33] E. D. J. Smith, N. Wada, W. Chujo et al. High resolution OCDR using 1.55μm supercontinuum source and quadrature spectral detection. Electron. Lett., 2001, 37(21): 1305-1307
    [34] Jones D J, Diddams S A, Ranka J K et al. Carrier-envelop phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science, 2000, 288(4): 635-639
    [35] O Boyraz, J Kim, M N Islam et al. 10Gb/s multiple wavelength, coherent short pulse source based on spectral carving of supercontinuum generated in fibers. IEEE J. Light. Tech., 2000, 18(12): 2167-2174
    [36] R. R. Alfano, S. L. shapiro, Emission in the region 4000 to 7000 ? via four-photon coupling in glass. Phys. Rev. Lett., 1970, 24(11): 584-587
    [37] R. H. Stolen, Chinlon Lin, Self-phase-modulation in silica optical fibers. Phy. Rev. A, 1978, 17(4): 1448-1453
    [38] J. W. Lou, T. J. Xia, O. Boyraz et al. Broader and flatter supercontinuum spectra in dispersion-tailored fibers. OFC’97, USA: OSA, 1997, 32-34
    [39] Toshiaki Okuno, Masashi Onishi, Masayuki Nishimura, Generation of ultra-broad-band supercontinuum by dispersion-flattened and decreasing fiber. IEEE Photon. Technol. Lett., 1998, 10(1): 72-74
    [40] K. Mori, H. Takara, S. Kawanishi et al. Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile. Electron.Lett., 1997, 33(21): 1806-1807
    [41] G. A. Nowak, J. Kim, M. N. Islam, Stable supercontinuum generation in short lengths of conventional dispersion-shifted fiber. Appl. Opt., 1999, 36(36): 7364-7369
    [42] K. Abedin, F. Kubota, Supercontinuum generation with mode-spacing of 154GHz in 1460-1680nm region from optical fiber by using actively mode-locked fiber laser. OFC'03, USA: OSA, 2003, 233-234
    [43] Arnaud Mussot, Thibaut Sylvestre, Laurent Provino et al. Generation of abroad band single-mode supercontinuum in a conventional dispersion-shifted fiber by use of a subnanosecond microchip laser. Opt. Lett., 2003, 28(19): 1820-1822
    [44] J. K. Ranka, R. S. Windeler, A. J. Stentz, Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800nm. Opt. Lett., 2000, 25(1): 25-27
    [45] Coen S, Haelterman M, Continuous-wave ultrahigh-repetition-rate pulse-train generation through modulational instability in a passive fiber cavity. Opt.Lett., 2001, 26(1):39-41
    [46] A. Mussot, A. Kudlinski, J-C Beugnot et al. Extended blue side of flat supercontinuum generation in PCFs with a cw Yb fiber laser. IEEE/LEOS Winter Topical Meeting Series, 2008, 178-179
    [47]刘卫华,宋啸中,王屹山等.飞秒激光脉冲在高非线性光子晶体光纤中产生超连续谱的实验研究.物理学报,2008, 57(2): 917-922
    [48] Akheelesh K. Abeeluck, Clifford Headley, High-power supercontinuum generation in highly nonlinear, dispersion-shifted fibers by use of a continuous-wave Raman fiber laser. Opt. Lett., 2004, 29(18): 2163-2165
    [49] Akheelesh K. Abeeluck, Clifford Headley, Continuous-wave pumping in the anomalous- and normal-dispersion regimes of nonlinear fibers for supercontinuum generation. Opt. Lett., 2005, 30(1): 61-63
    [50] Jun Takayanagi, Norihiko Nishizawa, Generation of Widely and Flatly Broadened, Low-Noise and High-Coherence Supercontinuum in All-Fiber System. Japanese Journal of Applied Physics, 2006, 45(16): L441-L443
    [51] Norihiko Nishizawa, Jun Takayanagi, Octave spanning high-quality supercontinuum generation in all-fiber system. J. Opt. Soc. Am. B, 2007, 24(8): 1786-1792
    [52] M. C. Stumpf, S. C. Zeller, A. Schlatter, Compact Er: Yb: glass-laser-based supercontinuum source for high-resolution optical coherence tomography. Optics Express, 2008, 16(14): 10572-10579
    [53] Norihiko Nishizawa, Masaru Hori, Octave Spanning High Quality Super Continuum Generation Using 10nJ and 104fs High Energy Ultrashort Soliton Pulse, Applied Physics Express, 2008, pp. 022009-1-022009-2
    [54] J. W. Nicholson, R. Bise, J. Alonzo, Visible Continuum Generation Using a Femtosecond Erbium-Doped Fiber Laser and a Hybrid HNLF-PCF Nonlinear Fiber, OFC/NFOEC2008, USA: OSA, 2007
    [55] D Huang, E A Swanson, C P Lin et al. Optical Coherence Tomography. Science, 1991(254): 1178-1181
    [56] Joseph M. Schmitt, Optical Coherence Tomography (OCT): A Review. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM WLWCTRONICS, 1999, 5(4): 1205-1214
    [57] Amir H. Nejadmalayeri, Optical Coherence Tomography, 2001
    [58] D. D. Sampson, Trends and prospects for optical coherence tomography. 2nd European Workshop on Optical Fiber Sensors, Bellingham, WA: Proc. of SPIE, 2004, 5502, 51-58
    [59] A. F. Fercher, W. Drexler, C. K. Hitzenberger et al. Optical coherence tomography-principles and applications. Rep. Prog. Phys., 2003, 66: 239-303
    [60] A. F. Fercher, C. K. Hitzenberger, Optical coherence tomography. Progress in Optics(E.Wolf,Editor), 2002, 44: 215-302
    [61] J. C. Clements, A. V. Zvyagin, K. K. M. B. D. Silva et al. Optical coherence tomography as a novel tool for non-destructive measurement of the hull thickness of lupin seeds. Plant Breeding, 2004, 123: 266-270
    [62] A. F. Fercher, C. K. Hitzenberger, W. Drexler et al. In vivo optical coherence tomography. Am. J. Ophtalmology, 1993, 116: 113-114
    [63] E. A. Swanson, J. A. Izatt, M. R. Hee et al. In vivo retinal imaging by optical coherence tomography. Opt. Lett., 1993, 18(21): 1864-1866
    [64] Lars Thrane, Peter E. Andersen, Thomas M. J?rgensen et al. Optical Coherence tomography. reprinted from DOPS-NYT 4-2001, 13-18
    [65] A. F. Fercher, C. K. Hitzenberger, G. Kamp et al. Measurement of intraocular distances by backscattering spectral interferometry. Optics Communications, 1995, 117(1-2): 43-48
    [66] S. H. Yun, G. J. Tearney, B. E. Bouma et al. High-speed spectral-domain optical coherence tomography at 1.3μm wavelength. Optics Express, 2003, 11(26): 3598-3604
    [67] Barry Cense, Nader A. Nassif, Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography. Optics Express, 2004, 12(11): 2435-2447
    [68] Yoshiaki Yasuno, Takashi Endo, Shuichi Makita et al. Three-dimensional line-field Fourier domain optical coherence tomography for in vivo dermatological investigation. Journal of Biomedical Optics, 2006, 11(1): 1-7
    [69] R. A. Leitgeb, W. Drexler, A. Unterhuber et al. Ultrahigh resolution Fourier domain optical coherence tomography. Optical Express, 2004, 12(10): 2156-2165
    [70] Branislav Grajciar, Michael Pircher, Adolf F Fercher et al. Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye. Optics Express, 2005, 13(4): 1131-1137
    [71] Maciej Wojtkowski, Vivek J. Srinivasan, Tony H.Ko et al. Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. Optics Express, 2004, 12(11): 2404-2421
    [72] H. A. Haus, E. P. Ippen, K. Tamuraetal, Additive-pulse mode-locking in fiber lasers. IEEE J. Quant. Elect., 1994, 30(1): 200-208
    [73] S. M. J. Kelly, Characteristic sideband instability of periodically amplified average soliton. IEEE Electron. Lett., 1992, 28(8): 806-807
    [74] H. A. Haus, J. G. Fujimoto, E. P. Ippen et al. Structures for additive pulse mode locking. J. Opt. Soc. Am. B, 1991, 8(10): 2068-2076
    [75] Tamura K, Nelson L E, Haus H A, et al. Soliton versus nonsoliton operation of fiber ring lasers. Appl Phys Lett, 1994, 64(2): 149-151
    [76] Dennis M L, Duling I N, Intracavity dispersion measurement in mode-locked fibre laser. Electron Lett., 1993, 29(4): 409-411
    [77]王肇颖,王永强,林冉等,宽可调谐自起振被动锁模掺铒光纤激光器,光子学报,2004, 33(8): 905-907
    [78] Holger Hundertmark, Dieter Wandt, Carsten Fallnich et al. Octave-spanning supercontinuum generation in an extruded PCF with an Er-doped fiber laser-amplifier system. Optical Fiber Communication Conference, 2004 Volume 2, 23-27 Feb. 2004 Page(s): 3pp.vol.2
    [79] G. P. Agrawal, Nonlinear fiber optics. Academic Press, Rochester, University of Rochester, 2005, 45-51
    [80]贾东方,Tbit/s光纤通信系统若干关键技术研究,博士论文,天津大学,2002
    [81] S. Taccheo, P. Vavassori, Dispersion-flattened fiber for efficient supercontinuum generation. OFC'2002, USA: OSA, 2002, 565-567
    [82] E. Wolf, Three-dimensional structure determination of semi-transparent objects from holographic data. Optics Communications, 1969, 1(4): 153-156

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700