人血管内皮生长因子受体-2基因(KDR)在链霉菌和大肠杆菌的克隆表达及其抑制剂筛选模型的构建研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Cloning and Expression of Human Vascular Endothelial Growth Factor Recptor-2(KDR) Gene in Streptomyces Lividans TK24 and E.coli BL21 and Study of the Screening Model for KDR Inhibitors
  • 作者:刘春平
  • 论文级别:博士
  • 学科专业名称:微生物与生化药学
  • 学位年度:2007
  • 导师:李元
  • 学科代码:100705
  • 学位授予单位:中国协和医科大学
  • 论文提交日期:2007-05-01
摘要
血管生成是毛细血管从已构建的毛细血管网中以出芽方式新生的过程,参与许多病理和生理过程如伤口愈合、组织再生、子宫内膜周期性增生以及肿瘤的转移和血管生成。尤其在实体瘤的恶性生长和转移中,肿瘤的血管生成起到重要的作用。血管内皮生长因子(Vascular endothelial growth factor,VEGF)作为血管内皮细胞特异的有丝分裂原,直接参与了血管形成这个过程,促进内皮细胞分裂增殖,促使新生血管形成,同时还可有效地提高血管的通透性。VEGF这一功能是通过和其特异性受体结合来发挥作用的。VEGF受体家族主要包括三个成员:VEGFR-1(Flt-1)、VEGFR-2(KDR/Flk-1)、VEGFR-3(Fit-4),它们都属于受体酪氨酸激酶(RTK)Ⅲ型超家族。研究表明VEGFR-2(KDR/Flk-1)在调节内皮细胞增殖、分化反应中最为重要,是内皮细胞VEGF信号传导的主要执行者,VEGF与KDR结合使受体二聚体化,进一步激发KDR酪氨酸发生磷酸化,导致自身酶活性和下游信号相关酶类的激活,从而调节血管内皮细胞相关反应。新生血管的形成对恶性肿瘤的生长是必不可少的因素,因而以KDR为靶点进行药物设计和筛选可成为抗肿瘤血管生成的重要方略。
     KDR基因全长5821bp,编码基因位于4q12,编码区为4068bp,编码1356个氨基酸。由胞外7个Ig样结构域,一个跨膜域和胞内域组成。胞外域由766个氨基酸组成,第2-3Ig样结构域是主要VEGF结合区。KDR胞内区有565个氨基酸组成,可分为激酶功能区、68个氨基酸的酪氨酸激酶插入区和羧基末端。
     本研究从人脐静脉内皮细胞(HUVEC)中提取总RNA,以其为模板,通过RT-PCR扩增获得编码KDR编码胞外区1-3Ig样结构域(KDR-ED)和胞内酪氨酸激酶催化区域(KDR-CD)的基因片段。测序结果同已知KDR基因编码序列进行比较,结果一致。
     以链霉菌为表达体系进行基因表达。利用本实验室自行构建的新型链霉菌—大肠杆菌穿梭质粒pSGLgpp作为KDR-ED和KDR-CD的基因表达载体。将KDR-ED和KDR-CD编码基因分别克隆至载体的gpp信号肽编码序列下游。重组质粒转化至S.lividans TK24原生质体,经再生得到转化子,重组菌分别命名为S.lividans[pSGLgpp/KDR-ED]和S.lividans[pSGLgpp/KDR-CD]。SDS-PAGE结果表明,S.lividans[pSGLgpp/KDR-CD]分泌表达44kD的特异蛋白条带。采用磷酸化的酪氨酸抗体在没有加入ATP的情况下对KDR-CD蛋白进行western blot检测,结果出现44kD的单一杂交带,表达的KDR-CD具有免疫学活性。S.lividans[pSGLgpp/KDR-ED]可能分泌表达37KD的重组KDR-ED。
     此外在大肠杆菌中也分别进行了KDR-ED和KDR-CD编码基因的克隆表达。将KDR-CD基因克隆至载体pET-30a,获得重组质粒pET-30a/KDR-CD并转化至大肠杆菌BL21(DE3)。SDS-PAGE分析显示在41kD处有特异性蛋白条带出现,大部分以包涵体的形式存在。采用磷酸化的酪氨酸抗体进行Western blot检测,全菌及超声破碎的上清和包涵体均在41kD处有单一杂交带,说明表达的KDR-CD重组蛋白具有免疫活性。将KDR-ED基因分别采用载体pET-30a和载体pBV220,在大肠杆菌中均未获表达。
     分别对链霉菌和大肠杆菌表达的重组KDR-CD蛋白进行纯化。S.lividans[pSGLgpp/KDR-CD]的培养上清液经70%饱和硫酸铵沉淀、SP SepharoseFF阳离子交换树脂层析和Q Sepharose FF阴离子交换树脂层析,获得KDR-CD纯品。E.coli[pET-30a/KDR-CD]产生的重组蛋白,经尿素溶解再进行复性处理后,进行Ni~(2+)—螯合亲和层析得到具有免疫活性的纯化重组蛋白。两种宿主表达的重组的KDR-CD纯化后进行SDS-PAGE分析,HPLC检测纯度均达到95%,且具有免疫活性。
     采用ELISA方法研究纯化的KDR-CD蛋白的酪氨酸激酶活性,以poly(E4Y)为反应底物,对反应条件包括KDR-CD浓度、底物浓度、ATP及Mg~(2+)和Mn~(2+)的浓度进行了优化,结果表明两种体系表达的KDR-CD蛋白均具有酪氨酸激酶活性。
     以纯化的KDR-CD蛋白为靶位,建立了KDR酪氨酸激酶的抑制剂筛选模型,已筛选了600余株微生物产物,经复筛获得了13株产生抑制物质的菌株,阳性率为2.17%。
     本研究首次在链霉菌中成功分泌表达了KDR-CD的酪氨酸激酶催化域,并首次以原核系统表达的重组KDR蛋白构建了筛选酪氨酸激酶抑制剂的新型模型,具有较突出新颖性和可操作性,为从微生物来源获得抗肿瘤血管形成的新药奠定了基础。
Angiogenesis is defined as the development of new blood vessels from preexisting vessels,and it is a crucial process not only in normal physiology but also in pathological process such as embryonic development,wound healing,the normal menstrual cycle and tumor metastasis and tumor-associated blood vessels.Especially angiogenesis plays an important role in solid tumor growth and tumor metastasis. Vascular endothelial growth factor(VEGF) acts as a highly specific mitogen directly involving in the process of angiogenesis,which induces endothelial cells division and proliferation and also increases vascular permeability.VEGF performs its function through bindig to special receptors.Three high-affinity cognate endothelial receptors for VEGF have been identified:VEGFR-1/Flt-1,VEGFR-2/Flk-1/KDR,and VEGFR-3/Flt-4.These receptors belong to the subfamily of classⅢreceptor tyrosine kinases(RTKs).Studies have indicated that KDR is the major signal transducer for the differentiation and proliferation of endothelial cells.VEGF binding to KDR results in dimerization of receptor monomers,transphosphorylation by dimerized receptors and docking of signaling proteins to receptor phosphotyrosines.An increase in the intrinsic catalytic activity and creation of binding sites on the RTKs to recruit cytoplasmic signaling proteins are primary features of RTKs activation,resulting in endothelial cells-associated reaction.As angiogenesis is of crucial importance for tumor growth, effectively inhibiting KDR signaling is considered as an attractive target for drugs design and screening novel anticancer agents against tumor angiogenesis.
     A full-length 5821bp KDR cDNA includes 4068bp-coding region encoding 1356 amino acids,whose encoding gene locates in 4q12.KDR is characterised by seven extracellular immunoglobulin(Ig)-like domains followed by a membrane-spanning region and a conserved intracellular tyrosine kinase domain.Extracellular region is composed of 766 amino acids,2-3 Ig-like domain are main binding sites for VEGF. Intracellular tyrosine kinase domain has 565 amino acids,consisting of a kinase domain split by an about 68-amino-acid kinase insert,and a carboxyl terminus.
     With RNA extracted from human umbilical vein endothelial cell as the template, the KDR cDNA encoding 1-3 extracellular immunoglobulin(Ig)-like domains (KDR-ED) and the catalytic core in intracellular tyrosine kinase domain(KDR-CD) were amplified with RT-PCR.The sequence of amplified KDR-ED and KDR-CD was completely identical with the published data(GenBank Accession No.AF063658).
     Using the shuttle plasmid(Streptomyces-E.coli) pSGLgpp as expression vector, KDR-ED and KDR-CD were cloned and expressed in S.lividans TK24 separately. After the gene KDR-ED and KDR-CD were cloned at the downstream of gpp signal peptide in the plasmid pSGLgpp separately,the recombinant plasmids were transformed into S.lividans TK24,and the strains were named as S.lividans[pSGLgpp/KDR-ED]and S.lividans[pSGLgpp/KDR-CD]respectively. SDS-PAGE showed that a special protein band with MW 44kD appeared on the gel using the expressed protein of S.lividans[pSGLgpp/KDR-CD].With an anti-phosphotyrosine antibody,the result of Western blotting of the recombiant KDR-CD identified a protein band of about 44 kD on the membrane.Such results demonstrated the recombiant KDR-CD expressed by S.lividans has immunonogical activity and the protein was already phosphated in Streptomyces. S.lividans[pSGLgpp/KDR-ED]could express recombinant KDR-ED with about MW 37kD.
     At the meantime,with the plasmid as pET-30a as vector,the gene of KDR-ED and KDR-CD were cloned and expressed in E.coliBL21(DE3) seperately.With SDS-PAGE, the apparent molecular weight of expressed KDR-CD was about 41kD existing in inclusion body form mostly.With an anti-phosphotyrosine antibody,the result of western blotting showed that the observed protein band of about 41kD in whole pellet, the soluble fraction and the inclusion body,respectively.The results confirmed that the recombinant KDR-CD protein from E.coli has immunological activity and the protein was phosphated in E.coliBL21(DE3).With SDS-PAGE,the KDR-ED was not expressed in E.coli.
     The recombinant KDR-CD expressed in E.coli and S.lividans were purified, respectively.The KDR-CD was purified from the supernant of S.lividans[pSGLgpp/KDR-ED]by the following steps:70%ammonium sulfate precipitation,cation exchange resin SP-sepharose Fast Flow and an anion exchange resin Q-sephorose Fast Flow.After the recombinant KDR-CD protein from E.coli[pET-3Oa/KDR-CD]was denatured in urea.Through renatured treatment and Ni-NTA affinity chromatograph,the purified KDR-CD protein was obtained.The result of SDS-PAGE showed that the recombinant KDR-CD,which was obtained from two kinds of prokaryotic hosts using different purification methods,was pure.HPLC analysis showed that the purify reached 95%,respectively.
     Using ELISA method,tyrosine kinase activity of purified KDR-CD from two kinds of prokaryotic hosts was assayed,respectively.In these assays,poly(E4Y) was used as reacting substrate.The optimal condition was tested including the quantity of KDR-CD,the condition of substrate and ATP and the condition of Mg~(2+) and Mn~(2+). Results showed that KDR-CD from two kinds of prokaryotic hosts had tyrosine kinase avtivity.
     With the purified KDR-CD as target,the screening model for tyrosine kinase inhibitors was constructed.More than 600 microbiological metabolites were screened. Among them,13 metabolites were found with the inhibiting activity and the positive rate was about 2.17%.
     As showing above,KDR-CD was expressed secretly in Streptomyces,which has not reported before.With the recombinant KDR-CD from Streptomyces as target,a novel drug-screening model for inhibitors of tyrosine kinase has been established, which is more effective practice and creative.It will lay on good foundation for seeking novel drugs for anti-tumor angiogenisis.
引文
1. Ferrara N. Vascular endothelial growth factor. Trends Cardiovasc Med. 1993,3:244-250.
    2. Barleon B, Hauster S, Schollman C, et al. Differential expression of the two VEGF receptors fit and KDR in placenta and vascular endothelial cells. J Cell Biochem. 1994,54:56-66.
    3. B. I. Terman, M. Dougher-Vermazen, M. E. Carrion, D. Dimitrov, D.C. Armellino, Gospodarowicz, P. Bohlen, Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem. Biophys. Res. Commun. 1992,187:1579-1586.
    4. N.Rahimi, V. Dayanir, Receptor chimeras indicat that the vascular endothelial growth factor receptor-1 (VEGFR-1) modulates mitogenic activity of VEGFR-2 in endothelial cells. J. Biol. Chem. 2000, 275:16986-16992.
    5. J. Waltenberger, L. Claesson-Welsh, A. Siegbahn, M. Shibuya, C.H. Heldin, Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J. Biol. Chem. 1994,269:26988-26995.
    6. G. H. Fong, L. Zhang, D. M. Bryce, J. Peng, Increased hemangioblast commitment, not vascular disorganization, is the primary defect in flt-1 knock-out mice. Development.1999,126:3015-3025.
    7. G.D. Yancopoulos, S.Davis, N.W.Gale, J.S. Wiegand, J.Holash, Vascular-specific growth factor and blood vessel formation. Nature. 2002,407:242-248.
    8. A. Arora, E.M. Scholar, Role of tyrosine kinase inhibitors in cancer therapy. J. Pharmacol.Exp.Ther. 2005,315:971-979.
    9. R.S. Herbst, A. Onn, A. Sandler, Agiogenesis and lung cancer: prognostic and therapeutic implications. J. Clin. Oncol. 2005,23:3243-3256.
    10. H. Hurwitz, L. Fehrenbacher, W. Novotny, T. Cartwright, J. Hainsworth, W.Heim, J. Berlin, A. Baron, S. Griffing, E. Holmgren, N.Ferrara, G. Fyfe, B. Rogers, R. Ross, F. Kabbinavar, Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 2004,350:2335- 2342.
    11. C.V. Parast, B. Mroczkowski, C. Pinko, S. Misialek, G. Khambatta, K. Appelt, Chracterization and kinetic mechanism of catalytic domain of human vascular endothelial growth factor receptor-2 tyrosine kinase(VEGFR2),a key enzyme in angiogenesis.Biochemistry.1998,37:16788-16801.
    12.L.Zhong,X.N.Guo,X.H.Zhang,Z.X.Wu,X.M.Luo,H.L.Jiang,L.P.Lin,X.W.Zhang,J.Ding,Expression and purification of the catalytic domain of human vascular endothelial growth factor receptor 2 for inhibitor screening.Biochimica Biophysica Acta.2005,1772:254-261.
    13.M.D.Vermazen,J.D.Humes,P.Bohlen,Biogical activity and phosphorylation sites of the bacterially expressed cytosolic domain of the KDR VEGF receptor.Biochem.Biophys.Res.Commu.1994,205:728-737.
    14.宋述梅,寿成超.VEGF受体KDR结合区的克隆和表达.生物化学与生物物理学进展.1995,26(5):481-484.
    15.曾革非,张智清,张立国,陈爱君,姚立红,侯云德.VEGF受体KDR胞外区基因的克隆及其在昆虫细胞中的表达.生物工程学报.2001,17(2):140-144.
    16.L.K.Richard,Z.R.Ruth,X.Z.Miao,A.J.Tebben,R.W.Hungert,Vascular endothelail growth factor receptor KDR tyrosine kinase activity is increased by autophosphorylation of two activity loop tyrosine residues.The Jounal of Biological Chemistry.1999,274(10):6453-6460.
    17.Q.Tao,V.Marina,Backer,M.Joseph,Kinase insert domain receptor(KDR) extracellular immunoglobulin-like domain 4-7 contain structural feature that block receptor dimerization and vascular endothelial growth factor-induced signaling.The Jounal of Biological Chemistry.2001,276(24):21916-21923.
    18.B.I.Terman,M.E.Carrion,E.Kovacs,B.A.Rasmussen,Identification of a new endothelial cell growth factor receptor tyrosine kinase.Oncogene.1991,6:1677-1683.
    19.J.Sambrook,EE Fritsch,T.Maniatis,Molecular cloning,A Laboratory Manual,2~(nd) ed,Cold Spring Harbor Laboratory Press.1989.
    20.霍普伍德等著,邓子新,唐纪良译,链霉菌操作手册,湖南科技出版社.
    21.Zhang Zhiqing,Yao Lihong,Hou Yunde,Construction and application of a high level expression vector containing P_RP_L promoter.Chinese.Journal of Virology.1990,6:111-116.
    22.B.Craig,J.Douglas Cossar,I.H.Donald,Stewart,Heterologous biopharmaceutical protein expression in Streptomyces. Trends in Biotechnology. 1997,15:315-320.
    23. C. Binnie, D. Jenish, D. Cossar, A, Szabo, D. Trudeaue, P. Krygsman, LT, Malek, DI, Stewart. Expression and characterization of soluble human erythropoietin receptor made in Streptomyces lividans. Protein. Expr. Purif. 1997,11:271-278.
    24. 张华, 中国协和医科大学博士毕业论文,1999,6.
    25. Z.B. Jiang, Y. Li, Cloning and expression of VEGF receptor Flt-1 gene in S.lividans TK24. Acta Microbiol. Sin. 2002,42:411-417.
    26. Y. Zhang, W.C. Wang, Y. Li, Cloning, expression, and purification of soluble human intrleukin-4 receptor in Streptomyces. Protein Exp. Purif. 2004,36:139-145.
    27. G. Zhao, B.P. Robert, M.Y. Jonathan, Charaterization and development of a peptide substrate-based phosphate transfer assay for the human vascular endothelial growth factor receptor-2 tyrosine kinase. Analytical Biochemistry.2007, 360:196-206.
    28. D L.Wilkinson, R G.Harrison, Bio/Technology. 1991, 9:443-448.
    29. B. Margolis, I. Lax, R. Kris. M. Dombalagian, A.M. Honegger, R. Howk. J. Biol. Chem. 1989, 264:10667-10671.
    30. M. Mohammadi, A.M. Honegger, D. Rotin, R. Fischer, F. Bellot, W. Li. A. Dionne. Mol Cellular Biol. 1991,11:5068-5078.
    31. JS. Bertram. The molecular biology of cancer. Mol Aspects Med. 2001, 21(6): 167-223.
    32. JC. Lopez Talavera, A. Levitzki, A. Martinez, et al.Tyrosine kinase inhibition ameliorates the hyperdynamic state and decreases nitricoxide production in cirrhotic rats with portal hypertension and ascites. J Clin Invest. 1997,100(3):664-670.
    33. B. Millauer, MR Longhi, KH. Plateetal. Dominat negativein hibition of Flk-1 suppresses the growth of many tumor types in vivo.Cancer Res.1996,56:1615-1620.
    34. P. Lin, S. Sankar, S. Shan. Inhibition of tumor growth by targeting tumor endothelium using a soluble vascularendothelial growth factor receptor. Cell Growth Differ. 1998, 9(1):49-58.
    1. Risau W. Mechanism of angiogenesis. Nature. 1997, 386: 671-4.
    2. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996, 86: 353-64.
    3. Nicosia RF, Nicosia SV, Smith M. Vascular endothelial growth factor, platelet-derived growth factor, and insulin-like growth factor-1 promote rat aortic angiogenesis in vitro. Am J Pathol. 1994,145:1023-1029.
    4 Jouanneau J, Moens G, Montesano R et al. FGF-1 but not FGF-4 secreted bycarcinoma cells promotes in vitro and in vivo angiogenesis and rapid tumor proliferation. Growth Factors. 1995,12:37-47.
    5. Suri C, McClain J, Thurston G et al. Increased vascularization in mice overexpressing angiopoietin-1. Science. 1998,282:468-471.
    6. Pepper MS, Vassalli JD, Orci L et al. Biphasic effect of transforming growth factor-beta 1 on in vitro angiogenesis. Exp Cell Res. 1993,204:356-363.
    7. Neufeld G, Cohen T, Gengrinovitch S et al. Vascular endothelial growth factor (VEGF) and its receptors. FASEBJ. 1999,13:9-22.
    8. Meyer M, Clauss M, Lepple-Wienhues A et al. A novel vascular endothelial growth factor encoded by Orf virus, VEGFE, mediates angiogenesis via signalling through VEGFR-2 (KDR) but not VEGFR-1 (Flt-1) receptor tyrosine kinases. EMBO J. 1999,18:363-374.
    9. Ogawa S, Oku A, Sawano A et al. A novel type of vascular endothelial growth factor, VEGF-E (NZ-7 VEGF), preferentially utilizes KDR/Flk-1 receptor and carries a potent mitotic activity without heparin-binding domain. J Biol Chem. 1998,273:31273-31282.
    10. Alon T, Hemo I, Itin A et al. Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med. 1995,1:1024-1028.
    11. Shibuya M. Role of VEGF-Flt receptor system in normal and tumor angiogenesis. Adv Cancer Res. 1995,67:281-316.
    12. Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell. 1998, 92: 735-45.
    13. Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu X-F, Breitman ML, Schuh AC. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature. 1995, 376: 62-6.
    14. Fong G-H, Rossant J, Gertsentein M, Breitman ML. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature. 1995, 376: 66-70.
    15. Luttun A, Tjwa M, Moons L, Wu Y, Angelillo-Scherrer A, Liao F, Nagy JA, Hooper A, Priller J, De Klerck B, Compernolle V, Daci E, Bohlen P, Dewerchin M, Herbert JM, Fava R, Matthys P, Carmeliet G, Collen D, Dvorak HF, Hicklin DJ, Carmeliet P. Revascularization of ischemic tissues by P1GF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat Med. 2002, 8: 831-40.
    16. Sawano A, Iwai S, Sakurai Y, Ito M, Shitara K, Nakahata T, Shibuya M. Vascular endothelial growth factor receptor-1 (Flt-1) is a novel cell surface marker for the lineage of monocyte-macrophages in humans. Blood. 2001, 97: 785-91.
    17. Terman BI, Carrion ME, Kovacs E, Rasmussen BA, Eddy R, Shows TB. Identification of a new endothelial cell growth factor receptor tyrosine kinase. Oncogene. 1991,6: 1677-83.
    18. Takahashi T, Shibuya M. The 230 kDa mature form of KDR/Flk-1 (VEGF receptor-2) activates the PLC . pathway and partially induces mitotic signals in NIH3T3 fibroblasts. Oncogene. 1997,14: 2079-89.
    19. Millauer B, Wizigmann-Voos S, Schnurch H, Martinez R, Moller NPH Risau W, Ullrich A. High affinity VEGF binding and developmental expression suggest flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell. 1993,72: 835-46.
    20. Duchek P, Somogyi K, Jekely G, Beccari S, Rorth P. Guidance of cell migration by the Drosophila PDGF/VEGF receptor. Cell. 2001,107: 17-26.
    21. Shibuya M. Vascular endothelial growth factor receptor family genes: whendid the three genes phylogenetically segregate? Biol Chem. 2002,383: 1573- 9.
    22. Shinkai A , Ito M, Anazawa H , et al. Mapping of the sites involved in ligand association and dissociation at the extracellular domain of the kinase insert domain - containing receptor for vascular endothelial growth factor [J].J Biol Chem. 1998,273 (47): 31283 - 31288.
    23. B. I. Terman, M. Dougher-Vermazen, M. E. Carrion, D. Dimitrov, D. C.Armellino, D. Gospodarowicz, P. Bohlen, Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem. Biophys. Res. Commun. 1992,187:1579-1586.
    24. Kondo K, Hiratsuka S, Subbalakshmi E, Matsushime H, Shibuya M. Genomic organization of the flt-1 gene encoding for vascular endothelial growth factor (VEGF) receptor-1 suggests an intimate evolutionary relationship between the 7-Ig and the 5-Ig tyrosine kinase receptors. Gene. 1998,208: 297-305.
    25. M. Dougher-Vermazen, J. D. Hulmes, P. Bohlen, B. I. Terman, Biological activity and phosphorylation sites of the bacterially expressed cytosolic domain of the KDR VEGF-receptor. Biochem. Biophys. Res. Commun. 1994, 205:728-738.
    26. T. Takahashi, S. Yamaguchi, K. Chida, M. Shibuya, A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC- γ and DNA synthesis in vascular endothelial cells. EMBOJ. 2001,20:2768-2778.
    27. M. Dougher, B. I. Terman, Autophosphorylation of KDR in the kinase domain is required for maximal VEGF-stimulated kinase activity and receptor internalization. Oncogene. 1999, 18: 1619-1627.
    28. H. Zeng, S. Sanyal, D. Mukhopadhyay, Tyrosine residues 951 and 1059of vascular endothelial growth factor receptor-2 (kdr) are essential forvascular permeability factor/vascular endothelial growth factor-inducedendothelium migration and proliferation, respectively. J. Biol. Chem. 2001, 276:32714-32719.
    29. M. Shibuya, N. Ito, L. Claesson-Welsh, Structure and function of vascular endothelial growth factor receptor-1 and -2. Curr. Top. Microbiol. Immunol. 1999, 237:59-83.
    30. Yamashita J, Itoh H, Hirashima M, Ogawa M, Nishikawa S, Yurugi T, Naito M, Nakao K, Nishikawa S. Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature. 2000,408: 92-6.
    31. B. Millauer, S. Wizigmann-Voos, H. Schnurch, R. Martinez, N. P. Moller,W. Risau, A. Ullrich, High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell. 1993, 72:835-846.
    32. Eichmann A, Corbel C, Nataf V, Vaigot P, Breant C, Le Douarin NM. Ligand-dependent development of the endothelial and hemopoietic lineages from embryonic mesodermal cells expressing vascular endothelial growth factor receptor 2. Proc Natl Acad Sci USA. 1997,94: 5141-6.
    33. C. Oberg, J.Waltenberger, L. Claesson-Welsh, M.Welsh, Expression of protein tyrosine kinases in islet cells: possible role of the Flk-1 receptor for beta-cell maturation from duct cells. Growth Factors. 1994,10:115-126.
    34. K. Yang, C. L. Cepko, Flk-1, a receptor for vascular endothelial growth factor (VEGF), is expressed by retinal progenitor cells. J. Neurosci. 1996, 16:6089-6099.
    35. O. Katoh, H. Tauchi, K. Kawaishi, A. Kimura, Y. Satow, Expression of the vascular endothelial growth factor (VEGF) receptor gene, KDR, in hematopoietic cells and inhibitory effect of VEGF on apoptotic celldeath caused by ionizing radiation. Cancer Res. 1995, 55:5687-5692.
    36. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, Isner JM. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res. 1999,85: 221-8.
    37. Brown, L. F., M. Detmar, K. Tognazzi, G. Abu-Jawdeh & M. L. Iruela-Arispe: Uterine smooth muscle cells express functional receptors (flt-1 and KDR) for vascular permeability factor/vascular endothelial growth factor. Lab Invest. 1997,76:245-55.
    38. Hatva, E., A. Kaipainen, P. Mentula, J. Jaaskelainen, A. Paetau, M. Haltia & K. Alitalo: Expression of endothelial cell-specific receptor tyrosine kinases and growth factors in human brain tumors. Am J Pathol. 1995,146:368-78.
    39. Boocock, C. A., D. S. Charnock-Jones, A. M. Sharkey, J. McLaren, P. J. Barker, K. A. Wright, P. R. Twentyman & S. K. Smith: Expression of vascular endothelial growth factor and its receptors flt and KDR in ovarian carcinoma. J Natl Cancer Inst. 1995,87:506-16.
    40. Shibuya M, Ito N, Claesson-Welsh L. Structure and function of VEGF receptor-1 and -2. Curr Topics Microbiol Immunol. 1999,237: 59-83.
    41. N. Rahimi, A. Kazlauskas, A role for cadherin-5 in regulation of vascular endothelial growth factor receptor 2 activity in endothelial cells. Mol. Biol.Cell. 1999,10:3401-3407.
    42. L. Caveda, I. Martin-Padura, P. Navarro, F. Breviario, M. Corada, D. Gulino,M. G. Lampugnani, E. Dejana, Inhibition of cultured cell growth by vascular endothelial cadherin (cadherin-5/VE-cadherin). J. Clin. Invet. 1996, 98:886-893.
    43. P. Carmeliet, M. G. Lampugnani, L. Moons, F. Breviario, V. Compernolle,F. Bono, G. Balconi, R. Spagnuolo, B. Oostuyse, M. Dewerchin, A. Zanetti, A. Angellilo, V. Mattot, D. Nuyens, E. Lutgens, F. Clotman, M. C.de Ruiter, A. Gittenberger-de Groot, R. Poelmann, F. Lupu, J. M. Herbert,D. Collen, E. Dejana, Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell. 1999,98:147-157.
    44. E. Borges, Y. Jan, E. Ruoslahti, Platelet-derived growth factor receptor β and vascular endothelial growth factor receptor 2 bind to the β3 integrin through its extracellular domain. J. Biol. Chem. 2000, 275:39867-39873.
    45. R. Soldi, S. Mitola, M. Strasly, P. Defilippi, G. Tarone, F. Bussolino, Role of αvβ3 integrin in the activation of vascular endothelial growth factor receptor-2. EMBO J. 18, 882-892 (1999).
    46. M. Friedlander, P. C. Brooks, R. W. Shaffer, C. M. Kincaid, J. A. Varner, D. A. Cheresh, Definition of two angiogenic pathways by distinct av integrins. Science. 1995,270:1500-1502.
    47. S. Soker, S. Takashima, H. Q. Miao, G. Neufeld, M. Klagsbrun, Neuropilin-1 is expressed by endothelial and tumor cells as an isoformspecific receptor for vascular endothelial growth factor. Cell. 1998,92:735-745.
    48. Z. Gluzman-Poltorak, T. Cohen, Y. Herzog, G. Neufeld, Neuropilin-2 is a receptor for the vascular endothelial growth factor (VEGF) forms VEGF-145 and VEGF-165. J. Biol. Chem. 2000,275:18040-18045.
    49. M. Migdal, B. Huppertz, S. Tessler, A. Comforti, M. Shibuya, R. Reich, H.Baumann, G. Neufeld, Neuropilin-1 is a placenta growth factor-2 receptor. J Biol. Chem. 1998,273:22272-22278.
    50. T. Makinen, B. Olofsson, T. Karpanen, U. Hellman, S. Soker, M. Klagsbrun, U. Eriksson, K. Alitalo, Differential binding of vascular endothelial growth factor B splice and proteolytic isoforms to neuropilin-1. J. Biol.Chem. 1999, 274:21217-21222.
    51. L. J. Savory, S. A. Stacker, S. B. Fleming, B. E. Niven, A. A. Mercer, Viral vascular endothelial growth factor plays a critical role in orf virus infection. J. Virol. 2000, 74:10699-10706.
    52. G. Fuh, K. C. Garcia, A. M. de Vos, The interaction of neuropilin-1 with vascular endothelial growth factor and its receptor flt-1. J. Biol. Chem. 2000,275:26690-26695.
    53.T. Kitsukawa, M. Shimizu, M. Sanbo, T. Hirata, M. Taniguchi, Y. Bekku, T.Yagi, H. Fujisawa, Neuropilin-semaphorin III/D-mediated chemorepulsive signals play a crucial role in peripheral nerve projection in mice. Neuron. 1997,19:995-1005.
    54. T. Kawasaki, T. Kitsukawa, Y. Bekku, Y. Matsuda, M. Sanbo, T. Yagi, H. Fujisawa, A requirement for neuropilin-1 in embryonic vessel formation. Development. 1999, 126:4895-4902.
    55. Y. Yamada, N. Takakura, H. Yasue, H. Ogawa, H. Fujisawa, T. Suda, Exogenous clustered neuropilin 1 enhances vasculogenesis and angiogenesis. Blood. 2001,97:1671-1678.
    56. T. Kitsukawa, A. Shimono, A. Kawakami, H. Kondoh, H. Fujisawa, Overexpression of a membrane protein, neuropilin, in chimeric mice causes anomalies in the cardiovascular system, nervous system and limbs. Development. 1995,121:4309-4318.
    57. H. Q. Miao, P. Lee, H. Lin, S. Soker, M. Klagsbrun, Neuropilin-1 expression by tumor cells promotes tumor angiogenesis and progression. FASEB J. 2000, 14:2532-2539.
    58. M. L. Gagnon, D. R. Bielenberg, Z. Gechtman, H. Q. Miao, S. Takashima, S. Soker, M. Klagsbrun, Identification of a natural soluble neuropilin-1 that binds vascular endothelial growth factor: In vivo expression and antitumor activity. Proc. Natl. Acad. Sci. U.S.A. 2000, 97:2573-2578.
    59. H. Cai, R. R. Reed, Cloning and characterization of neuropilin-1-interacting protein: a PSD-95/Dlg/ZO-1 domain-containing protein that interacts with the cytoplasmic domain of neuropilin-1. J. Neurosci. 1999,19:6519-6527.
    60. T. Takahashi, A. Fournier, F. Nakamura, L. H. Wang, Y. Murakami, R. G. Kalb, H. Fujisawa, S. M. Strittmatter, Plexin-neuropilin-1 complexes form functional semaphorin-3A receptors. Cell. 1999,99:59-69.
    61. K. A. Houck, D.W. Leung, A. M. Rowland, J. Winer, N. Ferrara, Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J. Biol. Chem. 1992, 267:26031-26037..
    62. A. M. Dougher, H.Wasserstrom, L. Torley, L. Shridaran, P.Westdock, R.E. Hileman, J. R. Fromm, R. Anderberg, S. Lyman, R. J. Linhardt, J.Kaplan, B. I. Terman, Identification of a heparin binding peptide on the extracellular domain of the KDR VEGF receptor. Growth Factors. 1997,14:257-268.
    63. T. Cohen, H. Gitay-Goren, R. Sharon, M. Shibuya, R. Halaban, B. Z.Levi, G. Neufeld, VEGF121, a vascular endothelial growth factor(VEGF) isoform lacking heparin binding ability, requires cell-surfaceheparan sulfates for efficient binding to the VEGF receptors of human melanoma cells. J. Biol. Chem. 1995, 270:11322-11326.
    64. B. Terman, L. Khandke, M. Dougher-Vermazan, D. Maglione, N. J. Lassam, D. Gospodarowicz, M. G. Persico, P. Bohlen, M. Eisinger, VEGF receptor subtypes KDR and FLT1 show different sensitivities to heparin and placenta growth factor. Growth Factors. 1994, 11:187-195.
    65. N. Ito, L. Claesson-Welsh, Dual effects of heparin on VEGF binding to VEGF receptor-1 and transduction of biological responses. Angiogenesis. 1999,3:159-166.
    66. J. Kroll, J.Waltenberger, The vascular endothelial growth factor receptor KDR activates multiple signal transduction pathways in porcine aortic endothelial cells. J. Biol. Chem 1997,272:32521-32527.
    67. D. Q. Guo, L.W.Wu, J. D. Dunbar, O. N. Ozes, L. D. Mayo, K. M. Kessler, J. A. Gustin, M. R. Baerwald, E. A. Jaffe, R. S. Warren, D. B. Dormer, Tumor necrosis factor employs a protein-tyrosine phosphatase to inhibit activation of KDR and vascular endothelial cell growth factor-induce endothelial cell proliferation. J. Biol. Chem. 2000, 275:11216-11221.
    68. L. Huang, S. Sankar, C. Lin, C. D. Kontos, A. D. Schroff, E. H. Cha, S. M. Feng, S. F. Li, Z. Yu, R. L. Van Etten, M. A. Blanar, K. G. Peters, HCPTPA, a protein tyrosine phosphatase that regulates vascular endothelial growth factor receptor-mediated signal transduction and biological activity. J. Biol. Chem. 1999,274:38183-38188.
    69. E. Y.Wong, L. Morgan, C. Smales, P. Lang, S. E. Gubby, J. M. Staddon, Vascular endothelial growth factor stimulates dephosphorylation of the catenins p120 and p100 in endothelial cells. Biochem. J. 2000, 346 (part 1):209-216.
    70. D. Gingras, S. Lamy, R. Beliveau, Tyrosine phosphorylation of the vascular endothelial-growth-factor receptor-2 (VEGFR-2) is modulated by Rho proteins. Biochem. J. 2000,348 (part 2):273-280.
    71. R. M. Rohan, A. Fernandez, T. Udagawa, J.Yuan, R. J. D'Amato, Genetic heterogeneity of angiogenesis in mice. FASEB J. 2000,14:871-876.
    72. A. Pettersson, J. A. Nagy, L. F. Brown, C. Sundberg, E. Morgan, S. Jungles, R. Carter, J. E. Krieger, E. J. Manseau, V. S. Harvey, I. A. Eckelhoefer, D. Feng, A. M. Dvorak, R. C. Mulligan, H. F. Dvorak, Heterogeneity of the angiogenic response induced in different normal adult tissues by vascular permeability factor/vascular endothelial growth factor. Lab. Invest. 2000, 80:99-115.
    73. N. Ito, C. Wernstedt, U. Engstrom, L. Claesson-Welsh, Identification of vascular endothelial growth factor receptor-1 tyrosine phosphorylation sites and binding of SH2 domain-containing molecules. J. Biol. Chem. 1998, 273:23410-23418.
    74. S. A. Cunningham, M. P. Arrate, T. A. Brock, M. N.Waxham, Interactions of FLT-1 and KDR with phospholipase Cγ: identification of the phosphotyrosine binding sites. Biochem. Biophys. Res. Commun. 1997,240:635-639.
    75. A. Sawano, T. Takahashi, S. Yamaguchi, M. Shibuya, The phosphorylated 1169-tyrosine containing region of flt-1 kinase (VEGFR-1) is a major binding site for PLCγ. Biochem. Biophys. Res. Commun. 1997,238:487-491.
    76. N. Rahimi, V. Dayanir, K. Lashkari, Receptor chimeras indicate that the vascular endothelial growth factor receptor-1 (VEGFR-1) modulates mitogenic activity of VEGFR-2 in endothelial cells. J. Biol. Chem. 2000,275:16986-16992.
    77. N. Ito, K. Huang, L. Claesson-Welsh, Signal transduction by VEGF receptor-1 wild type and mutant proteins. Cell. Signal. 2001,13:849-854.
    78. G. H. Fong, L. Zhang, D. M. Bryce, J. Peng, Increased hemangioblast commitment, not vascular disorganization, is the primary defect in flt-1 knock-out mice. Development 1999,126:3015-3025.
    79. J. Waltenberger, L. Claesson-Welsh, A. Siegbahn, M. Shibuya, C. H.Heldin, Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J. Biol. Chem. 1994, 269:26988-26995.
    80. H. Gille, J. Kowalski, B. Li, J. LeCouter, B. Moffat, T. F. Zioncheck, N. Pelletier, N. Ferrara, Analysis of biological effects and signaling properties of Flt-1 and KDR: A reassessment using novel highlyreceptor-specific VEGF mutants. J. Biol. Chem. 2000, 244:3222-3230.
    81. L. M. Wise, T. Veikkola, A. A. Mercer, L. J. Savory, S. B. Fleming, C. Caesar, A. Vitali, T. Makinen, K. Alitalo, S. A. Stacker, Vascular endothelial growth factor (VEGF)-like protein from orf virus NZ2 binds to VEGFR2 and neuropilin-1. Proc. Natl. Acad. Sci. U.S.A. 1999, 96: 3071-3076.
    82. S. Kanno, N. Oda, M. Abe, Y. Terai, M. Ito, K. Shitara, K. Tabayashi, M. Shibuya, Y. Sato, Roles of two VEGF receptors, Flt-1 and KDR, in the signal transduction of VEGF effects in human vascular endothelial cells. Oncogene. 2000,19:2138-2146.
    83. H. Gille, J. Kowalski, L. Yu, H. Chen, M. T. Pisabarro, T. Davis-Smyth, N.Ferrara, A repressor sequence in the juxtamembrane domain of Flt-1 (VEGFR-1) constitutively inhibits vascular endothelial growth factordependent Phosphatidylinositol 3'-kinase activation and endothelial cell migration. EMBO J. 2000,19:4064-4073.
    84. S. Shiose, T. Sakamoto, H. Yoshikawa, Y. Hata, Y. Kawano, T. Ishibashi, H. Inomata, K. Takayama, H. Ueno, Gene transfer of a soluble receptor of VEGF inhibits the growth of experimental eyelid malignant melanoma. Invest. Ophthalmol. Vis. Sci. 2000, 41:2395-2403.
    85. J. Miotla, R. Maciewicz, J. Kendrew, M. Feldmann, E. Paleolog, Treatment with soluble VEGF receptor reduces disease severity in murine collagen-induced arthritis. Lab. Invest. 2000,80:1195-1205.
    86. H. Chen, U. Ikeda, M. Shimpo, Y. Maeda, M. Shibuya, K. Ozawa, K. Shimada, Inhibition of vascular endothelial growth factor activity by transfection with the soluble FLT-1 gene. J. Cardiovasc. Pharmacol. 2000,36:498- 502.
    87. J. DiSalvo, M. L. Bayne, G. Conn, P.W. Kwok, P. G. Trivedi, D. D. Soderman, T. M. Palisi, K. A. Sullivan, K. A. Thomas, Purification and characterization of a naturally occurring vascular endothelial growth factor/placenta growth factor heterodimer. J. Biol. Chem. 1995,270:7717-7723.
    88. Y. Cao, P. Linden, D. Shima, F. Browne, J. Folkman, In vivo angiogenic activity and hypoxia induction of heterodimers of placenta growth factor/vascular endothelial growth factor. J. Clin. Invest. 1996,98:2507-2511.
    89. K. Huang, C. Andersson, G. M. Roomans, N. Ito, L. Claesson-Welsh, Signaling properties of VEGF receptor-1 and -2 homo- and heterodimers. Int. J. Biochem. Cell Biol. 2001,33:315-324.
    90. H. Zeng, H. F. Dvorak, D. Mukhopadhyay, Vascular permeability factor (VPF)/vascular endothelial growth factor (VEGF) peceptor-1 downmodulates VPF/VEGF receptor-2-mediated endothelial cell proliferation, but not migration, through phosphatidylinositol 3-kinase-dependent pathways. J. Biol. Chem. 2001, 276:26969-26979.
    91. S. A. Cunningham, M. N. Waxham, P. M. Arrate, T. A. Brock, Interaction of the Flt-1 tyrosine kinase receptor with the p85 subunit of Phosphatidylinositol 3-kinase. Mapping of a novel site involved in binding. J. Biol. Chem. 1995, 270:20254-20257 .
    92. Kearney JB, Ambler CA, Monaco KA, Johnson N, Rapoport RG, Bautch VL. Vascular endothelial growth factor receptor Flt-1 negatively regulates developmental blood vessel formation by modulating endothelial cell division. Blood. 2002,99(7):2397-407.
    93. Zeng H, Dvorak HF, Mukhopadhyay D. Vascular permeability factor (VPF)/vascular endothelialgrowth factor (VEGF) peceptor-1 down-modulates VPF/VEGF receptor-2-mediated endothelial cell proliferation, but not migration, through Phosphatidylinositol 3-kinase-dependent pathways. J BiolChem. 2001,276(29):26969-79.
    94. Keyt BA, Nguyen HV, Berleau LT, Duarte CM, Park J, Chen H, Ferrara N. Identification of vascular endothelial growth factor determinants for binding KDR and FLT-1 receptors. Generation of receptor-selective VEGF variants by site-directed mutagenesis. J Biol Chem. 1996,271(10):5638-46.
    95. Meyer RD, Singh A, Majnoun F, Latz C, Lashkari K, Rahimi N. Substitution of C-terminus of VEGFR-2 with VEGFR-1 promotes VEGFR-1 activation and endothelial cell proliferation. Oncogene. 2004,23(32):5523-31.
    96. Hiratsuka S, Minowa O, Kuno J, Noda T, Shibuya M. Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc Natl Acad Sci U S A. 1998,95(16): 9349-54.
    97. Odorisio T, Schietroma C, Zaccaria ML, Cianfarani F, Tiveron C, Tatangelo L, Failla CM, Zambruno G. Mice overexpressing placenta growth factor exhibit increased vascularization and vessel permeability. J Cell Sci. 2002,115(Pt 12):2559-67.
    98. Klagsbrun M, Takashima S, Mamluk R. The role of neuropilin in vascular and tumor biology. Adv Exp Med Biol. 2002,515:33-48.
    99. Carmeliet P. Angiogenesis in health and disease. Nat Med 2003;9(6):653-60.
    100. Cleaver O, Melton DA. Endothelial signaling during development. Nat Med. 2003,9(6):661-8.
    101. Clauss M, Weich H, Breier G, Knies U, Rockl W, Waltenberger J, Risau W. The vascular endothelial growth factor receptor Flt-1 mediates biological activities. Implications for a functional role of placenta growth factor in monocyte activation and chemotaxis. J Biol Chem. 1996,271(30): 17629-34.
    102. Athanassiades A, Lala PK. Role of placenta growth factor (PIGF) in human extravillous trophoblast proliferation, migration and invasiveness. Placenta. 1998;19(7):465-73.
    103. Dikov MM, Ohm JE, Ray N, Tchekneva EE, Burlison J, Moghanaki D, Nadaf S, Carbone DP. Differential roles of vascular endothelial growth factor receptors 1 and 2 in dendritic cell differentiation. J Immunol. 2005,174(1):215-22.
    104. de Vries C, Escobedo JA, Ueno H, Houck K, Ferrara N, Williams LT. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science. 1992,255(5047):989-91.
    105. Mossie K, Jallal B, Alves F, Sures I, Plowman GD, Ullrich A. Colon carcinoma kinase-4 defines a new subclass of the receptor tyrosine kinase family. Oncogene. 1995, 11(10):2179—84.
    106. Guy PM, Platko JV, Cantley LC, Cerione RA. KL 3rd Carraway: Insect cell-expressed p180erbB3 possesses an impaired tyrosine kinase activity. Proc Natl Acad Sci U S A. 1994,91(17):8132-6.
    107. Yoshikawa S, Bonkowsky JL, Kokel M, Shyn S, Thomas JB. The derailed guidance receptor does not require kinase activity in vivo. J Neurosci. 2001,21(1):RC119.
    108. Gille H, Kowalski J, Yu L, Chen H, Pisabarro MT, Davis-Smyth T, Ferrara N. A repressor sequence in the juxtamembrane domain of Flt-1 (VEGFR-1) constitutively inhibits vascular endothelial growth factor-dependent Phosphatidylinositol 3' -kinase activation and endothelial cell migration. EMBO J. 2000,19(15):4064-73.
    109. Niu XL, Peters KG, Kontos CD. Deletion of the carboxyl terminus of Tie2 enhances kinase activity, signaling, and function. Evidence for an autoinhibitory mechanism. J Biol Chem. 2002,277(35):31768-73.
    110. Pinkas-Kramarski R, Soussan L, Waterman H, Levkowitz G, Alroy I, Klapper L, Lavi S, Seger R, Ratzkin BJ, Sela M, Yarden Y. Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions. EMBO J. 1996,15(10):2452-67.
    111. Hubbard SR, Mohammadi M, Schlessinger J. Autoregulatory mechanisms in protein-tyrosine kinases. J Biol Chem. 1998,273(20): 11987-90.
    112. Mori S, Ronnstrand L, Yokote K, Engstrom A, Courtneidge SA, Claesson-Welsh L, Heldin CH.Identification of two juxtamembrane autophosphorylation sites in the PDGF beta-receptor;involvement in the interaction with Src family tyrosine kinases. EMBO J. 1993,12(6):2257-64.
    113. Wybenga-Groot LE, Baskin B, Ong SH, Tong J, Pawson T, Sicheri F. Structural basis for autoinhibition of the Ephb2 receptor tyrosine kinase by the unphosphorylated juxtamembrane region. Cell. 2001,106(6):745-57.
    114. Schlessinger J. Signal transduction. Autoinhibition control. Science. 2003,300(5620):750-2.
    115. Dayanir V, Meyer RD, Lashkari K, Rahimi N. Identification of tyrosine residues in vascular endothelial growth factor receptor-2/FLK-1 involved in activation of Phosphatidylinositol 3-kinaseand cell proliferation. J Biol Chem. 2001,276(21):17686-92.
    116. Meyer RD, Rahimi N. Comparative structure-function analysis of VEGFR-1 and VEGFR-2: What have we learned from chimeric systems? Ann N Y Acad Sci. 2003,995:200-7.
    117. Meyer RD, Dayanir V, Majnoun F, Rahimi N. The presence of a single tyrosine residue at the carboxyl domain of vascular endothelial growth factor receptor-2/FLK-1 regulates its autophosphorylationand activation of signaling molecules. J Biol Chem. 2002,277(30):27081-7.
    118. Sakurai Y, Ohgimoto K, Kataoka Y, Yoshida N, Shibuya M. Essential role of Flk-1 (VEGF receptor2) tyrosine residue 1173 in vasculogenesis in mice. Proc Natl Acad Sci U S A. 2005,102(4):1076-81.
    119. Fambrough D, McClure K, Kazlauskas A, Lander ES. Diverse signaling pathways activated by growth factor receptors induce broadly overlapping, rather than independent, sets of genes. Cell. 1999,97(6):727-41.
    120. Meyer RD, Singh AJ, Rahimi N. The carboxyl terminus controls ligand-dependent activation of VEGFR-2 and its signaling. J Biol Chem. 2004,279(1):735-42.
    127. Gerber HP, McMurtrey A, Kowalski J, Yan M, Keyt BA, Dixit V, Ferrara N. Vascular endothelial growth factor regulates endothelial cell survival through the Phosphatidylinositol 3' -kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem. 1998,273(46):30336-43.
    122. Thakker GD, Hajjar DP, Muller WA, Rosengart TK. The role of Phosphatidylinositol 3-kinase invascular endothelial growth factor signaling. J Biol Chem. 1999,274(15): 10002-7.
    123. Lelievre E, PM Bourbon, LJ Duan, RL Nussbaum, GH Fong: Deficiency in the p110{alpha} subunit of PI 3-kinase results in diminished Tie-2 expression and Tie-2-/--like vascular defects in mice. BloodFeb 7(Epub ahead of print(2005).
    126. B. Anand-Apte, B. Zetter, Signaling mechanisms in growth factorstimulated cell motility. Stem Cells. 1997, 15, 259-267.
    127.Sekiya F, Bae YS, Rhee SG. Regulation of phospholipase C isozymes: activation of phospholipase C-gamma in the absence of tyrosine-phosphorylation. Chem Phys Lipids. 1999,98(1-2):3-11.
    128. Liao HJ, Kume T, McKay C, Xu MJ, Ihle JN, Carpenter G. Absence of erythrogenesis and vasculogenesis in Plcg1-deficient mice. J Biol Chem. 2002,277(11):9335-41.
    129. Lawson ND, Mugford JW, Diamond BA, Weinstein BM. phospholipase C gamma-1 is required downstream of vascular endothelial growth factor during arterial development. Genes Dev. 2003,17 (11):1346-51.
    130. H. He, V. J. Venema, X. Gu, R. C. Venema, M. B. Marrero, R. B. Caldwell, Vascular endothelial growth factor signals endothelial cell production of nitric oxide and prostacyclin through flk-1/KDR activation of c-Src. J. Biol.Chem. 1999, 274:25130-25135.
    131. A. M. Doanes, D. D. Hegland, R. Sethi, I. Kovesdi, J. T. Bruder, T. Finkel, VEGF stimulates MAPK through a pathway that is unique for receptor tyrosine kinases Biochem. Biophys. Res. Commun. 1999,255:545-548.
    132. P. Xia, L. P. Aiello, H. Ishii, Z.Y. Jiang, D. J. Park, G. S. Robinson, H. Takagi, W. P. Newsome, M. R. Jirousek, G. L. King, Characterization of vascular endothelial growth factor's effect on the activation of protein kinase C, its isoforms, and endothelial cell growth. J. Clin. Invest. 1996,98:2018-2026.
    133. B. Q. Shen, D.Y. Lee, T. F. Zioncheck, Vascular endothelial growth factor governs endothelial nitric-oxide synthase expression via a KDR/Flk-1 receptor and a protein kinase C signaling pathway. J. Biol Chem. 1999,274:33057-33063.
    134. Bromann PA, Korkaya H, Courtneidge SA. The interplay between Src family kinases and receptor tyrosine kinases. Oncogene. Oct 18;2004 23(48):7957-68.
    135. Boggon TJ, Eck MJ. Structure and regulation of Src family kinases. Oncogene. 2004,23(48):7918-27.
    136. Alavi A, Hood JD, Frausto R, Stupack DG, Cheresh DA. Role of Raf in vascular protection from distinct apoptotic stimuli. Science. 2003,301 (5629):94-6.
    137. Seye CI, Yu N, Gonzalez FA, Erb L, Weisman GA. The P2Y2 nucleotide receptor mediates vascular cell adhesion molecule-1 expression through interaction with VEGF receptor-2 (KDR/Flk-1). J Biol Chem. 2004,279(34):35679-86.
    138. Mukhopadhyay D, Tsiokas L, Zhou XM, Foster D, Brugge JS, Sukhatme VP. Hypoxic induction of human vascular endothelial growth factor expression through c-Src activation. Nature. 1995,375 (6532):577-81.
    139. B. P. Eliceiri, R. Paul, P. L. Schwartzberg, J. D. Hood, J. Leng, D. A.Cheresh, Selective requirement for Src kinases during VEGF-inducedangiogenesis and vascular permeability. Mol. Cell. 1999,4:915-924().
    140. Z. Songyang, S. E. Shoelson, M. Chaudhuri, G. Gish, T. Pawson, W. G. Haser, F. King, T. Roberts, S. Ratnofsky, R. J. Lechleider, SH2 domains recognize specific phosphopeptide sequences. Cell. 1993, 72:767-778.
    141. S. Rousseau, F. Houle, H. Kotanides, L. Witte, J. Waltenberger, J. Landry, J. Huot, Vascular endothelial growth factor (VEGF)-driven actinbased motility is mediated by VEGFR2 and requires concerted activation of stress-activated protein kinase 2 (SAPK2/p38) and geldanamycin- sensitive phosphorylation of focal adhesion kinase. J. Biol.Chem. 2000, 275:10661-10672.
    142. Z.Y. Liu, R. K. Ganju, J. F.Wang, K. Schweitzer, B.Weksler, S. Avraham, J. E. Groopman, Characterization of signal transduction pathways in human bone marrow endothelial cells. Blood. 1997,90:2253-2259.
    143. S. Rousseau, F. Houle, J. Landry, J. Huot, p38 MAP kinase activation by vascular endothelial growth factor mediates actin reorganization and cell migration in human endothelial cells. Oncogene. 1997,15:2169-2177.
    144. Singh AJ, Meyer RD, Band H, Rahimi N. The Carboxyl Terminus of VEGFR-2 Is Required for PKC mediated Down-Regulation. Mol BiolCell.2005,16(4):2106-18
    145. P. Keren, Z.P. Zhu, Development of angiogenesis inhibitors to vascular endothelial growth factor receptor 2.Current status and future perspective, Front Biosci. 2005,10:10415-10439.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700