层状各向异性地层多分量电磁感应测井资料的正反演算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用三维时域有限差分方法(FDTD)研究建立了倾斜各向异性地层(含井眼)中多分量电磁感应测井的正演算法。针对地层各向异性的特征并考虑到井眼、侵入带、地层倾角等复杂情况,在地层交界附近采用面积加权平均方法计算网格的有效介质参数,并利用坐标系间的旋转矩阵确定仪器坐标系中地层的有效电导率张量,结合各向异性地层中FDTD的差分公式和单轴各向异性PML吸收边界条件,利用双方程算法快速提取磁场强度的幅度和相位,最终可得到倾斜井中多分量电磁感应测井响应。通过与模式匹配算法的数值结果相比较,验证了该算法的有效性,并系统考察了不同层厚、井眼倾角、侵入带半径、地层电阻率各向异性系数对多分量高频电磁感应测井响应的影响。
     基于传输线理论(TLM)及相关公式研究建立了一维各向异性介质中磁流源并矢Green函数的解析算法,通过三次样条插值与Gauss-Legendre数值积分相结合快速计算Sommerfeld积分。针对倾斜井眼或倾斜地层情形,利用仪器坐标系和地层坐标系间的旋转矩阵,得到仪器坐标系下磁流源并矢Green函数。与FDTD三维计算过程及其数值结果相比,在忽略井眼的一维地层模型中,解析的TLM算法无论在计算效率或精度上都具有更大的优势。最后,系统考察了一维层状各向异性地层中井眼倾角、地层电阻率各向异性系数、测井仪器工作频率、收发线圈系源距对多分量感应测井响应的影响,为反演方法提供理论依据。研究并建立了水平层状介质中多分量电磁感应测井资料快速全参数迭代反演算法。首先,利用摄动原理给出电导率摄动与电磁场变化的关系方程,并根据电导率函数与模型参数间的关系以及传输线理论获得的磁流源并矢Green函数的解析表达式与快速Sommerfeld积分,进一步建立多分量感应测井响应的Frèchet导数矩阵的快速算法。在此基础上,借助规范化处理和奇异值分解技术,给出同时反演各向异性地层电阻率和地层界面的迭代过程。本文利用几个理论模型考察了多分量感应反演算法的有效性,其数值结果表明:该反演算法能够取得较满意的反演效果,通过反演得到的纵横向电阻率、层界面均能与真实地层模型相吻合。
In this paper, we systematically and deeply study algorithm for forward and inversion of multicomponent electromagnetic induction well logging data in an anisotropically layered formation. The main content includes the 3 dimensional numerical modeling of multicomponent electromagnetic induction well logging response in an anisotropically layered formation by finite difference time domain (FDTD) algorithm, an analytic solution of magnetic current dyadic Green function in 1 dimensional anisotropically layered media by transmission line theory, and full parameter iterative inversion of the logging data. The corresponding computer codes have been independently developed. Many useful results have been obtained through a lot investigation of the response characteristic of the tool in differently theoretical models and many execution inversions of the synthetic well logging data.
     For investigation of 3 dimensional responses of the tool in the anisotropic formation, it is set up the algorithms of 3 dimensional finite difference time domain to solve Maxwell equation in time domain and that of fast extracting the amplitude and phase of electromagnetic field during modeling. Finite difference in space and time domains and linear interpolation formula are used to approximate Maxwell equation in space and time domain to obtain recursive relation of electromagnetic field on Yee’s staggered grids. The area weighted average and rotation matrix are used to compute effective conductivity on the grid with different conductivities to enhance precision of the approximation. Besides, an absorbing boundary condition based on uniaxial anisotropic perfectly matched layer (UPML) is executed to reduce the reflection of outer-boundary and reduce numbers of grids to improve efficiency of numerical modeling. Furthermore, it is applied three mutually orthogonal transmitter coils with a single-frequency sinusoidal current to excite EM fields in time domain. Then a special two-equation and two-unknown (2E2U) approach is used to extract the amplitude and phase of EM from the EM field in time domain and obtain the responses of multicomponent EM induction logging tool. The computer code has been developed and it is executed a series of numerical tests on many 3 dimensional models with varying horizontal and vertical conductivities, varying invasion zone conductivities, varying bed thicknesses, varying dipping angles and varying invasion radius to achieve different responses of the tool in these different models. Through comparison of these numerical results in the different models, the characteristics of multicomponent electromagnetic induction well logging tool in complex 3 dimensional models have been more completely and more deeply understood. The numerical results show that coplanar transmitter–receiver pair has higher vertical resolution than coaxial transmitter–receiver pair while the former has shallower investigation depth. In dipping borehole, dipping angle will have great influence on the responses of the tool and large great horns will appear near interfaces when dipping angle is large.
     At present, the 3D numerical calculation has the characteristic of larger workload and lower calculation efficiency, and it can’t satisfy the requirement of the inversion, so the analytical and semi-analytical forward algorithms are still the popular research topic. In order to fast calculate the multi-component induction logging response, we present an analytical algorithm of magnetic current dyadic Green’s function in layered anisotropic formation using the transmission line method. We decompose the EM field into two independent transverse electric wave (TE) and transverse magnetic wave (TM) using Fourier transform, and give the analytical expression of the magnetic current magnetic field dyadic Green’s function in frequency domain due to the transmission line and wave propagation theory. Then, Sommerfeld integral expression of the magnetic current magnetic field dyadic Green’s function in space domain is obtained by inverse Fourier transform. Considering the formation usually having more layers in electromagnetic induction logging, we use cubic spline interpolation on the fixed discrete node combined with Gauss-Legendre quadratrue to calculate the Sommerfeld integral. The numerical solution of the magnetic current dyadic Green’s function in the space domain not only solves the modeling of the multicomponent induction logging response in the tilted or horizontal anisotropic formation, but also provides a very effective means for fast determining Frèchet derivative matrix in multicomponent induction logging data inversion. Compared to the FDTD algorithm, the TLM algorithm has more dominance in calculation precision and efficiency in the simple layered anisotropic formation neglecting well hole. We investigate the influence of the dipping angle, anisotropic coefficient of the resistivity, work frequency and the tool length on the multicomponent logging response. The numerical results show that along with the increase of the dipping angle, the apparent conductivity of the coplanar transmitter–receiver pair approaches the value of the horizontal conductivity, while that of the coaxial transmitter–receiver pair approaches the value of the vertical conductivity. The increase of frequency leads to all of the apparent conductivity decline and the vertical resolution increase. The fewer distance between transmission coil array and the receiving coil array, the higher resolution the apparent conductivity has.
     Based on 1D and 3D numerical simulation, the calculation of Frèchet derivative is transformed to the double integral of product of the two transmission line Green functions ( I i p, Vip),( I vp , Vvp) on z and kρfor multicomponent induction logging using perturbation theory and analytical solution of magnetic current dyadic Green’s function in frequency domain. We first confirm the integral on variable z by analytical method, and then determine the integral on kρby Sommerfeld integral algorithm. Consequently, we investigate and establish the fast algorithm of Frèchet derivative matrix of multicomponent induction logging response. By investigating the Frèchet derivative matrix containing the partial derivatives of the entire model vector, we find the Frèchet derivative to bed boundary is maximal, while the one to vertical conductivity is minimal. These cases explain the future inversion results will be sensitive to the interface per bed, and the vertical conductivity can be obtained more easily.
     To reconstruct the resistivity and the geometric parameter of the formation, the iterative inversion theory of differential equation must be used to explain and evaluate the logging data. We obtain the fast full parameter iterative inversion technique of multicomponent logging data in layered anisotropic formation using the fast algorithm of Frèchet derivative with normalized processing and singular value decomposition technique. The horizontal and vertical resistivity, the bed boundary all can be obtained simultaneously by the fast inversion algorithm. The inversion results of the theoretical bed model validate the algorithm and the anti-noise ability. From the inversion results of several theoretical bed models, we find that the inversion results are sensitive to bed boundary, and the relative error of the vertical resistivity is larger than the horizontal resistivity. For the more layers formation, the initial bed model will affect the final inversion results. So, when invert the actual logging data, the interactive delamination technique between the human and the computer can be adopted to improve the inversion precision.
引文
[1]张建华,刘振华,仵杰.电法测井原理与应用[M].西安:西北大学出版社,2002.
    [2]汪宏年,杨善德,常明澈.各向异性地层中电阻率测井的响应特征[J]石油地球物理勘探, 1999, 34(6): 649- 656.
    [3]汪宏年,杨善德,常明澈.层状各向异性介质中侧向电阻率测井的快速数值模拟与应用[J].测井技术,1998,,22(1):28-31.
    [4] KRIEGSHIUSER B, FANINI O, FORGANG S, et al. A new multi-component induction logging tool to resolve anisotropic formations [C]. SPWLA 40th. Annual Logging Symposium, 2000, paper D.
    [5] KRIEGSHIUSER B, FANINI O, FORGANG S, et al. Improved shaly sand interpretation in highly deviated and horizontal wells using multicomponent induction log data [C]. SPWLA 42th. Annual Logging Symposium, 2001, paper S.
    [6] YU L, FANINI O N, KRIEGSHAUSER B F. Enhanced evaluation of low-resistivity reservoirs using multi-component induction log data [J]. Petrophysics, 2001, 42 (6): 611-622.
    [7] HUSSAIN F, MUBARK S, ALDRED R, et al. Contributions of multi-component induction logs in difficult well bore environments in north Kuwait low resistivity pay evaluation [C]. SPWLA 46nd Annual Logging Symposium, 2005, Paper VV.
    [8] RABINOVICH M, TOBAROVSKY L, CORLEY B, et al. Processing multicomponent induction data for formation dips and anisotropy [J]. Petrophysics, 2006, 47(6): 506-526.
    [9] RABINOVICH M, CONFALINI M, ROCQUE T, et al. Multicomponent induction logging: 10 years after [C]. SPWLA 48th Annual Logging Symposium, 2007, paper CC.
    [10] RABINOVICH M, TABAROVSKY L, CORLEY B, et al. Processing Multi-component induction data for formation dip and azimuth in Anisotropic Formation [C],SPWLA 46th Annual Logging Symposium, 2005, Paper XX.
    [11] WANG T, FANG S. 3-D electromagnetic anisotropic modeling using finite differences [J], Geophysics, 2001, 66(5): 1386-1398.
    [12] NEWMAN G A, ALUMBAUGH D L, Three-dimensional induction logging problems, Part 2: A finite difference solution [J]. Geophysics, 2002, 67(2): 484-491.
    [13] WEISS C J, NEWMAN G A. Electromagnetic induction in a fully 3-D anisotropic earth [J]. Geophysics, 2002, 67[4]: 1104-1114.
    [14]沈金松.用有限差分法计算各向异性介质中多分量感应测井的响应[J].地球物理学进展,2004,19(1): 101-107.
    [15]王昌学,杨韦华,楚昭坦,等.多分量感应测井响应得交错网格有限差分法模拟[J].石油大学学报, 2005. 29(3): 35-40.
    [16] WEISS C J, NEWMAN G A. Electromagnetic induction in a generalized 3D anisotropic earth, Part 2: The LIN precondition [J]. Geophysics, 2003, 68(3): 922–930.
    [17] HABER E, ASCHER U M, OLDENBURG D, et al. Fast Simulation of 3D Electromagnetic Problems Using Potentials [J]. Journal of Computational Physics, 2000, 163: 150–171.
    [18] DAVYDYCHEVA S, DRUSKIN V, HABASHY T. An efficient finite-difference scheme for electromagnetic logging in 3D anisotropic inhomogeneous media [J]. Geophysics, 2003, 68(5): 1525-1536.
    [19] HOU J S, MALLANL R K, TORRES V C. Finite-difference simulation of borehole EM measurements in 3D anisotropic media using coupled scalar-vector potentials [J]. Geophysics, 2006, 71(5): G225-233.
    [20] BADEA E A, EVERETT M E, NEWMAN G A, et al. Finite-Element Analysis of Controlled-Source Electromagnetic Induction Using Coulomb-Gauged Potentials [J]. Geophysics, 2001, 66(3): 786–799.
    [21] AVDEEV D B, KUVSHINOV A V, PANKRATOV O V, et al. Three-dimensional induction logging problems, Part 1: An integral equation solution and model comparisons [J]. Geophysics, 2002, 67(2): 413–426.
    [22] ZHDANOV M S, LEE S K, YOSHIOKA K. Integral equation method for 3D modeling of electromagnetic fields in complex structures with inhomogeneous background conductivity [J]. Geophysics, 2006, 71(6): G333-G345.
    [23] VANDERVORST H A. Iterative krylov methods for large linear system [M]. United Kingdom: Cambridge University Press, 2003.
    [24] ZHONG L L, LI J, SHEN L C. Computation of triaxial induction logging tools in layered anisotropic dipping formations [J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46 (4): 1148-1163.
    [25]汪宏年,陶宏根,姚敬金,等.用模式匹配算法研究层状各向异性倾斜地层中多分量感应测井响应[J].地球物理学报, 2008, 51(5): 1591-1599.
    [26] WANG H N, SO P, YANG S W, et al. Numerical modeling of multicomponent induction well logging tools in the cylindrically stratified anisotropic media [J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46 (4): 1134-1147.
    [27] CHEN Y H, COATES R T, CHEW W C. FDTD modeling and analysis of a broadband antenna suitable for oil-field imaging while drilling [J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(2): 434-441.
    [28] HUE Y K, TEIXEIRA F L. Three-dimensional simulation of eccentric LWD tool response in boreholes through dipping formations [J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43 (2) : 257-268.
    [29] LEE H O, TEIXEIRA F L. Cylindrical FDTD analysis of LWD tools through anisotropic dipping-layered earth media [J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45 (2) :383-388.
    [30]杨守文,汪宏年,陈桂波,等.倾斜各向异性地层中多分量电磁波测井响应三维时域有限差分(FDTD)算法[J].地球物理学报,2009,52 (3): 833-841.
    [31] WANG T, YU L, FANINI O. Multicomponent induction response in a borehole environment [J]. Geophysics, 2003, 68 (5) : 1510-1518.
    [32] TOMKINS M J, ALUMBAUGH D L, STANLEY D T. Numerical analysis of near-borehole and anisotropic layer effects on the response of multicomponent induction logging tools [J]. Geophysics, 2004, 69 (1): 140-151.
    [33] GIANZERO S, KENNEDY D, GAO L. The response of a triaxial induction sonde in a biaxial anisotropic medium [J]. Geophysics, 2002, 43 (3): 172-183.
    [34] HABER E, ASCHER U M, OLDENBURG D W. 3D forward modeling of time domain electromagnetic data [C]. 72nd Annual International Meeting, SEG, 2002, ExpandedAbstracts: 641–644.
    [35] ZHANG Z Y, YU L M, MAUSER B K, et al. Simultaneous determination of relative angles and anisotropic resistivity using multicomponent induction logging data [C]. SPWLA 42nd Annual Logging Symposium, 2001, paper Q.
    [36] ABUBAKAR A, HABASHY T M, DRUSHIN V, et al. A 3D parametric inversion algorithm for triaxial induction data [J]. Geophysics, 2006, 71(1): G1-G9.
    [37] WANG H N, YANG S D. A multiparameter iterative inversion of dual-laterolog in horizontally layered media and its error analysis [J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(2):482-493.
    [38] WANG H N. Simultaneous reconstruction of geometric parameter and resistivity around borehole in horizontally stratified formations from multiarray induction logging data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(1): 81-89.
    [39]汪宏年,陶宏根,王桂萍,等.双感应测井资料的快速近似迭代反演[J]..地球物理学报,2007,50(5): 1614-1622.
    [40]汪宏年,陶宏根,其木苏荣等.层状介质中双侧向测井资料正则化全参数迭代反演与应用[J],地球物理学报,2002,45(增刊): 387-399.
    [41] WANG H N, TAO H G, YAO J J, et al. Fast multiparameter reconstruction of multicomponent induction well logging datum in deviated well in a horizontally stratified anisotropic formation [J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46 (5) : 1525-1534.
    [42] CHEW W C, LIU Q H. Inversion of induction tool measurements using the distorted born iterative method and CG-FFHT [J], IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(4): 878-884.
    [43]韩波,刘家琦,李莹.多层电磁波测井反演[J].地球物理学报,1998, 41(3): 416-422.
    [44]杨峰,聂在平.用变分玻恩迭代方法重建二维非均质介质结构[J].地球物理学报,2000, 43(4): 550-556.
    [45]刑光龙,刘曼芬,杨善德.利用高频电磁波测井反演地层介电常数和视电导率的迭代方法[J].地球物理学报,2002,45(增刊): 418-423.
    [46] SCHERZER O, ENGL H W, KUNISCH K. Optimal a posteriori parameter choice for tikhonov regularization for solving nonlinear ill-posed problems [J]. SIAM Journal on Numerical Analysis, 1993, 30(6): 1796-1838.
    [47] DESBAT L, GIRARD D. The“minimum reconstruction error”choice of regularization parameters some more efficient methods and their application todeconvolution problems [J]. SIAM J. Sci. Comput. 1995, 16(6): 1387-1403.
    [48] KALTENBACHER B. Some Newton-type methods for the regularization of nonlinear ill-posed problems [J]. Iverse Problems, 1997, 13:729-753.
    [49] KILMER M A, O’LEARY D P, Choosing regularization parameters in iterative methods for ill-posed problems [J]. SIAM J. Matrix Anal. Appl. 2001, 22(4): 1204-1221.
    [50] MICHALSKI K A, MOSIG J R. Multilayered media Green’s functions in integral equation formulations [J]. IEEE Transactions on Antennas and Propagation, 1997, 45 (3) : 508-519.
    [51] YEE K S. Numerical solution of initial boundary value problem involving Maxwell's equations in isotropic media [J]. IEEE Transactions on Antennas and Propagation, 1966,14 (3):302-307.
    [52] TAFLOVE A. Computational electrodynamics: The finite-difference time-domain method (Second Edition) [M]. London: Arech House, 2000.
    [53]葛德彪,闫玉波.电磁波时域有限差分法[M].西安:西安电子科技大学出版社,2005.
    [54]王秉中.计算电磁学[M].北京:科学出版社,2002.
    [55]吕英华.计算电磁学的数值方法[M].北京:清华大学出版社,2004.
    [56] HOLLAND R. Finite-difference time-domain (FDTD) analysis of magnetic diffusion [J]. IEEE Transactions on Electromagnetic Compatibility, 1994, 36 (1):32-39.
    [57] MOERLOOSE J D, DAWSON T W, STUCHLY M A. Application of the finite difference time domain algorithm to quasi-static field analysis [J]. Radio Science, 1997, 32 (2): 329-341.
    [58] ORISTAGLIO M L, HOHMANN G W. Diffusion of electromagnetic fields into a two-dimensional earth: A finite-difference approach [J]. Geophysics, 1984, 49 (7): 870-894.
    [59] TAYLOR C D, LAM D H, SHUMPERT T H. EM pulse scattering in time varying inhomogeneous media [J]. IEEE Transactions on Antennas and Propagation. 1969, 17 (5): 585-589.
    [60] MUR G. Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations [J]. IEEE Transactions onElectromagnetic Compatibility, 1981, 23 (4): 377-382.
    [61] BERENGER J P. Three-dimensional perfectly matched layer for the absorption of electromagnetic waves [J]. Journal of Computational Physics, 1996, 127: 363-379
    [62] CHEW W C, JIN J M, MICHIEISSEN E. Complex coordinate stretching as a generalized absorbing boundary condition [J]. Microwave and Optical Technology Letters, 1997, 15 (6): 363-369.
    [63] GEDNEY S D. An anisotropic perfectly matched layer absorbing media for the truncation of FDTD Lattices [J]. IEEE Transactions on Antennas and Propagation, 1996, 44 (12): 1630-1639.
    [64] LIU Q H. An FDTD algorithm with perfectly matched layers for conductive media [J]. Microwave and Optical Technology Letters, 1997, 14 (2):134-137.
    [65] TEIXEIRA F L, CHEW W C. Systematic derivation of anisotropic PML absorbing media in cylindrical and spherical coordinates [J]. IEEE Microwave and Guided Wave Letters, 1997, 7 (11): 371-373.
    [66] TEIXEIRA F L, MOSS C D, CHEW W C. Split-field and anisotropic-medium PML-FDTD implementations for inhomogeneous Media [J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50 (1): 30-35
    [67] HE J Q, LIU Q H. A nonuniform cylindrical FDTD algorithm with improved PML and Quasi-PML absorbing boundary conditions [J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37 (2):1066-1072.
    [68] FANG J Y, WU Z H. Generalized perfectly matched layer-An extension of Berenger’s perfectly matched layer boundary condition [J]. IEEE Transactions Microwave and Guided Wave Letters, 1995, 12 (5): 451-453.
    [69] CHEN Y H, CHEW W C. Application of perfectly matched layers to the transient modeling of subsurface EM problems [J]. Geophysics, 1997, 62 (6) :1730-1736.
    [70] RAMADAN O. On the accuracy of the nearly PML for nonlinear FDTD domains [J]. IEEE Microwave and Wireless Components Letters, 2006, 16 (3) :101-103.
    [71] RAMADAN O, OZTORAK A Y. An efficient implementation of the PML for truncating FDTD domains [J]. Microwave and Optical Technology Letters, 2003, 36 (1): 55-60.
    [72] LAU Y C, LEONG M S, KOOI P S. Extension of Berenger’s PML boundary condition in matching lossy medium and evanescent waves [J]. ElectronicsLetters, 1996, 32 (11): 974-976.
    [73] SULLIVAN D M. A simplified PML for use with the FDTD method [J]. IEEE microwave and guided wave letters, 1996, 6 (2): 97-99.
    [74] SULLIVAN D M. An unsplit step 3D PML for use with the FDTD method [J]. IEEE Microwave and Guided Wave Letters, 1997, 7 (7): 184-186.
    [75] TEIXEIRA F L, CHEW W C. A general approach to extend Berenger’s absorbing boundary condition to anisotropic and dispersive media [J]. IEEE Transactions on Antennas and Propagation, 1998, 46 (9): 1386-1387.
    [76] FANG J Y, WU Z H. Generalized perfectly matched layer-an extension of Berenger’s perfectly matched layer boundary condition [J]. IEEE Microwave and Guided Wave Letters, 1995, 5 (12): 451-453.
    [77] FANG J Y, WU Z H. Generalized perfectly matched layer for the absorption of propagating and evanescent waves in lossless and lossy media [J]. IEEE Transactions on Microwave Theory and Techniques, 1996, 42 (12):2216-2222.
    [78] FURSE C M, POPER D H, BUECHLER D N. The problem and treatment of DC offsets in FDTD simulations [J]. IEEE Transactions on Antennas and Propagation, 2000, 48 (8): 1198-1201.
    [79] SU T, YU W, MITTRA R. A new look at FDTD excitation sources [J]. Microwave and Optical Technology Letters, 2005, 45 (3): 203-207.
    [80] FURSE C M, Faster than Fourier: Ultra-efficient time to frequency domain conversions for FDTD simulations [J], IEEE Antennas and Propagation Magazine, 2000, 42 (6): 24-34.
    [81]康俊佐.阵列传播电阻率测井资料反演方法与仪器优化组合研究[D].长春:吉林大学物理学院,2005.
    [82] CHEW W C.Waves and Fields in Inhomogeneous Media[M].New York:Van Nostrand Reinhold:1990.
    [83] ANDERSON W L. Numerical integration of related Hankel transforms of orders 0 and 1 by adaptive digital filtering [J].Geophysics,1979,44(7): 1287-1305.
    [84] ANDERSON W L. Fast Hankel Transforms Using Related and Lagged Convolutions [J]. ACM Transactions on Mathematical Software,1982,8(4): 344-368.
    [85] YU T. J.,CAI W, High-order window functions and fast algorithms forcalculating dyadic electromagnetic Green's functions in multilayered media[J].Radio Science,2001,36(4):559-569.
    [86]陈桂波,汪宏年,等.水平层状各向异性介质中电磁场并矢Green函数的一种高效算法.物理学报,2009,58(3):1608-1618.
    [87] ZHDZNOV M S, KENNEDY D M, PEKSEN E, et al. Foundations of tensor induction well-logging [J]. Petrophysics, 2001, 42 (6): 588-610.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700