大功率光纤激光源中热效应和受激布里渊散射的抑制与半导体激光器线阵的光束整形
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大功率光纤激光源具有增益介质长、结构紧凑、散热好和输出光束质量高等优点,是其他激光器无法比拟的,这也决定了其在国防、工业和医疗等领域具有重要地位和美好的应用前景。但是随着光纤激光源输出功率不断的提升,热效应和受激布里渊散射现象会成为限制功率增长的障碍。本论文结合所承担的国家863重大项目,针对如何抑制光纤激光源中热效应和受激布里渊散射的问题进行了系统深入的研究,获得主要创新成果如下:
     1.分别针对大功率双包层光纤放大器和激光器中热效应的抑制问题,基于遗传算法的思想提出一套优化算法,用于合理安排分段泵浦方式下的抽运功率和泵浦点之间的光纤长度,从而实现光纤中均匀的温度分布和较低的最高工作温度,同时确保具有最大的斜率效率
     2.利用多芯光纤作为大功率单频光纤放大器的增益介质,并分别对单频多芯和单芯光纤放大器完善了描述抽运光、信号光和Stokes信号的速率方程组,考虑了温度差对受激布里渊散射的影响。通过对单芯和19芯光纤放大器的分析比较可以发现,19芯光纤放大器在确保受激布里渊散射增益小于增益阈值的前提下具有较低的最高工作温度,因此对进一步提升输出功率提供了更大空间。
     3.针对基于塔耳博特腔选模存在的两点不足,即同相位模式输出功率比例偏低和光纤激光器斜率效率偏低,提出了一种基于微结构光纤的选模方法,通过优化微结构光纤的尺寸参数使得基模与多芯光纤的同相位模式具有最大的功率耦合系数。对19芯和37芯光纤激光器进行了数值计算,研究表明基于微结构光纤选模的多芯光纤激光器相比较传统的塔耳博特腔多芯光纤激光器具有明显的优势。
     4.高斯光束可以用作多芯光纤放大器的激励源,但是如果其束腰半径偏离最佳值会导致严重的输出光束质量劣化,针对此问题提出一种新的方法用于降低多芯光纤放大器对激励光源参数精度的要求,并兼顾输出光束质量和斜率效率。
     5.利用直角棱镜片制作了半导体激光器线阵的光束整形器,其具有体积小、结构紧凑和安装容易的特点,整形后的光束可以耦合进直径650μm,数值孔径为0.46的光纤,效率为52.6%,可以通过进一步提高安装和制作工艺来提高耦合效率。
The rare-earth-doped single-mode fiber laser sources have attracted considerable attention recently in industrial, medical, and military application due to their outstanding advantages, such as high brightness, high efficiency, good compactness,and excellent beam quality, compared to traditional gas and solid-state lasers. Furthermore, the large surface-to-volume ratio gives them excellent capability of heat dissipation. However, scaling of the output power from the high-power fiber laser sources is limited by the stimulated Brillouin scattering and thermal effects. Under the supports of national 863 high technology program, this thesis is mainly devoted to the detailed researches on the suppression of stimulated Brillouin scattering and thermal effect in high-power fiber laser sources. And the main achievements of this thesis are listed as follows:
     1. The time independent rate equations were solved by relaxation menthod.A novel method based on genetic algorithm is firstly proposed to optimize distributed pump powers and the length of fiber segments in kilowatt fiber laser sources. The uniformity of temperature distribution was realized , and meanwhile the output signal power was as high as possible.
     2. The set of differential equations for a single core and multicore fiber amplifier with pump, signal and the first-order Stokes, taking into account effects of thermal gradients caused by heat generation, is presented. The thermal conduction equations are solved by finite element method. The influence of pump schemes, pump powers, convective coefficient, initial power of Stokes, density of the rare earth dopant and fiber length on suppression of the stimulated Brillouin scattering is studied. The stimulated Brillouin scattering gain and maximum operating temperatures are compared between single core fiber amplifier and 19-core fiber amplifier with the same optimal fiber length. Compared to the single core fiber amplifier, the 19-core fiber amplifier has lower maximum operating temperatures, which provide more space for further increasing output power.
     3. The mode-selection method based on a single-mode microstructured optical fiber(MOF) in the multicore fiber(MCF) lasers is presented. With an appropriate choice of the designed parameters of the MOF, the power coupling coefficient between the fundamental mode(FM) of the MOF and the in-phase mode can be much higher than those between the FM and the other supermodes. As a result, the in-phase mode has the highest power reflection on the right-hand side of the MCF laser cavity, and dominates the output laser power. Compared to the MCF lasers based on the Talbot cavity, the MCF lasers with the MOF as a mode-selection component have higher effectiveness of the in-phase mode selection.
     4. Gauss beam with the optimal beam waist can be the seed source of the multicore fiber amplifiers. However, the output beam quality of the mulitcore fiber amplifiers will degrade with a little shift of the beam shift. Consequently, a novel method is proposed to reduce the requirement for the high precision of the Gauss beam waist.
     5. The emission beam of the laser diode arrays(LDA) has an asymmetrical distribution and is astigmatic ,that is ,the waists and divergences of the beam in the fast and slow axes are different. To equalize the beam parameter products(BPP) of the asymmetrical laser beam, a new beam shaper based on the prism groups is developed and demonstrated by experiment. By focusing the reshaped beam into an optical fiber with the diameter of 650 um and numerical aperture of 0.46, high quality laser beams can be obtained and the overall efficiency is 52.6%.
引文
[1]M.J.F.Digonnet,Rare-Earth-Doped Fiber Lasers and Amplifiers,2001,2nd ed.New York:Marcel Dekker
    [2]L.Zenteno,High-power double-clad fiber lasers,J.Lightwave Technol.,1993,11(9),1435-1446,
    [3]H.M.Pask,R.J.Carman,D.C.Hanna,A.C.Tropper,C.J.Mackechnie,P.R.Barber,and J.M.Dawes,Ytterbium-doped silica fiber lasers:versatile sources for the 1-1.2 _m region,IEEE J.Select.Topics Quantum Electron.,1995,1,2-13
    [4]G.P.Agrawal,Nonlinear Fiber Optics,1995,2nd ed.San Diego,CA:Academic
    [5]Y.Wang,C.-Q.Xu,and H.Po,Heat dissipation in kilowatt fiber power amplifiers,IEEE J.Quantum Electron.,2004,40(6),731-740
    [6]M.k.Davis,M.J.F.Digonnet,and R.H.Pantell,Thermal effects in doped fibers,J.Lightwave Technol.,1998,vol.16(6),1013-1023.
    [7]D.C.Brown and H.J.Hoffman,Thermal,stress and thermo-optic effects in high average power double-clad silica fiber lasers,IEEE.Quantum Electron.,2001,vol.37(2),207-217
    [8]熊悦,潘炜,罗斌,等,掺镱双包层高功率光纤激光器热效应的理论研究,强激光与粒子束,2005,17(4),495-499
    [9]Jeong Y.,Sahu J.K.,Williams,R.B.,Richardson,D.J.,Furusawa,K.and Nilsson,L.J.,Ytterbium-doped large-core fibre laser with 272W of output power,Electronics Letters,2003,vol.39(13),977-978
    [10]V.P.Gapontsev,N.S.Platonov,O.Shkurihin,and I.Zaitsev,400 W low-noise single-mode CW ytterbium fiber laser with an integrated fiber delivery,in Proc.Conf.Lasers and Electro-Optics,Baltimore,MD,June 1-6,2003,postdeadline paper CThPDB9.
    [11]A.Liem,J.Limpert et al.,1.3 kW Yb-doped fiber laser with excellent beam quality,2004,OSA CPDD2.
    [12]Jeong Y.,Sahu J.K.,Williams,R.B.,Richardson,D.J.,Furusawa,K.and Nilsson,L.J.,Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,Opt.Exp.,2004,vol.12(25),6088-6092
    [13]http://www.ipgbeijing.com
    [14]楼褀洪,周军,朱健强,等,国产双包层掺镱光纤实现440 W的连续高功率激光输出,中国激光,2005,32(1),20-21
    [15]周军,楼祺洪,朱健强,等,采用国产大模场面积双包层光纤的714 W连续光纤激光器,光学学报,2006,26(7),1119-1120
    [16]D.J.Digiovanni et al,Method for producing fused fiber bundles,U.S.Patent,5935288,Aug.10,1999
    [17]Yong Wang,Chang-Qing Xu,and Hong Po,Thermal effects in Kilowatt fiber lasers,IEEE.Photonics Technol.,2004,vol.16(1),63-65
    [18]Yong Wang,Chang-Qing Xu,and Hong Po.,Analysis of Raman and thermal effects in kilowatt fiber lasers,Optics Communications,2004,vol.242(9),487-502
    [19]王春灿,张帆,陆玉春,等,掺镱双包层光纤放大器分布抽运方式下的优化算法,强激光与粒子束,2006,18(9),1428-1432
    [20]王春灿,张帆,陆玉春,等,大功率光纤放大器分段抽运方式下的理论分析,光学技术,2007,33(6),833-836
    [21]Wang C C,Zhang F,Jian S S,Novel method to optimize the distributed pump powers in high power ytterbium-doped double-clad fiber laser,APOC2006,p 63513E
    [22]俞谦 崔景翠 王四海,等。数值模拟掺铒光纤放大器的新方法,中国激光,1999, 26 (7), 585-588
    [23] M. Wickham, J. Anderegg, S. Brosnan, D. Hammons,H. Komine, and M. Weber, in Advanced Solid-State Photonics, G. J. Quarles, ed., Vol.94 in OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2004), paper MA4.
    [24] Y Jeong, J.k. Sahu, D.N.Payne, and J. Nilsson, Ytterbium doped large-core fibre laser with 1kW of continuous-wave output power, Electron. lett., 2004, 40(8), 470-471
    [25] http://www.ligo.caltech.edu/advLIGO, Advanced LIGO, (California Institute of Technology, Pasadena, California, May 27, 2003),
    [26] I. Zawischa, K. Plamann, C. Fallnich, H. Welling, H. Zellmer, and A. Tünnermann, All-solid-state neodymium-based single-frequency master-oscillator fiber power -amplifier system emitting 5. 5 W of radiation at 1064 run, Opt. Lett., 1999, 24 (7) , 469-471
    [27] Ge Z M, Lü Z W, Cai J W , Ao S Y, Luo Y H, The damage of the optical components induced by the stimulated Brillouin scattering, Chin. Phys., 2006 , 15 2343-2346
    [28] A. Liem, J. Limpert, H.Zellmer, and A. Tünnermann, 100w single-frquency maseter -oscillator fiber power amplifier, Opt. Lett., 2003, 28(27), 1537- 1539
    [29] Y. Jeong, J.Nilsson, J. K. sahu, et al. , Single-frequency, single-mode, plane-polarized ytterbium-doped fiber maser-oscillator power amplifier source with 264w output power, Opt. Lett., 2005,vol.30(5), 459-461
    [30] Oron R, Hardy A A , Rayleigh backscattering and amplified spontaneous emission in high-power ytterbium-doped fiber amplifiers, J. Opt. Soc. Am. B , 1999,16(5), 695-701
    [31] Oron R, Hardy A A , Amplified Spontaneous Emission and rayleigh backscattering in strongly pumped fiber amplifiers, J. Lightwave Technol., 1998, 16 (10) ,1865-1873
    [32] Q. Yu, X. Bao, and L. Chen, Temperature dependence of Brillouin frequency, power, and bandwidth in panda, bow-tie, and tiger polarization-maintaining fibers Opt. Lett. 2004, 29 (1) , 17-19
    [33] Y. Imai and N. Shimada, Dependence of stimulated Brillouin scattering on temperature distribution in polarization-maintaining fibers, IEEE Photon. Technol. Lett., 1993, 5 (11) , 1335-1337
    [34]Y.Li,F.Zhang,and T.Yoshino,Wide-Range Temperature Dependence of Brillouin Shift in a Dispersion-Shifted Fiber and Its Annealing Effect,J.Lightwave Technol.,2003,vol.21(7),1663-1667
    [35]V.I.Kovalev and R.G.Harrison,Suppression of stimulated Brillouin scattering in high-power single-frequency fiber amplifiers,Opt.Lett.,2006,31(2),161-163
    [36]Nathan A.Brilliant,Stimulated Brillouin scattering in a dual-clad fiber amplifier,Opt.Soc.Am.B,2002,19(11),2551_2557
    [37]JE Dennis,Robert B.Schnabel,Numerical Methods for Unconstrained Optimization and Nonlinear Equations,Prentice Hall,1983
    [38]林成森,数值计算方法,2004,科学出版社出版
    [39]王春灿,张帆,陆玉春,耿蕊,童治,宁提纲,简水生,单频大功率光纤放大器中抑制受激布里渊散射的理论分析,中国激光,2006,vol.33(12),1630-1635
    [40]D.C.Brown and H.J.Hoffman,Thermal,stress and thermo-optic effects in high average power double-clad silica fiber lasers,IEEE.Quantum Electron.,2001,vol.37(2),207-217
    [41]F.W.Willems andW.Muys,Suppression of interferometric noise in externally modulated lightwave AM-CATY systems by phase modulation,Electron.Lett.29,2062-2063(1993).
    [42]N.Yoshizawa and T.Imai,Stimulated Brillouin scattering suppression by means of applying strain distribution to fiber with cabling,IEEE J.Lightwave Technol.11,1518-1522(1993).
    [43]K.Shiraki,M.Ohashi,and M.Tateda,Suppression of stimulated Brillouin scattering in a fibre by changing the core radius,Electron.Lett.,1995,31(8),668-669
    [44]C.A.S.de Oliveira,C.K.Jen,A.Shang,and C.Saravanos,Stimulated Brillouin scattering in cascaded fibers of different Brillouin frequency shift,J.Opt.Soc.Am B,1993,10(6),969-972
    [45]A.Kobyakov,M.Sauer,and J.E.Hurley,SBS threshold of segmented fibers,in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference on CD-ROM(Optical Society of America,Washington,DC,2005),paper OME5
    [46]C.C.Lee and S.Chi,Measurement of stimulated Brillouin scattering threshold for various types of fibers using Brillouin optical time-domain reflectometer, IEEE Photon. Technol. Lett., 2000, 12(6), 672-674
    [47] A. Yeniay, J. -M. Delavaux, and J. Toulouse, Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers, IEEE J. Lightwave Technol. , 2002,20, 1425-1432.
    [48] J. Yu, I.-B. Kwon, and K. Oh, Analysis of Brillouin frequency shift and longitudinal acoustic wave in a silica optical fiber with a triple-layered structure, IEEE J. Lightwave Technol. ,2003,21, 1779-1786
    [49] Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, and W. Chujo, Simulating and designing Brillouin gain spectrum in single-mode fibers, IEEE J. Lightwave Technol., 2004, 22, 631-639
    [50] Liu A P, Suppressing stimulated Brillouin scattering in fiber amplifiers using nonuniform fiber and temperature gradient, Opt. Exp.,2007, 15 (3) ,77-984
    [51] M. D. Nielsen, N. A. Mortensen, M. Albertsen, J. R. Folkenberg, A. Bjarklev, and D. Bonacinni, Predicting macrobending loss for large-mode area photonic crystal fibers, Opt. Express., 2004, 12(8), 1775-1779
    [52] D. Nielsen, N. A. Mortensen, and J. R. Folkenberg, Reduced microdeformation attenuation in large-mode-area photonic crystal fibers for visible applications, Opt. Lett., 2003, 28 (18) , 1645-1647
    [53] J. C. Knight and P. St. J. Russell, New Ways to Guide Light, Science, 2002, 296(5566), 276-277
    [54] T. A. Birks, J. C. Knight, P. St. Russell, et al., Endlessly single-mode photonic crystal fiber , Opt. Lett., 1997,22(13), 961-963
    [55] R. GuoBin. W. Zhi, L. Shuqin, and J. Shuisheng, Study on Photonic Crystal Fibers by effective-index model, Acta Optica Sinica, 2004, 31(6),723-727
    [56] J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, Large mode area photonic crystal fiber, Electron. Lett. , 1998, 34 (13) , 1346 - 1347
    [57] J. C. Baggett, T. M. Monro, K. Furusawa, and D. J. Richardson, Comparative study of large-mode holey and conventional fibers, Opt. Lett., 2001, 26 (14) , 1045 - 1047
    [58] N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg, A. Petersson, and H. R. Simonsen, Improved large-mode-area endlessly single-mode photonic crystal fibers, Opt. Lett. , 2003, 28 (6) , 393-395
    [59] J. Limpert, N. Deguil-Robin, I. Manek-Honninger, F. Sal in et al., High-power rod-type photonic crystal fiber laser, Optics Express, 2005, 13 (4) , 1055-1058
    [60] J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen , Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier, Optics Express, 2004, 12 (7), 1313-1319
    [61] J. Limpert, O. Schmidt, J. Rothhardt, F. Roser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, Extended single-mode photonic crystal fiber lasers, Optics Express, 2006, 14 (7) , 2715-2720
    [62] Yukihiro Tsuchida, Kunimasa Saitoh, and Masanori Koshiba, Design and characterization of single-mode holey fibers with low bending losses, Optics Express, 2007, 15 (4), 1794-1805
    [63] K. M. Gundu, M. Kolesik, and J. V. Moloney, Mode shaping in multicore fibers, Opt. Lett. ,2007,32(7), 763-765
    [64] Arash Maf i and Jerome V. Moloney, Shaping modes in multicore photonic crystal fibers, IEEE Photon. Technol. Lett. 2005,12(2), 348-350
    [65] E. J. Bochove, Gain analysis and design of evanescently coupled N+1 core fiber laser arrays, Opt. Lett., 2008, 33 (5), 464-466
    
    [66] P. K. Cheo, A. Liu, and G. G. King, A high-brightness laser beam from a phase-locked multicore Yb-doped fiber laser array, IEEE Photon. Technol. Lett., 2001, 13(5), 439-441
    [67] Wang C C, Zhang F, Jian S S, Suppression of stimulated brillouin scattering in high-power single frequency multicore fiber amplifiers, Optical Fiber Technology, 2008, (in press)
    [68] Elkin Nikolay N. , Napartovich Anatoly P. , Troshchieva Vera N., Vysotsky Dmitry V., Diffraction modeling of the multicore fiber amplifier, J. Lightwave Technol., 25 (10), 3072-3077
    [69] Napartovich Anatoly P. , Elkin Nikolay N. , Troshchieva Vera N., Vysotsky Dmitry V. , Numerical diffraction modeling of light propagation in multicore fiber, Proceedings of SPIE - The International Society for Optical Engineering, 2000, 3927, 343-352
    [70] Y. Huo and P. K. Cheo, George G.King, Fundamental mode operation of a 19-core phase-locked Yb-doped fiber amplifier, Optics Express, 2004, 12(15), 6230-6239
    [71] Y. Huo and P. K. Cheo, Analysis of transverse mode competition and selection in multicore fiber lasers, J. Opt. Soc. Am. B , 2005, 22(11), 2345-2349
    [72]P.Glas,M.Naumann,A.Schirrmacher,and Th.Pertsch,The multicore fibera novel design for a diode pumped fiber laser,Opt.Commun.,1998,151,187-195
    [73]P.Glas,D.Fischer,T.Sandrock,M.Wrage,and T.Pertsch,Bessel beam-like characteristics of a neodymium-doped multicore fiber laser using a Talbot cavity,in Tech.Dig.,CLEO 2000,2000,599-600
    [74]谢敬辉,赵达尊,阎吉祥等,物理光学教程[M],第一版。北京:北京理工大学出版社,2005,168-170
    [75]M.Wrage,P.Glas,D.Fischer,M.Leitner,D.V.Vysotsky,and A.P.Napartovich,Phase locking in a multicore fiber laser by means of a Talbot resonator,Opt.Lett.,2000,25(19),1436-1438
    [76]M.Wrage,P.Glas,and M.Leitner,Phase-locking and self imaging properties of a Talbot resonator applied to circular strctures,Opt.Commun.,2001,191(3):149-159
    [77]M.Wrage,P.Glas,and M.Leitner,Combined phase locking and beam shaping of a multicore fiber laser by structured mirrors,Opt.Lett.,2001,26(13),980-982
    [78]L.Michaille,C.R.Bennett,D.M.Taylor,T.J.Shepherd,J.Broeng,H.R.Simonsen,and A.Petersson,Phase locking and supermode selectionin multicore photonic crystal fiber laser with a large doped area,Opt.Lett.,2005,30(13),1668-1670
    [79]Arash Mafi and Jerome V.Moloney,Phase locking in a passive multicore photonic crystal fiber,J.Opt.Soc.Am.B,2004,21(5),897-902
    [80]D.M.Taylor,C.R.Bennett,T.J.Shepherd,Demonstration of multicore photonic crystal fibre in an optical interconnect,Electronics Letters,2006,42(6),331-332
    [81]X.Zhu,A.Schalzgen,L.Li,H.Li,V.L.Temyanko,J.V.Moloney,and N.Peyghambarian,Birefringent in-phase supermode operation of a multicore microstructured fiber laser,Optics Express,2007,15(16),10340-10345
    [82]E.J.Bochove,P.K.cheo,and G.G.King,Self-organization in a multicore fiber laser array,Opt.Left.2003,28(14),1200-1202
    [83]L.Li,A.Schülzgen,S.Chen,V.L.Temyanko,J.V.Moloney,and N.Peyghambarian,Phase locking and in-phase supermode selection in monolithic multicore fiber lasers,Optics Letters,2006,31(17),2577-2579
    [84]L.Li,A.Schülzgen,H.Li,V.L.Temyanko,J.V.Moloney,and N.Peyghambarian, Phase-locked multicore all-fiber lasers:modeling and experimental investigation,J.Opt.Soc.Am.B,2007,24(8),1721-1728
    [85]Hongbo Li,Moysey Brio,Li Li,Axel Schülzgen,Nasser Peyghambarian,and Jerome V.Moloney,Multimode interference in circular step-index fibers studied with the mode expansion approach,J.Opt.Soc.Am.B,2007,24(10),2707-2720
    [86]A.S.Kurkov,S.A.Babin,I.A.Lobach,and S.I.Kablukov,Mechanism of mode coupling in multicore fiber lasers,Opt.Lett.2008,33(1),61-63
    [87]王春灿,张帆,童治,宁提纲,简水生,改进的高功率19芯光纤激光器的理论分析,中国激光,2008,35(1),61-66
    [88]王春灿,张帆,童治,宁提纲,简水生,多芯光纤激光器中同相位模式功率的提高,强激光与粒子束,2007,19(10),1594-1598
    [89]Wang Chuncan,Zhang Fan,Liu Chu,Jian Shuisheng,Microstructured optical fiber for in-phase mode selection in multicore fiber lasers,Optics Express,2008,vol.16(7)
    [90]H.-G.Treusch,A.Ovtchinnikov,X.He,et al.,High-Brightness Semiconductor Laser Sources for Materials Processing:Stacking,Beam Shaping,and Bars,IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS,2000,6(4),601-611
    [91]Baumann,M.;Roehner,M.;Du,K.M.;Loosen,P.;Poprawe,R.Beam-shaping technique for high brightness with high-power diode laser arrays,Conference on Lasers and Electro-Optics Europe - Technical Digest,1998,CTuB6,49
    [92]Th.Graf,J.E.Balmer,High-power Nd:YLF laser bar end pumped by a diode-laser bar,Opt.Lett.,1993,18(6),1317-1319
    [93]薄报学,曲轶,高功率阵列半导体激光器的光纤耦合输出,光电子.激光,2001,12(5),468-470
    [94]H.G.Treusch,Keming Du.Fiber-coupling technique for high-power laser diode arrays,SPIE,1998,3267,98-106
    [95]K.Du,M.Baumann,B.Ehlers,H.G.Treusch,P.Loosen,Fiber-coupling technique with micro step-mirrors for high-power diode lasers bars,OSA TOPS Vol.10(C.R.Pollack,W.R.Bosenberg,eds.),1997,390-393
    [96]www.limo.com
    [97]高明伟 高春清 何晓燕 魏光辉,半导体激光器线阵光束扭转对称化的实验研究,中国激光,2005,32(5),604-608
    [98]石鹏 李小莉 张贵芬 郭明秀 陆雨田,大功率激光二极管的微片棱镜堆光束整形和光纤耦合输出,光学学报,2000,20(11),1544-1547
    [99]James R.Leger,and William C.Goltsos,Geometrical transformation of linear diode-laser arrays for longitudinal pumping of solid-state lasers,IEEE J Quantum Electron,1992,28(4),1088-1100
    [100]Zheng G X;Du C L,Zhou,C X,Zheng C Y,Micrograting-array beam-shaping technique for asymmetrical laser beams,Appl.Opt.,2005,44(17),3540-3544
    [101]Zheng G X;Du C L,Zhou,C X,Zheng C Y,Laser diode stack beam shaping by reflective two-wedge-angle prism arrays,Opt.Eng.,2005,44(4),p 044203
    [102]W.A.Clarkson and D.C.Hanna,Two mirror beam shaping technique for high power diode bars,Opt.Lett.,21,375-377
    [103]王春灿,张帆,刘楚,简水生,激光器线阵的棱镜组光束整形器和光纤耦合输出,光学技术,(约发表于2008年5期)
    [1]Jeong Y.,Sahu J.K.,Williams,R.B.,Richardson,D.J.,Furusawa,K.and Nilsson,L.J.,Ytterbium-doped large-core fibre laser with 272W of output power,Electronics Letters,2003,vol.39(13),977-978
    [2]V.P.Gapontsev,N.S.Platonov,O.Shkurihin,and I.Zaitsev,400 W low-noise single-mode CW ytterbium fiber laser with an integrated fiber delivery,in Proc.Conf.Lasers and Electro-Optics,Baltimore,MD,June 1-6,2003,postdeadline paper CThPDB9.
    [3]A.Liem,J.Limpert et al.,1.3 kW Yb-doped fiber laser with excellent beam quality,2004,OSA CPDD2.
    [4]Jeong Y.,Sahu J.K.,Williams,R.B.,Richardson,D.J.,Furusawa,K.and Nilsson,L.J.,Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,Opt.Exp.,2004,vol.12(25),6088-6092
    [5]http://www.ipgbeijing.com
    [6]楼祺洪,周军,朱健强,等,国产双包层掺镱光纤实现440 W的连续高功率激光输出,中国激光,2005,vol.32(1),20-21
    [7]周军,楼祺洪,朱健强,等,采用国产大模场面积双包层光纤的714 W连续光纤激光器,光学学报,2006,vol.26(7),1119-1120
    [8]M.J.F.Dignonnet,Rare-Earth-Doped Fiber Lasers and Amplifiers,2nd ed.New York:Marcel Dekker,2001,26-28
    [9]L.Zenteno,High-power double-clad fiber lasers,J.Lightwave Technol.,1993,vol.11(9),1435-1446
    [10]H.M.Pask,R.J.Carman,D.C.Hanna,A.C.Tropper,C.J.Mackechnie,P.R.Barber,and J.M.Dawes,Ytterbium-doped silica fiber lasers:versatile sources for the 1-1.2 μm region,IEEE Select.Topics Quantum Electron,1995,vol.1,2-13
    [11]Yong Wang,Heat Dissipation in Kilowatt Fiber Power amplifiers,IEEE.Quantum Electron.2004,vol.40(6),731-740
    [12]M.k.Davis,M.J.F.Digonnet,and R.H.Pantell,Thermal effects in doped fibers,J.Lightwave Technol.,1998,vol.16(6),1013-1023.
    [13]D.C.Brown and H.J.Hoffman,Thermal,stress and thermo-optic effects in high average power double-clad silica fiber lasers,IEEE.Quantum Electron.,2001,vol.37(2),207-217
    [14]余锦,檀慧明,钱龙生,等,纵向抽运固体激光介质热透镜效应的理论研究,强激光与粒子束,2000,12(1),27-31
    [15]熊悦,潘炜,罗斌,等,掺镱双包层高功率光纤激光器热效应的理论研究,强激光与粒子束,2005,17(4),495-499
    [16]Yong Wang,Chang-Qing Xu,and Hong Po,Thermal effects in Kilowatt fiber lasers,IEEE.Photonics Technol.,2004,16(1),63-65
    [17]Yong Wang,Chang-Qing Xu,and Hong Po.,Analysis of Raman and thermal effects in kilowatt fiber lasers,Optics Communications,2004,vol.242(9),487-502
    [18]Innocenzi M E,Yura H T,Fincher C L,et.al.,Thermal modeling of continuous wave end-pumped solid-state lasers,Appl.Phys.Lett.,1990,vol.56(19),1831-1833
    [19]王春灿,张帆,陆玉春,等,掺镱双包层光纤放大器分布抽运方式下的优化算法,强激光与粒子束,2006,18(9),1428-1432
    [20]王春灿,张帆,陆玉春,等,大功率光纤放大器分段抽运方式下的理论分析,光学技术,2007,33(6),833-836
    [21]Wang Chun-Can,Zhang Fan,Lu Yu-Chun,et.al.,Novel method to optimize the distributed pump powers in kilowatt ytterbium-doped-clad fiber laser,APOC2006,2006,63513E
    [22]Ram Oron and Amos A.Hardy,Rayleigh backscattering and amplified spontaneous emission in high-power ytterbium-doped fiber amplifiers,Opt.Soc.Am.B,1999,vol.16(5),695-701
    [23]俞谦 崔景翠 王四海,等。数值模拟掺铒光纤放大器的新方法,中国激光,1999,vol.26(7),585-588
    [24]J.W.Thomas,Numerical Partial Differential Equations:Finite Difference Methods,1995,New York:Springer-Verlag
    [25]M.Wickham,J.Anderegg,S.Brosnan,D.Hammons,H.Komine,and M.Weber,in Advanced Solid-State Photonics,G.J.Quarles,ed.,Vol.94 in OSA Trends in Optics and Photonics Series(Optical Society of America,Washington,D.C.,2004),paper MA4.
    [26]Y.Jeong,J.k.Sahu,D.N.Payne,and J.Nilsson,Ytterbium doped large-core fibre laser with 1kw of continuous-wave output power,Electron.lett.2004,40(8),470-471
    [27]"Advanced LIGO,"(California Institute of Technology,Pasadena,California,May 27,2003),http://www.ligo.caltech.edu/advLIGO.
    [28]I.Zawischa,K.Plamann,C.Fallnich,H.Welling,H.Zellmer,and A.Tünnermann,All-solid-state neodymium-based single-frequency master-oscillator fiber power- amplifier system emitting 5.5 W of radiation at 1064 nm,Opt.Lett.,1999,24(7),469-471
    [29]A.Liem,J.Limpert,H.Zellmer,and A.Tünnermann,100w single-frquency maseter -oscillator fiber power amplifier,Opt.hett.,2003,28(27),1537_1539
    [30]Y.Jeong,J.Nilsson,J.K.sahu,et al.,Single-frequency,single-mode,planepolarized ytterbium-doped fiber maser-oscillator power amplifier source with 264w output power,Opt.Lett.,2005,vol.30(5),459_461
    [31]Q.Yu,X.Bao,and L.Chen,Temperature dependence of Brillouin frequency,Dower,and bandwidth in panda,bow-tie,and tiger polarization-maintaining fibers Opt.Lett.2004,29(1),17-19
    [32]Y.Imai and N.Shimada,Dependence of stimulated Brillouin scattering on temperature distribution in polarization-maintaining fibers,IEEE Photon.Technol.Lett.,1993,5(11),1335-1337
    [33]Y.Li,F.Zhang,and T.Yoshino,Wide-Range Temperature Dependence of Brillouin Shift in a Dispersion-Shifted Fiber and Its Annealing Effect,J.Lightwave Technol.,2003,vol.21(7),1663-1667
    [34]V.I.Kovalev and R.G.Harrison,Suppression of stimulated Brillouin scattering in high-power single-frequency fiber amplifiers,Opt.Lett.,2006,31(2),161_163
    [35]Nathan A.Brilliant,Stimulated Brillouin scattering in a dual-clad fiber amplifier,Opt.Soc.Am.B,2002,19(11),2551_2557
    [36]王春灿,张帆,陆玉春等,单频大功率光纤放大器中抑制受激布里渊散射的理论分析,中国激光,2006,vol.33(12),1630-1635
    [37]G.P.Agrawal,Nonlinear Fiber Optics,2001,New York:Academic,3rd ed.,355-384
    [38]Yah Fenging,Shan Ying,Jian Shuisheng,Study on threshold power of the fiber source for the stimulated Brillouin scattering fiber optic gyros,Chinese J.Lasers,2000,A27(9):790_794
    [39]Zhang xingyu,Zhao Shengzhi,Wang Qingpu et al.,Study on thermal lens of Nd~(3+):YAG laser pumped by a laser diode,Chinese J.Lasers,2004,A31(9),1117_1120
    [40]葛传文,张为俊,高晓明.窄线宽与宽线宽受激布里渊散射过程的图示化描述,中国激光,2003,A30(8):701_704
    [1]Nathan A.Brilliant,Narrow-line ytterbium fiber master-oscillator power amplifier,J.Opt.Soc.Am.B,2002,19(5),981-991
    [2]M.Wickham,J.Anderegg,S.Brosnan,D.Hammons,H.Komine,and M.Weber,Coherently coupled high power fiber arrays,in Proc.Advanced Solid State Photonics,Santa Fe,USA,February 1-4,2004,paper MA4.
    [3]Y.Jeong,J.Nilsson,J.K.sahu,et al,Single-frequency,single-mode,plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power,Opt.Lett.30(2005),459-461.
    [4]P.W.βels',M.Auerbach and C.Fallnich,Narrow-linewidth master oscillator fiber power amplifier system with very low amplified spontaneous emission,Opt.Commun.,2002,205(i-3),215-219
    [5]A.Liem,J.Limpert,H.Zellmer,and A.Tannermann,100w single-frquency maseter -oscillator fiber power amplifier,Opt.Lett.,2003,28(27),1537_1539
    [6]I.Zawischa,K.Plamann,C.Fallnich,H.Welling,H.Zellmer,and A.Tannermann,All-solid-state neodymium-based single-frequency master-oscillator fiber power- amplifier system emitting 5.5 W of radiation at 1064 nm,Opt.Lett.,1999,24(7),469-471
    [7]Fu S Y,Tian Z S,Shi X L and Sun Z H,Incoherent and coherent beam combination for master oscillator/power amplifier system with stimulated Brillouin scattering mirror,Chinese Phys.B,2008,17,628-632
    [8]Ge Z M,Lü Z W,Cai J W,Ao S Y,Luo Y H,The damage of the optical components induced by the stimulated Brillouin scattering,Chin.Phys.,2006,152343-2346
    [9]V.I.Kovalev and R.G..Harrison,Suppression of stimulated Brillouin scattering in high-power single-frequency fiber amplifiers,Opt.Lett.,2006,31(2),161-163.
    [10]J.Hansryd,F.Dross,M.Westlund,P.A.Andrekson,Increase of SBS threshold in a short highly nonlinear fiber by applying a temperature distribution,2001,IEEE J.Lightwave Technology,19(11),1691-1697
    [11]T.Kurashima,T.Horiguchi,and M.Tateda,Thermal effects of Brillouin gain spectra in single-mode fibers, IEEE Photon. Technol. Lett., 1990,2, 718 - 720
    [12] Y. Imai and N. Shimada, Dependance of stimulated Brillouin scattering on temperature distribution in polarization-maintaining fibers, IEEE Photon. Technol. Lett.,1993, 5,1335 - 1337
    [13] L. Zenteno, High-power double-clad fiber lasers, J. Lightwave Technol., 1993, 11,1435-1446
    [14] D. C. Brown and H. J. Hoffman, Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers, IEEE J. Quantum Electron, 2001,37, 207-217
    [15] Yong Wang , Heat Dissipation in Kilowatt Fiber Power amplifiers, IEEE. Quantum Electron. 2004, vol. 40(6), 731-740
    [16] Yong Wang, Chang-Qing Xu, and Hong Po, Thermal effects in Kilowatt fiber lasers, IEEE. Photonics Technol., 2004, vol. 16(1), 63-65
    [17] Anping Liu, Suppressing stimulated Brillouin scattering in fiber amplifiers using nonuniform fiber and temperature gradient, Opt. Express., 2007, 15 (3),977-984
    [18] M. D. Nielsen, N. A. Mortensen, M. Albertsen, J. R. Folkenberg, A. Bjarklev, and D. Bonacinni, Predicting macrobending loss for large-mode area photonic crystal fibers, Opt. Express., 2004, 12(8), 1775-1779
    [19] M. Wrage, P. Glas, D. Fischer, M. Leitner, D. V. Vysotsky, and A. P. Napartovich, Phase locking in a multicore fiber laser by means of a Talbot resonator, Opt. Lett.,2000,25(19), 1436-1438
    [20] M. Wrage, P. Glas, and M. Leitner, Phase-locking and self imaging properties of a Talbot resonator applied to circular strctures, Opt. Commun., 2001, 191(3):149-159
    [21] L. Michaille, C. R. Bennett, D. M. Taylor, T. J. Shepherd, J. Broeng, H. R. Simonsen, and A. Petersson, Phase locking and supermode selection in multicore photonic crystal fiber laser with a large doped area, Opt. Lett., 2005, 30(13), 1668-1670
    [22] P. K. Cheo, A. Liu, and G. G. King, A high-brightness laser beam from a phase-locked multicore Yb-doped fiber laser array, IEEE Photon. Technol. Lett., 2001, 13(5), 439-441
    [23] E. J. Bochove, P. K. cheo, and G. G. King, Self-organization in a multicore fiber laser array, Opt. Lett. 2003, 28(14), 1200-1202
    [24]Arash Mafi and Jerome V.Moloney,Phase locking in a passive multicore photonic crystal fiber,J.Opt.Soc.Am.B,2004,21(5),897-902
    [25]P.Glas,M.Naumann,A.Schirrmacher,Th.Pertsch,The multicore fiber - a novel design for a diode pumped fiber laser,Opt.Commun.,1998,151,187-195
    [26]Raymond J.Beach,Michael D.Feit,Scott C.Mitchell,et.al.,Phase-Locked Antiguided Multiple-Core Ribbon Fiber,IEEE Photon.Technol.Lett.,2003,15(5),670-672
    [27]Wang Chuncan,Zhang Fan,Liu Chu,Jian Shuisheng,Microstructured optical fiber for in-phase mode selection in multicore fiber lasers,Optics Express,2008,16(8),5505-5515
    [28]Y.Huo and P.K.Cheo,George G.King,Fundamental mode operation of a 19-core phase-locked Yb-doped fiber amplifier,Optics Express,2004,12(15),6230-6239
    [29]C.P.Yu and H.C.Chang,Applications of the finite difference mode solution method to photonic crystal structures,Opt.Quantum Electron.,2004,36,145-163
    [30]Guo,S P,Wu F,Albin Sacharia,Tai Hsiang,Rogowski Robert,Loss and dispersion analysis of microstructured fibers by finite-difference method,Optics Express,2004,12(15),3341-3352
    [31]D.Ferrarini,Luca Vincetti,M.Zoboli,A.Cucinotta,and S.Selleri,Leakage properties of photonic crystal fibers,2002,10(23),1314-1319
    [32]M.P.Uranus and M.J.W.M.Hoekstral,Modelling of microstructured waveguides using a finite-element-based vectorial mode solver with transparent boundary conditions,Optics Express,2004,12(12),2795-2809
    [33]金建铭,电磁场有限元方法,2001,西安电子科技大学出版社
    [34]Y.Huo and P.K.Cheo,Analysis of transverse mode competition and selection in multicore fiber lasers,J.Opt.Soc.Am.B,2005,22(11),2345-2349
    [35]Nathan A,Brilliant,Stimulated Brillouin scattering in a dual-clad fiber amplifier,Opt.Soc.Am.B,2002,19(11),2551-2556
    [36]JE Dennis,Robert B.Schnabel,Numerical Methods for Unconstrained Optimization and Nonlinear Equations,Prentice Hall,1983
    [37]林成森,数值计算方法,2004,科学出版社出版
    [38]H.M.Pask,R.J.Carman,D.C.Hanna,et al.,Ytterbium-doped silica fiber lasers:versatile sources for the 1-1.2 um region,IEEE J.Select.Top.Quantum Electron.,1995,1(1),2-13
    [39] G. P. Agrawal, Nonlinear Fiber Optics, 2001, New York: Academic, 3rd ed., 355-384
    [40] Oron R, Hardy A A , Rayleigh backscattering and amplified spontaneous emission in high-power ytterbium-doped fiber amplifiers, J. Opt. Soc. Am. B, 1999,16(5), 695-701
    [41] Wang C C, Zhang F, Tong Z, Ning T G, Jian S S, Suppression of stimulated Brillouin scattering in high-power single-frequency multicore fiber amplifiers , Optical Fiber Technology, 2008, (in press)
    [42] Huang X J, Liu Y Z, Sui Z, Li M Z, Li X, Lin H H, Wang J J , Ultrashort pulse Yb3+-doped fiber ring laser with all-fiber structure, Acta Phys. Sin. , 2006 ,55(3) 1191-1195
    [43] Chang D Y, Zheng K, Wei Y, Li b, Fu Y J, Wei H, Jian S S, Experimental research on the degree of clustering in Bi3+-Ga3+ co-doped high concentration Er3+-doped silica-based fiber, Acta Phys. Sin. ,2008, 57(1), 556-560
    [1]M.Wrage,P.Glas,D.Fischer,M.Leitner,D.V.Vysotsky,and A.P.Napartovich,Phase locking in a multicore fiber laser by means of a Talbot resonator,Opt.Lett.,2000,25(19),1436-1438
    [2]M.Wrage,P.Glas,and M.Leitner,Phase-locking and self imaging properties of a Talbot resonator applied to circular strctures,Opt.Commun.,2001,191(3):149-159
    [3]M.Wrage,P.Glas,and M.Leitner,Combined phase locking and beam shaping of a multicore fiber laser by structured mirrors,Opt.Lett.,2001,26(13),980-982
    [4]L.Michaille,C.R.Bennett,D.M.Taylor,T.J.Shepherd,J.Broeng,H.R.Simonsen,and A.Petersson,Phase locking and supermode selection in multicore photonic crystal fiber laser with a large doped area,Opt.Lett.,2005,30(13),1668-1670
    [5]P.K.Cheo,A.Liu,and G.G.King,A high-brightness laser beam from a phase-locked multicore Yb-doped fiber laser array,IEEE Photon.Technol.Lett.,2001,13(5),439-441
    [6]E.J.Bochove,P.K.cheo,and G.G.King,Self-organization in a multicore fiber laser array,Opt.Lett.2003,28(14),1200-1202
    [7]Arash Mafi and Jerome V.Moloney,Phase locking in a passive multicore photonic crystal fiber,J.Opt.Soc.Am.B,2004,21(5),897-902
    [8]P.Glas,M.Naumann,A.Schirrmacher,Th.Pertsch,The multicore fiber - a novel design for a diode pumped fiber laser,Opt.Commun.,1998,151,187-195
    [9]Raymond J.Beach,Michael D.Felt,Scott C.Mitchell,et.al.,Phase-Locked Antiguided Multiple-Core Ribbon Fiber,IEEE Photon.Technol.Lett.,2003,15(5),670-672
    [10]Wang C C,Zhang F,Jian S S,Suppression of stimulated brillouin scattering in high-power single frequency multicore fiber amplifiers,Optical Fiber Technology,2008,(in press)
    [11]X.Zhu,A.Schülzgen,L.Li,H.Li,V.L.Temyanko,J.V.Moloney,and N.Peyghambarian,Birefringent in-phase supermode operation of a multicore microstructured fiber laser,Optics Express,2007,15(16),10340-10345
    [12]Y.Huo and P.K.Cheo,Analysis of transverse mode competition and selection in multicore fiber lasers,J.Opt.Soc.Am.B,2005,22(11),2345-2349
    [13]L.Li,A.Schülzgen,S.Chen,V.L.Temyanko,J.V.Moloney,and N.Peyghambarian,Phase locking and in-phase supermode selection in monolithic multicore fiber lasers,Optics Letters,2006,31(17),2577-2579
    [14]L.Li,A.Schülzgen,H.Li,V.L.Temyanko,J.V.Moloney,and N.Peyghambarian,Phase-locked multicore all-fiber lasers:modeling and experimental investigation,J.Opt.Soc.Am.B,2007,24(8),1721-1728
    [15]Hongbo Li,Moysey Brio,Li Li,Axel Schülzgen,Nasser Peyghambarian,and Jerome V.Moloney,Multimode interference in circular step-index fibers studied with the mode expansion approach,J.Opt.Soc.Am.B,2007,24(10),2707-2720
    [16]A.S.Kurkov,S.A.Babin,I.A.Lobach,and S.I.Kablukov,Mechaaism of mode coupling in multicore fiber lasers,Opt.Lett.2008,33(1),61-63
    [17]E.J.Bochove,Gain analysis and design of evanescently coupled N+1 core fiber laser arrays,Opt.Lett.,2008,33(5),464-466
    [18]谢敬辉,赵达尊,阎吉祥等,物理光学教程[M],第一版。北京:北京理工大学出版社,2005,168-170
    [19]H.P.Uranus and H.J.W.M.Hoekstral,Modelling of microstructured waveguides using a finite-element-based vectorial mode solver with transparent boundary conditions,Optics Express,2004,12(12),2795-2809
    [20]薛定宇,陈阳泉,高等应用数学问题的MATLAB求解,2005,第一版,清华大学出版社
    [21]王春灿,张帆,童治,宁提纲,简水生,改进的高功率19芯光纤激光器的理论分析,中国激光,2008,35(1),61-66
    [22]王春灿,张帆,童治,宁提纲,简水生,多芯光纤激光器中同相位模式功率的提高, 强激光与粒子束,2007,19(10),1594-1598
    [23]Nam Seong Kim,Toshihiro Hamada,Mahendra Prabhu et al.,Numerical analysis and experimental results of output performance for ND-doped double-clad fiber lasers,Opt.Commun.,,2000,180(4-6):329-337
    [24]Wang C C,Zhang F,Liu C,Jian S S,Microstructured optical fiber for in-phase mode selection in multicore fiber lasers,Optics Express,2008,16(8),5505-5515
    [25]T.A.Birks,J.C.Knight,and P.St.J.Russell,Endlessly single-mode photonic crystal fiber,Opt.Lett.,1997,22(13),961-963
    [26]J.C.Knight,T.A.Birks,R.F.Cregan,P.St.J.Russell,and J.P.de Sandro,Large mode area photonic crystal fiber,Electron.Lett.,1998,34(13),1346 - 1347
    [27]J.Limpert,O.Schmidt,J.Rothhardt,K Roser,T.Schreiber,A.Tünnermann,S.Ermeneux,P.Yvernault,and F.Salin,Extended single-mode photonic crystal fiber lasers,Optics Express,2006,14(7),2715-2720
    [28]J.Limpert,A.Liem,M.Reich,T.Schreiber,S.Nolte,H.Zellmer,A.Tünnermann,J.Broeng,A.Petersson,and C.Jakobsen,Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier,Optics Express,2004,12(7),1313-1319
    [29]J.C.Baggett,T.M.Monro,K.Furusawa,and D.J.Richardson,Comparative study of large-mode holey and conventional fibers,Opt.Lett.,2001,26(14),1045 - 1047
    [30]Y.Huo,P.K.Cheo,G.G.King,Fundamental mode operation of a 19-core phase-locked Yb-doped fiber amplifier,Optics Express,2004,12(15),6230-6239
    [31]吴重庆.光波导理论[M],2000,北京:清华大学出版社,107-110
    [32]N.A.Mortensen,Effective area of photonic crystal fibers,Opt.Express,2002,10(7),341-348
    [33]T.P.White,R.C.McPhedran,C.M.de Sterke,L.C.Botten,M.J.Steel,Confinement losses in microstructured optical fibers,Opt.Lett.,2001,26(21),1660-1662
    [34]O.Wallner,W.R.Leeb,and P.J.Winzer,Minimum length of a single-mode spatial filter,J.Opt.Soc.Am.A.,2002,19(12),192445-2448.
    [35]M.D.Nielsen,N.A.Mortensen,M.Albertsen,J.R.Folkenberg,A.Bjarklev,and D.Bonacinni,Predicting macrobending loss for large-mode area photonic crystal fibers,Opt.Express.,2004,12(8),1775-1779
    [1]H.-G.Treusch,A.Ovtchinnikov,X.He,et al.,High-Brightness Semiconductor Laser Sources for Materials Processing:Stacking,Beam Shaping,and Bars,IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS,2000,6(4),601-611
    [2]Baumann,M.;Roehner,M.;Du,K.M.;Loosen,P.;Poprawe,R.Beam-shaping technique for high brightness with high-power diode laser arrays,Conference on Lasers and Electro-Optics Europe - Technical Digest,1998,CTuB6,49
    [3]Th.Graf,J.E.Balmer,High-power Nd:YLF laser bar end pumped by a diode-laser bar,Opt.Lett.,1993,18(6),1317-1319
    [4]薄报学,曲轶,高功率阵列半导体激光器的光纤耦合输出,光电子.激光,2001,12(5),468-470
    [5]H.G.Treusch,Keming Du.Fiber-coupling technique for high-power laser diode arrays,SPIE,1998,3267,98-106
    [6]K.Du,M.Baumann,B.Ehlers,H.G.Treusch,P.Loosen,Fiber-coupling technique with micro step-mirrors for high-power diode lasers bars,OSA TOPS Vol.10(C.R.Pollack,W.R.Bosenberg,eds.),1997,390-393
    [7]www.limo.com
    [8]高明伟 高春清 何晓燕 魏光辉,半导体激光器线阵光束扭转对称化的实验研究,中国激光,2005,32(5),604-608
    [9]石鹏 李小莉 张贵芬 郭明秀 陆雨田,大功率激光二极管的微片棱镜堆光束整形和光纤耦合输出,光学学报,2000,20(11),1544-1547
    [10]James R.Leger,and William C.Goltsos,Geometrical transformation of linear diode-laser arrays for longitudinal pumping of solid-state lasers,IEEE J Quantum Electron,1992,28(4),1088-1100
    [11]Zheng G X;Du C L,Zhou,C X,Zheng C Y,Micrograting-array beam-shaping technique for asymmetrical laser beams,Appl.Opt.,2005,44(17),3540-3544
    [12]Zheng G X;Du C L,Zhou,C X,Zheng C Y,Laser diode stack beam shaping by reflective two-wedge-angle prism arrays,Opt.Eng.,2005,44(4),p 044203
    [13]W.A.Clarkson and D.C.Hanna,Two mirror beam shaping technique for high power diode bars,Opt.Lett.,21,375-377
    [14]王春灿,张帆,刘楚,简水生,激光器线阵的棱镜组光束整形器和光纤耦合输出,光学技术,(约发表于2008年5期)
    [15]Commercial lens design software,ZEMAX Development Corp.,4901 Morena Boulevard,Suite 207,San Diego,Calif.92117-7320

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700