农杆菌介导的抗寒基因转化羽衣甘蓝的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
羽衣甘蓝(Brassica oleracea var.acephala),属于十字花科,是芸薹属食用甘蓝的一个园艺变种。羽衣甘蓝营养价值高,热量低,是非常受欢迎的保健蔬菜,同时又具有良好的观赏价值。其色彩丰富绚丽,叶形多样,观赏期长,耐寒性好,可耐多次-5℃~-10℃短暂霜冻,在园林绿化中具有重要的意义。我国北方冬季持续时间长,温度低,羽衣甘蓝在室外观赏的应用中抗冻性还有待于进一步的提高,使其在长期霜冻下保持良好的观赏性。植物的抗寒性是多基因控制的性状,以传统育种手段改良有一定的困难,利用转基因技术将抗寒基因导入栽培品种可能成为提高植物抗寒性的一种比较快速有效的手段。本实验以提高羽衣甘蓝抗冻能力为目的,采用农杆菌介导的方法转入甜菜碱合成基因BADH和抗寒转录调控因子基因TCF,期望得到可以在冬季露天观赏的羽衣甘蓝新品种。主要研究结果如下:
     1.优化羽衣甘蓝的再生体系,筛选出再生能力强的3个羽衣甘蓝品种
     通过对不同激素配比的培养基上,9种基因型羽衣甘蓝的带柄子叶、下胚轴、真叶的再生情况进行比较分析,从中筛选出皱白1,06-56和05-25这3种高效再生基因型,其最适培养基分别为MS+6-BA1.0mg/L+NAA0.1mg/L, MS+6-BA1.4mg/L, MS+6-BA1.0mg/L,获得的最高不定芽诱导率均可达到100%;芽诱导率差的有玫红、05-20和皱白2,不足70%。说明不同基因型羽衣甘蓝的不定芽诱导率不同,对培养基激素配比的要求也不同。最终优化的羽衣甘蓝离体再生体系为:切取发芽3-4d的带柄子叶,置于与品种对应的最适培养基中诱导芽萌发,待芽伸长到1cm左右时转到生根培养基MS+0.1mg/LNAA上,根长1cm左右,移栽到营养钵中。
     2.建立了农杆菌介导的遗传转化体系
     确定了羽衣甘蓝最终的转化条件:取发芽3-4d的无菌苗,切取带柄子叶预培养2d,将二次活化,离心,用pH值5.2的MS液体培养基重悬至OD_600值为0.3的菌液侵染,侵染时间5mmin,灭菌滤纸吸干,共培养2d,延迟筛选3d,筛选培养后切去存活不定芽进行生根。预培养培养基:MS+BA 1.0mg/L+NAA 0.1mg/L;共培养培养基:MS+BA 1.0mg/L+NAA 0.1mg/L;延迟培养基:MS+BA 1.0mg/L+NAA 0.1 mg/L+Carb500mg/L;芽筛选培养基:MS+BA1.0mg/L+NAA 0.1 mg/L+Carb500mg/L+0.05‰Gly;生根培养基:MS+NAA0.1mg/L+Carb500mg/L+0.05‰Gly。
     3.抗寒调控基因的导入及转基因植株的鉴定
     在优化的羽衣甘蓝带柄子叶转化体系上,将抗寒调控因子TCF基因导入羽衣甘蓝,得到阳性抗性芽,诱导率为4.8%,共获得28株伸长的抗性芽。PCR检测显示,其中4株显示PCR阳性。
Ornamental kale(Brassica oleracea var.acephala) is an excellent landscape plant, belonging to cabbge's horticulture varieties of Cruciferae Brassiea. Low temperature is the key factor that limits the growth, colour and appreciatability in winter in the northern of China. Introducing foreign gene into kale through genetic engineering may create novel variety with cold tolerance. In this study, BADH(encoding betaine aldehyde dehydrogenase) and TCH(encoding transcription regulation factors) were used to be transformed into kale with Agrobacterium-mediated transformation. The results are as follows:
     1. Get 3 high efficient regeneration genotypes and optimize the regeneration system of kale cotyledon
     Trough the analysis of 9 pairs of genotypes, choose 3 high efficient regeneration genotypes and the highest induction rate is 100%. The best medium are MS+6-BA1.0mg/L+NAA0.1mg/L, MS+6-BA1.4mg/L, MS+6-BA1.0mg/L. Cut out for kale cotyledons when germinated 3 days, put them on the culture medium which suit in. When the buds are about 1 cm, transfer them to the culture medium MS+0.1 mg/LNAA to induce roots. After roots being 1cm, the seedling is cultivated on the sterilized soil.
     2. The agrobacterium transformation system has been established
     Through the comparative test of the factors that influence conversion, the optimum transformation conditions are cutting out for transformation materials and cultivating on MS+BA 1.0mg/L+NAA 0.1mg/L for 2 days'pre-culture. Centrifugation of bacterial liquid with OD_(600)=0.3 which get the second activation, then adding the same volume of MS(pH=5.2)and pre-culture leaves. After 5 minutes, the leaves which remove liquid cultivate in MS+BA1.0mg/L+NAA 0.1mg/L for 2 days. Then take the leaves in MS+BA 1.0mg/L+NAA 0.1 mg/L+Carb500mg/L delay cultured for 3 days. And transfer leaves into differentiation culture which is MS+BA 1.0mg/L+NAA 0.1mg/L+Carb500mg/L+0.05%oGly. Rooting medium is MS+NAA 0.1mg/L+Carb500mg/L+0.05%。 Gly
     3. The identification of kale transferred with encoding transcription regulation factors gene
     On the transformation systems of optimization kale's cotyledon, transferred with encoding transcription regulation factors TCF. After transferring, we got 4.8% induction rate of positive-resistant bud. We obtained 28 green buds by selection of glyphosate and 4 buds are positive by PCR.
引文
[1]利容千,王建波.植物逆境细胞及生理学[J].武汉大学出版社.2002,12:140-149.
    [2]Bala R. Metabolic Engineering for Stress Tolerance:Installing Osmoprotectant Synthesis Pathways[J]. Annals of Botany,2000,86:709-716.
    [3]王娟,李德全,2001,逆境条件下植物体内渗透调节物质的积累与活性氧代谢,植物学通讯,18(4):459-465
    [4]Smirnoff N, Cumbes Q J,1989.Hydroxyl radical scavenging activity of compatible. Biochem, 28(4):1057-1060
    [5]Park E J, Jeknic Z, Sakamoto A, DeNomal J, Yuwansiril R, Murata N, Chen T H.2004. Genetic engineering of glycinebetaine synthesis in tomato protects seeds, plants, and flowers from chilling damage. Plant Journal,30:994-1005.
    [6]苏文潘,李茂富,黄华孙.甜菜碱对低温胁迫下香蕉幼苗细胞膜保护酶活性的影响[J].广西农业科学,2005,(01).
    [7]Demel R A, Dorrepaal E, Ebskamp MJ M,et al. Fructans interact strongly with model membranes [J]. Biochim Biophys Acta,1998,1375:36-42.
    [8]Gorham, J. (1995) Betaines in higher plants-biosynthesis and role in stress metabolism. In Amino Acids and Their Derivatives in Higher Plants. (Wallsgrove, R.M., ed.). Cambridge: Cambridge University Press, pp.171-203.
    [9]Coughlan SJ,Heber U,The role of glycine betaine in the protection of spinach thylakoids against freezing stress.Planta,1982,156:62-69
    [10]王超.外源根施甜菜碱对烟草叶片类囊体膜组分与功能的改善作用[D].山东农业大学,2008
    [11]汤章城.逆境条件下植物脯氨酸的累积及其可能的意义[J].植物生理学通讯,1984(1):15-21
    [12]Nguyen H T, Chandra B R, Blum A. Breeding for drought resistance in rice:physiology and molecular genetics considerations [J]. CropSci,1997,37(6):1426-1434.
    [13]Van Buskirka H A, Thomashow M F.2006. Arabidopsis transcription factors regulating cold acclimation. Physiologia Plantarum,126:72-80.
    [14]Huang J,Hirj I R,Adam L,Rozwadowski K L,Hammerlindl J K,Keller W A,Selvaraj G. Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants:metabolic limitations[J]. Plant Physiol.,2000,122:747-756.
    [15]Jin S., Rozina H., Ling Zh., Chengkun H., Gopalan S. and Ray W..Evaluation of the stress-inducible production of choline oxidase in t ransgenic rice as a st rategy for producing the stress-protectant glycine betaine[J].J. Expe. Bot.,2006,57 (5):1129-1135.
    [16]Kumar S,Dhinger A,Daniel H. Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells,roots,and leaves confer enhanced salt tolerance[J].Plant Physiol.,2004,136:2843-2854.
    [17]Lilius G, Holmberg N, Bulow L. Enhanced NaCl stress tolerance in transgenic tobacco expressing bacterial choline dehydrogenase. Biotechnology,1996,14:177
    [18]Kishitani S, Takanami T, Suzuki M, et al. Compatibility of glycinebetainein rice plants: evaluation using transgenic rice plants with a gene for peroxisomal betaine aldehyde dehydrogenase from balley[J].Plant Cell Environ,2000,23:107-114.
    [19]Hayashi AH, Chen THH. Transformation with a gene for choline oxidase enhances the cold tolerance of Arabidopsis during germinationand early growth [J].PlantCell Envirance, 1998,21(2):232.
    [20]Nanijo T,Koba Ysshi M,Yobshiba Y.Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana[J].FEBS Letter,1999,461:205-221.
    [21]Deirdre Gleeson,Marie-Anne Lelu-Walter, Michael Parkinson.Overproduction of proline in transgenic hybrid larch(Larix x leptoeuropaea(Dengler))cultures renders them tolerant to cold,salt and frost[J].Molecular Breeding,2005,15:21-29
    [22]Parvanova D, Popova A, Zaharieva I, et al.Low temperature tolerance of tobacco plants transformed to accumulate proline,fructans or glycine betaine.Variable chlorophyll fluorescence evidence[J].Photosynthetica,2004,42(2):179~185
    [23]王关林,李铁松,方宏筠,胡鸢雷,赵恢武,林忠平.番茄转果聚糖合酶基因获得抗寒植株[J].中国农业科学,2004,37:1193-1197
    [24]Sevenier R,Hall R D,Vander Meer IM,et al.High level fructan accumulation in transgenic sugur beet[J].Nature Biotechnology,1998,16:843-846.
    [25]In-Cheo J, Se-Jun O,Ju-Seok S,et al. Expression of a Bifunctional Fusion of the Escherichia coli Genes for Trehalose-6-Phosphate Synthase and Trehalose-6-Phosphate Phosphatase in Transgenic Rice Plants Increases Trehalose Accumulation and Abiotic Stress Tolerance without Stunting Growth[J]. Plant Physiol,2003,131 (2):516-524.
    [26]Pennycooke J C,Jonesm L,Stushnoff C. Down-regulating a-galactosidase enhances freezing tolerance in transgenic petunia[J].Plant Physiol,2003(133):901-909.
    [27]Prabhavathi V,Yadav JS, and Kumar PA.Abiotic stress tolerance in transgenic eggplant (Solarium melongena L.) by introduction of bacterial mannitol phosphodehydrogenase gene.Molecular Breeding,2002,9(2):137-147
    [28]Stocking E T, Gilmorur S T, Thomashow M F.Arabidopsis thaliana CBF1 encodes an AP2 domain-containing Transcriptional Activator that binds to the C-repeat/DRE, a Cis-acting DNA Regulatory element that Stinulates Transcription in Response to Low Temperature and Water Deficit [J]. Proceedings of the National Academy of Sciences,1997(94):1035-1040.
    [29]Cook D, Fowler S, Fiehn O, Thomashow M F.2004. A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proceeding National Academy of Science USA,101:15243-15248.
    [30]Haakw V, Cook D, Riechmann J L, et al. Transcription Factor CBF4 is a Regulator of drought Adaptation in Arabidopsis [J]. Plant physiology,2002,130(2):639-648
    [31]Gilmour S J, Zarka D G,Stoekinger E J, Salazar M P, Houghton J M, Thomashow M E. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional aetivators as an early step in cold-indueed COR gene expression, Plant J,1998,16(4):433-442
    [32]Hsieh T H, Lee J T, Yang P T, Chiu L H, Charng Y, Wang Y C, Chan M T.2002.Heterology Expression of the Arabidopsis C-Repeat/Dehydration Response Element Binding Factor 1 Gene Confers Elevated Tolerance to Chilling and Oxidative Stresses in Transgenic Tomato. Plant Physiology,129:1086-1094.
    [33]甄伟,陈溪,孙思洋,胡鸢雷,林忠平.冷诱导基因的转录因子CBF1转化油菜和烟草及抗寒性鉴定[J].自然科学进展,2000,12:93-97
    [34]张渝洁.2007.低温弱光胁迫下拟南芥冷调控因子CBF1对番茄光合机构保护的研究[硕士论文].济南:山东师范大学.
    [35]Behnam B, Kikuchi A, Celebi-Toprak F, Kasuga M, Yamaguchi-Shinozaki K, Watanabe K N. 2007. Arabidopsis rd29A::DREB1A enhances freezing tolerance in transgenic potato. Plant Cell Reports,26:1275-1282.
    [36]Pino M T, Skinner J S, Park E J, Jeknic Z, Hayes P M, Thomashow M F, Chen T H.2007. Use of a stress inducible promoter to drive ectopic AtCBF expression improves potato freezing tolerance while minimizing negative effects on tuber yield.Plant Biotechnology Journal,5(5):591-604.
    [37]韦善君,孙振元,巨关升,韩蕾,余龙江.冷诱导基因的转录因子CBF1的组成型表达对植物的抗寒性及生长发育的影响[J].核农学报,2005,19(6):465-468
    [38]金建凤,高强,陈勇,王君晖.转移拟南芥CBF1基因引起水稻植株脯氨酸含量提高[J].细胞生物学杂志,2005,27(1):73-76.
    [39]金万梅,董静,尹淑萍,闫爱玲,陈梅香.冷诱导转录因子CBF1转化草莓及其抗寒性鉴定[J].西北植物学报,2007,27(2):223-227
    [40]Song S I,Kim Y S,Jang H J,Kim S Y.A rabi dopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to a biotic stress wit haut stunting growth [J]. Plant Physiologic,2005,138: 341-351.
    [41]Chinnusamy V, Ohta M, Kanrar S, Lee B, Hong X, Agarwal M, Zhu J K.2003. ICE1:a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes and Development,17:1043-1054.
    [42]常明进.2007.拟南芥IcE1基因转化番茄的研究[硕士论文].儋州:华南热带农业大学.
    [43]Liu F et al.,1998, In planta transformation of pakchoi(Brassica campestris L. ssp. Chinensis)by infiltration of adult plants with Agrobacterium. Acta Hort 467:187-192
    [44]Kuvshinov VK et al.,1999, Agrobacterium tumefaciens-mediated transformation of greenhouse-grown Brassica rapa ssp. oleifera.Plant Cell Rep.18:773-777
    [45]De Block M et al.,1989, Transformation of Brassica napus and Brassica oleracea using Agrobacterium Tumefaciens and the Expression of the bar and neo Genes in the transgenic plants.Plant Physiol 91:694-701.
    [46]Zhang FL et al.,1998, Medium and genotype factors influencing shoot regeration from cotyledonary explants of Chinese cabbage(Brassica campestris L. ssp. pekinensis). Plant Cell Rep.17:780-786
    [47]Golz C et al.,1990, Molecular Biology.15:475.
    [48]Kohler Fet al.,1989, Plan Molecular Biology,12:189.
    [49]Paszkowski J et al.,1986, Plant Molecular Biology,6:303.
    [50]Guerche P et al.,1987, Genetic transformation of oilseed rape (Brassica napus) by the Ri-T-DAN of Agrobacterum rhizogenes and analysis of the transformed phenotype.Mol.Gen. Genet,206:382.
    [51]Ming C et al,1997, Plant Physiology,115:971-980
    [52]Neuhaus Get al.,1987, Transgenic rape seed plants obtained by the microinjection of DNA into microspore-derived embryoids.Theor Appl Genet.75:30.
    [53]Murata M, Orton TJ. Callus initiation and regeneration capacities in Brassica species. Plant Cell Tissue Organ Culture,1987,11:111-123
    [54]Narasimhulu SB,Chopra VL.Species specific shoot regeneration response of cotyledonary explants of Brassicas. Plant Cell Reports,1988,7:104-106
    [55]Lichter R, Induction of haploid plants from isolated pollen of Brassica napus. Current Opinion in Plant Biology.1982,10:296-302
    [56]Zamhryski P, Transfer of T-DNA from Agrobacterium to the plant cell Plants Physiol.1992, 107(4):1041-1047
    [57]Boulter K R, Gilmour S J, Zarka D G, Schabenberger O, Thomashow M F.1990. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science,280:104-106.
    [58]李俊.外源基因定向插入甘蓝型油菜C基因组的研究.硕士学位论文.中国农业科学院研究生院.导师:方小平,24-25
    [59]Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K.2004. A combination of the Arabidopsis DREB1A gene and stressinducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiology,45 (3):346-350.
    [60]Kim S, An C S, Hong Y N, Lee K W.2004. Cold-inducible Transcription Factor, CaCBF, Is Associated with a Homeodomain Leucine Zipper Protein in Hot Pepper (Capsicum annuum L.). Molecular Cell,18(3):300-308.
    [61]王晓峰,鲁瑞芳,彭学贤等.结球甘蓝外源基因转化再生时的激素条件研究.西北农业大学学报,2000,28(1):43-47
    [62]沈革志,王新其,朱滟(?).芥菜型油菜与白菜正反杂交的胚胎学研究.植物学通报,2006,23(2):158-163
    [63]徐淑平,卫志明,黄健秋.青菜的高效再生和农杆菌介导Bt及CpTI基因转化的研究.农业生物技术学报.2001.9(1):72-76
    [64]柳建军,于洪欣.结球甘蓝的离体再生及基因转化研究初报.山东农业科学,2002,1:18-19
    [65]Arne R.S.,1998, Osmoregulation in the model organism Escherichia coli: genes governing the synthesis of glycine betaine and trehalose and their use in metabolic engineering of stress tolerance,Journal of Biosciences,23(4):437-445
    [66]Wang J.,and Li Q.D.,2001,The accumulation of plant osmoticum and activated oxygen metabolism under stress, Chinese Bulletin of Botany,18 (4):459-465
    [67]Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K.1998. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell,10:1391-1406.
    [68]Medina J, Bargues M, Terol J, et al. The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration[J].Plant Physiology,1999(119):463-470.
    [69]Savitch L V, Allard G, Seki M, Robert L S, Tinker N A, Huner N A, Shinozaki K, Singh J. 2005. The effect of overexpression of two Brassica CBF/DREB1-like transcription factors on photosynthetic capacity and freezing tolerance in Brassica napus. Plant Cell Physiology,46 (9): 1525-1539.
    [70]顾卫红,郑洪建,张燕,柳振誉.观赏羽衣甘蓝新品质的选育极其主要遗传性状的传递规律初探.上海交通大学学报(农业科学版).2001.20:129~132
    [71]秦耀国,雷建军,曹必好,杨崔芹,李焕秀,谢文华.中国蔬菜.2004(4):61-63
    [72]Thmoashowm F. Role of cold-responsive genes in plant freezing tolerance[J]. Plant Physiol, 1998,118:1-8.
    [73]赵秀枢,李名扬,张文玲,刘凡.观赏羽衣甘蓝高频再生体系的建立[J].基因组学与应用生物学,2009,28(1):141-148
    [74]房迈莼,李美茹,李洪清.一种简单高效的克隆水稻端粒相关序列的方法.植物生理学通讯,2004,40(6):729-730
    [75]Wang C., The Improvement of the Compositions and Functions of Thylakoid Membrane in Tobacco Leaves by Exogenous Glycinebetaine under Low Temperature Stress[D].Shand Dong university,2008
    [76]王怀名,杜广答,贾翠莹,谭学文,王贤.观赏羽衣甘蓝的离体繁殖.华北农学报.1995.10(1):64-69
    [77]祝朋芳,刘丽,周广柱等.羽衣甘蓝的离体培养研究.沈阳农业大学学报.2003.08,34(4):249-251
    [78]韩晓光,王灯.羽衣甘蓝丛生芽诱导和植株再生研究.安徽农业科学.2006.34(3):454-455
    [79]宁淑香,张明宇,张洪英等.羽衣甘蓝无性系的建立.辽宁大学学报.200229(4):375-381

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700