α-Fe/TbFe_2纳米晶交换耦合效应及磁致伸缩性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
巨磁致伸缩薄膜在微泵、微阀、微开关等MEMS系统以及微型器件中有着广阔的应用前景。本论文以提高TbFe薄膜的低场磁致伸缩性能为主要研究目标,利用TbFe_2磁致伸缩相和α-Fe软磁相纳米晶交换耦合效应降低TbFe薄膜的饱和场,进而提高TbFe薄膜的低场磁致伸缩性能。主要开展了薄膜磁致伸缩系数测试系统发计和构建、非晶态TbFe磁致伸缩薄膜的制备及性能研究、α-Fe/TbFe_2纳米晶交换耦合一维模型的建立,以及快速循环退火对TbFe薄膜磁致伸缩性能的影响等几个方面的系统研究。
     根据材料力学原理对磁致伸缩薄膜-基片悬臂梁结构进行了分析,推导得到了薄膜磁致伸缩系数与悬臂梁自由端挠度的关系式。基于激光光杠杆放大法,实现了薄膜磁致伸缩系数的计算机辅助测试。通过标定,测试系统的分辨率小于1ppm。
     采用磁控溅射法制备非晶TbFe薄膜,系统研究了Ar分压和溅射角度对TbFe薄膜微结构、磁性能以及磁致伸缩性能的影响。研究结果表明:随Ar分压的增大,TbFe薄膜中Tb含量增加,薄膜的磁畴结构由垂直于膜面逐渐转向平行于膜面,薄膜的垂直各向异性逐渐减小,面内各向异性逐渐增强。在适当的Ar分压范围内,Ar分压的增加有利于改善薄膜的软磁性能,提高薄膜的低场磁致伸缩性能。倾斜溅射可显著改善TbFe薄膜的软磁性能,提高薄膜的低场磁致伸缩性能。随溅射角度的减小,TbFe薄膜的软磁性能逐渐提高、饱和场逐渐降低、低场磁致伸缩性能逐渐提高。
     基于能量最小原理,首次建立了α-Fe/TbFe_2纳米晶交换耦合一维模型,采用微磁学方法深入分析了α-Fe/TbFe_2纳米晶交换耦合作用、α-Fe磁各向异性角、软磁相磁晶各向异性常数以及晶粒尺寸对TbFe薄膜磁性能以及磁致伸缩性能的影响。模拟结果表明:与单一的TbFe_2相相比,α-Fe/TbFe_2纳米晶交换耦合效应可显著改善TbFe薄膜的软磁性能,提高TbFe薄膜的低场磁致伸缩性能;α-Fe的磁各向异性角对TbFe薄膜的性能几乎没有影响;软磁相磁晶各向异性常数的减小,有利于TbFe薄膜软磁性能的改善,有利于提高TbFe薄膜低场磁致伸缩性能;α-Fe和bFe_2相晶粒尺寸显著影响TbFe薄膜的性能,在交换耦合尺度范围内,随晶粒尺寸的增大,TbFe薄膜的软磁性能提高,在低场下,TbFe薄膜的磁致伸缩性能提高,而高场下,TbFe薄膜的磁致伸缩性能却降低。首次从理论上解释了α-Fe/TbFe_2纳米晶交换耦合效应可提高TbFe薄膜的低场磁致伸缩性能。
     系统研究了快速循环退火对TbFe_2和α-Fe纳米晶相的形成、TbFe薄膜微结构、磁性能以及磁致伸缩性能的影响。研究表明:在一定的温度和时间范围内,快速循环退火可在TbFe薄膜中获得纳米晶TbFe_2磁致伸缩相和α-Fe软磁相;在交换耦合尺度范围内,TbFe_2磁致伸缩相和α-Fe软磁相纳米晶交换耦合效应可显著改善TbFe薄膜的软磁性能,提高TbFe薄膜的低场磁致伸缩性能,实验研究结果与理论研究结果定性吻合。首次从实验上证实了α-Fe/TbFe_2纳米晶交换耦合效应可提高TbFe薄膜的低场磁致伸缩性能。
     本论文得到的制备TbFe薄膜优化工艺参数为:Ar分压0.6Pa,溅射功率80W,靶基距70mm,溅射角度15°,退火温度550℃,退火时间240s,升温速率50℃/s。采用优化工艺制备的TbFe薄膜在外场为16kA/m时,薄膜的磁致伸缩系数为280ppm。
Giant magnetostrictive films can be widely used in MEMS and micromagnetic devices, such as micro-pumps, micro-valves, micro-switches. In this dissertation, the nano-crystalline exchange-coupling effect of TbFe_2 magnetostrictive phase andα-Fe soft magnetic phase was utilized to reduce TbFe film saturation field, and then to improve TbFe film low magnetic field magnetostriction. Thus, the design and realization of film magnetostrictive coefficient (λ) measuring system, the preparation of amorphous TbFe films, the establishing ofα-Fe/TbFe_2 nano-crystalline exchange-coupling one dimension model, and the influences of the rapid recurrent thermal annealing on TbFe film magnetostriction were investigated systematically. The main results are as follows:
     Firstly, based on the material mechanical principles, the magnetostrictive film-substrate cantilever was analysised. The formula of magnetostrictive coefficient and cantilever deflection is deduced. Then, based on the laser cantilever deflection method, the film magnetostrictive coefficient measuring system was designed and realized. By calibration, the error of the measuring system is within 1ppm.
     Secondly, amorphous TbFe films were prepared by magnetron sputtering. The influences of argon partial pressure and sputtering angles on TbFe film micro-structures, magnetic and magnetostrictive performances were investigated systematically. With the increase of argon partial pressure, the content of Tb in the as-deposited TbFe films increases. With the increase of argon partial pressure, the magnetic easy direction of the films gradually changes from perpendicular direction to parrallel to the film plane. Within a certain argon partial pressure region, the increase of the argon partial pressure can improve the in-plane soft magnetic performances of the samples, and then improve film low magnetic field magnetostriction. The in-plane magnetostriction characteristics at lower magnetic field can be greatly improved by the oblique sputtering technique. With the decrease of deposition angles, the easy magnetization directions of the films can be gradually changed from perpendicular to in the film plane, and the in-plane magnetostriction also increases at lower magnetic field.
     Thirdly, the one dimension model of a-Fe/TbFe2 nano-crystalline exchange-coupling was established by the free energy functional minimization. Based on the model, the influences ofα-Fe/TbFe_2 nano-crystalline exchange-coupling effect, magnetic anisotropy angles ofα-Fe, magneto-crystalline anisotropy constants of soft magnetic phase and grain sizes on TbFe film magnetic and magnetostrictive performances were simulated. The results show that theα-Fe/TbFe_2 nano-crystalline exchange-coupling effect can improve the TbFe film soft magnetic properties, and thus improve film low field magnetostriction. However, the influences of magnetic anisotropy angles ofα-Fe can be ignored. With the decrease of magneto-crystalline anisotropy constants of soft magnetic phase, the soft magnetic performances of TbFe films are improved, then the low magnetic field magnetostriction is increased. The grain size plays an important role in the influences on the magnetic and magnetostrictive performances of TbFe films. Within the exchange-coupling length, with the increase of grain size of TbFe_2 andα-Fe, the magnetostriction of TbFe films increases at lower magnetic field, however, it decreases at larger magnetic field.
     Fourthly, the influences of rapid recurrent thermal annealing on TbFe film magnetostriction were investigated systematically. The results show that TbFe_2 andα-Fe nano-crystalline can be formed in TbFe films within a certain annealing temperature and time region. Within the exchange-coupling length, the nano-crystalline exchange-coupling effect of TbFe_2 andα-Fe can improve TbFe film soft magnetic performances, and then improve film low field magnetostriction. The experimental results agree with the micromagnetic simulations very well.
     The optimal preparing process parameters of TbFe films are as followings: 0.6Pa of argon partial pressure, 80W of sputtering power, 70mm of target-substrate distance, 15°of sputtering angels, 550℃of annealing temperature,240 seconds of annealing time and 50℃/s of heating rate. The magnetostriction of the films prepared by this optimal preparing process can reach 280ppm at the static magnetic field of 16kA/m.
引文
[1] 宛德福.马兴隆.磁性物理学[M].北京:电子工业出版社,1999:193-194
    [2] 张文旭.[D]:磁致伸缩理论及复合磁致伸缩厚膜的研究[D]:硕士学位论文,电子科技大学,中国:2002
    [3] R.Rhyne,D. Legovld. Magnetostriction of Tb Single Crystals[J]. Phys. Rev.,1965,138:A507-514
    [4] 谢海涛.非晶稀土-铁磁致伸缩薄膜的制备、结构及性能研究[D]:博士学位论文,国防科技大学,中国:2001
    [5] A.E.Clark,H.Belson. Giant Room-Temperature Magnetostrictions in TbFe_2 and DyFe_2. Phys.Rev. B, 1972,5:3642-3644
    [6] E.P.W.ohlfarth.铁磁材料(刘增民,林后植,章思俊等译).北京:电子工业出版社,1993:456
    [7] R.Dhilsha, P.M.Rajeshwari, V. Rajendran. Advanced magnetostrictive materials for sonar applications[J]. Defence Science Journal, Naval Materials Science and Technology, 2005, 55(1): 13-20
    [8] Dapino, J.Marcelo. On magnetostrictive materials and their use in adaptive structures[J]. Structural Engineering and Mechanics,2004, 17(3-4):303-329
    [9] J.A.Paulsen, A.P.Ring, C.C.H. Lo et al. Manganese-substituted cobalt ferrite magnetostrictive materials for magnetic stress sensor applications[J]. J. Appl. Phys.2005, 97(4): 044502-1-044502-3
    [10] 李梅,吕银芳,陈平等.超磁致伸缩材料及其应用[J].现代电子技术,2005,18:114-117
    [11] T. Kawahata, N. Obata, K. Nishimura et al. Development of fundamental components for amplification of magneto-surface-acoustic-waves in highly magnetostrictive metal films by means of electron bunching[C]. Materials and Devices for Smart Systems Proceedings, 2003, 785:325-330
    [12] H.Chiriac, M.Pletea, E.Hristoforou. Magneto-surface-acoustic-waves microdevice using thin film technology: Design and fabrication process[J].Sensors and Actuators,2001 Physical A, 91(1-2): 107-111
    [13] H.Uchida, M. Wada,. K.Koike et al. Giant magnetostrictive materials: thin film formation and application to magnetic surface acoustic wave devices[J]. Journal of Alloys and Compounds, 1994,211(1): 576-580
    [14] J. M.Vranish. Magnetostrictive direct drive rotary motor development[J]. IEEE Trans. Magn., 1991,27(6):5355-5357
    [15] F.Claeyssen, N. Lhermet R.Le Letty. Actuators, randucers and motors based on giant magnetostrictive material[J]. Journal of Alloys and Compounds, 1997,258:61-73
    [16] S. Ashley. Magnetostrictive actuators[J]. Mechanical Engineering, 1998,6:69-70
    [17] E. Quandt, K.Seemann. Giant magnetostrictive thin film material and applications[J]. Journal of Alloys and Compounds, 1997,258:126-132
    [18] E. Quandt, K.Seemann. Fabrication of Giant magnetostrictive thin film actuators[C]. Proceedings of the IEEE Micro Electro Mechanical Systems, 1995:273-277
    [19] S. Moon, S.H.Lim, S.B.Lee et al. Optical switch driven by giant magnetostrictive thin films[C]. Proceedings of SPIE-The International Society for Optical Engineering, 1999, 3680(2):854-862
    [20] S.H.Han, H.J.Kim, Y.S.Choi et al. Prototype microactuators driven by magnetostrictive thin films[J]. IEEE Trans.Magn., 1998,34(4):2042-2044
    [21] B.M. Jeremy, M. R.Gabriel. High-isolation CPW MEMS shunt switches-part 1:modeling[J]. IEEE Transactions on Microwave Theory and Techniques, 2000,48:1045-1052
    [22] L.P.B. Katehi,, G.M.Rebeiz, C.T.Nguyen. MEMS and Si-micromachined components for low power, high frequency communications systems[J]. IEEE MTT-S International Microwave Symposium Digest,1998,1:331-333
    [23] C.L. Goldsmith, Z.M.Yao, S.Eshelman et al. Performance of low-loss RF MEMS capacitive switches[J]. IEEE Microwave and Guided Wave Letters, 1998,8(8):269-271
    [24] Z.J.Yao, S. Chert, S. Eshelman et al. Micromachined low-loss microwave switches[J].IEEE of Micromechanical Systems, 1999, 8(2):129-1333
    [25] D. Hyman, M. Mehregany. Contact physics of gold microcontacts for MEMS switches[J]. IEEE Transactions on Components and Packaging Technology, 1999,22(3):357-364
    [26] 茅惠兵,忻佩胜,胡梅丽等.微机械微波/射频开关的制备和功能测量研究.半导体技术, 2002,27(111):11-14
    [27] 谌贵辉.磁致伸缩型RF MEMS开关性能仿真与制备工艺研究[D]:硕士学位论文,电子科技大学,中国:2005
    [28] H.H.Uchida, Y.S.Matsumura, H.H.Uchida et al. Progress in thin films of giant magnetostrictive alloys[J]. J.Magn.Magn.Mater., 2002,239:540-545.
    [29] M.Ciria,J.I.Arnaudas,C.Dufour et al. Magnetostriction in a single-crystal TbFe2 film. Thin solid films,1998,317:303-305
    [30] K. Nakazato, M. Hashimoto, H. Uchida et al. Preparation of giant magnetostrictive thin film by magnetron and ion beam sputtering processes. Review of Scientific Instruments 2000 -71(2):996-998
    [31] A. Gamier, T. Bourouina, H.Y. Fujita etal. Fast, robust and simple 2-D micro-optical scanner based on contactless magnetostrictive actuation. Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), 2000:715-720
    [32] N. Tiercelin, P.Pernod, V.Preobrazhensky et al. Non-linear actuation of cantilevers using giant magnetostrictive thin films. Ultrasonics, 2000,38(1-8):64-66
    [33] E. Hristoforou. New magnetostrictive delay line arrangements for sensor applications. Sensors and Actuators, A: Physical, 2000,81(1): 142-146
    [34] W.J. Karl, A.L.Powell,; R.Watts et al. Micromachined magnetostrictive pressure sensor using magneto-optical interrogation Sensors and Actuators, A: Physical, 2000,81(1):137-141
    [35] M.Yamaguchi, K.Suezawa, M.Baba et al. Application of Bi-directional thin-film micro wire array to RF integrated spiral inductors. IEEE Trans.Magn., 2000,36(5):3514-3517
    [36] A.Garnier, T.Bourouina, H.Fujita et al. Magnetic actuation of bending and torsional vibrations for 2D optical-scanner application. Sensors and Actuators, A: Physical, 2000,84(1): 156-160
    [37] G. Reyne, L. Houlet, Y. Takahashi et al. Electromagnetic remote control and down scaling advantages and examples for MOEMS. Proceedings of SPIE - The International Society for Optical Engineering,2001, 4592:205-215
    [38] Q.Y.Cai, M.K.Jain, C.A.Grimes. A wireless, remote query ammonia sensor. Sensors and Actuators, B: Chemical, 2001,77(3): 614-619
    [39] T.S.Shima, H.Y. Yokoyama, H.Y. Fujimori. Magnetostriction and magnetic properties of Sm-Fe-B and Tb-Fe-B thin films and rnultilayers[J]. Journal of Alloys and Compounds, 1997,258:149-154
    [40] E. Quandt. Giant magnetostrictive TbFe/Fe multilayers[J]. Journal of Alloys and Compounds, 1997,258:133-137
    [41] E.Quandt. Multi-target sputtering of high magnetostrictive Tb-Dy-Fe film[J]. J Appl Phys,1994,75:5653-5656
    [42] K. Imamura, K.H.Shin, K.Ishiyama et al. Anisotropy control of magnetostrictive film patterns[J]. IEEE Trans.Magn., 2001,37(4):2025-2027
    [43] H.Yabe, K. Oguri,; H.-H.Uchida et al. Micrograph and crystal structure of high magnetostrictive susceptibility of Fe-Pd thin films[J]. International Journal of Applied Electromagnetics and Mechanics,2000, 12(l-2):67-70
    [44] J. C.Shih, T. S.Chin, Z. G. Sun et al. Domain structure of TbFe magnetostrictive films by MFM[J]. IEEE Trans.Magn., 2001,37(4):2681-2683
    [45] R.Berger, F. Krause, A. Dietzel et al. Nanoscale magnetostrictive response in a thin film owing to a local magnetic field[J]. Applied Physics Letters,2000, 76(5):616-618
    [46] M.D. Cooke, M.R.J. Gibbs, R.F. Pettifer. Sputter deposition of compositional gradient magnetostrictive FeCo based thin films[J]. J.Magn.Magn.Mater., 2001,237(2):175-180
    [47] N.H.Duc, K.Mackay, J.Betz et al. Magnetic and magnetostrictive properties in amorphous (Tb0.27Dy0.73)(Fe1-xCox)2 films[J]. Journal of Physics Condensed Matter, 2000,12(36): 7957-7968
    [48] N.H.Duc, K.Mackay, J.Betz et al. Magnetic and magnetostrictive properties in amorphous (Tb0.27Dy0.73)(Fe1-xCox)2 films[J]. Journal of Applied Physics, 2000, 87(2):834-839
    [49] A.Ludwig, E.Quandt. Giant magnetostrictive thin films for applications in microelectromechanical systems[J]. Journal of Applied Physics, 2000,87(9): 4691-1-4
    [50] T.M.Danh, N.H.Duc, H.N.Thanh et al. Magnetic, Moessbauer and magnetostrictive studies of amorphous Tb(Fe0.55Co0.45)1.5 films[J]. Journal of Applied Physics, 2000,87(10):7208-1-4
    [51] K. Aoshima, J. Hong, H.Kanai. Magnetostriction of free layer in top-type and bottom-type spin-valve films[J]. IEEE Trans.Magn., 2000,36(5):3226-3228
    [52] T.Shima, H.Takahashi, K.Takanashi. Exchange magnetostriction in TbFe/FeCuNbSiB multi!ayers[J]. Sensors and Actuators, A: Physical, 2001,91(1-2)210-213
    [53] H.Xu, C.Jiang, X.Jiang et al. Magnetic anisotropy in (Tb0.3Dy0.7)45Fe55 amorphous films[J]. J.Magn.Magn.Mater., 2001,232(1-2):46-52
    [54] H.Le Gall, J.Ben Youssef, N.Tiercelin et al. Giant magnetostriction of TbFe monolayers with improved field-induced sensitivity[J|. IEEE Trans.Magn.,2000,36(5): 3223-3225
    [55] M. Pasquale, A.Infortuna, L.Martino et al. Magnetic properties of TbFe thin films under applied stress[J]. J.Magn.Magn.Mater.,2000,215:769-771
    [56] H.Le Gall, J.Ben Youssef, N.Tiercelin et al.Giant magnetostriction of exchange-coupled (TbFe/Fe) ML with high sensitivity after heat treatment[J]. IEEE Trans.Magn.,2001,37(4):2699-2701
    [57] D.W.Forester, C. Vittoria, J. Schelleng et al. Magnetostriction of amorphous TbxFe1-x thin films[J]. J. Appl. Phys., 1978,49(3):1966-1973
    [58] Y.Mimura,N.Imamua. Magnetic properties of amorphous Tb-Fe thin films prepared by r.f. sputtering[J]. Appl. Phys. Lett., 1976,28:746-748
    [59] J.Huang, C.Prados, J. E. Everts et al. Giant magnetostriction of amorphous TbxFe1-x (0.10    [60] S.H.Lim,Y.S.Choi,S.H.Han et al. Magnetostriction of Tb-Fe-(B) thin films fabricated by rf magnetron sputtering[J]. IEEE Trans.Magn.,1997,33(5):3940-3942
    [61] Y.S.Choi,S.R.Lee, S.H.Han et al. The magnetic properties of Tb-Fe-(B) thin films fabricated by rf magnetron sputteringfJ]. J. Alloys and Compounds, 1997,258:155-162
    [62] P.I.Williams, P.J.Grundy. Magnetic and magnetostrictive properties of amorphous rare earth-transition metal alloy films[J]. J.Phys.D:Apl. Phys,1994,27(5):897-901
    [63] V. G Harris, W. T. Elam, N. C. Koon. Deposition-temperature dependence of structural anisotropy in amorphous Tb-Fe films[J]. Phys. Rev. B 1994,49(5):3637-3640
    [64] F. Schatz, M. Hirscher, M. Schnell et al.Magnetic anisotropy and giant magnetostriction of amorphous TbDyFe films[J]. J. Appl. Phys.,1994, 76(9):5380-5382
    [65] M. Inoue, T. Fujii, M. R. J. Gibbs. Improvement of low field magnetostriction of Amorphous TbFe Sputtered Films by Thermal Annealing[J]. IEEE Trans.Magn.,1996, 32(5):4758-4760
    [66] M.Wada, H.Uchida, H.Kaneko. Effect of the substrate temperature on the microstructure and magnetostrictive characteristics of the Tbo.3Dyo.7Fe2 film[J]. J. Alloys and Compounds, 1997,258:143-148
    [67] M.Wada, H.Uchida, H.Kaneko. Effect of annealing treatment of the Tbo.3Dyo.7Fe2 thin films on the magnetic and magnetostrictive characteristics[J]. J. Alloys and Compounds, 1997,258:169-1173
    [68] M.Loveless, S.Guruswamy, J.E.Shield. Crystallization behavior of amorphous terfenol-D thin films[J]. IEEE Trans.Magn., 1997,33(5): 3937-3939
    [69] P. Farber, H. KronmuKller. Crystallization behaviour and magnetic properties of highly magnetostrictive Fe-Tb-Dy thin films[J]. J.Magn. Magn. Mater. ,2000,214:159-166
    [70] A. Speliotis, D. Niarchos. Magnetostrictive properties of amorphous andcrystalline TbDyFe thin films[J]. Sensors and Actuators A, 2003,106:298-301
    [71] T.Miyazaki,T.Saito,Y.Fujino.Magnetostrictive properties of sputtered binary Tb-Fe and pseudo-binary (Tb-Dy)-Fe alloy filmsfJ]. J.Magn. Magn. Mater., 1997,171:320-328
    [72] C.Prados, I.Panagiotopoulus, G.C.Hadjipanayis, et al. High magnetostriction in low applied magnetic fields in amorphous Tb-Fe (hard)/Fe-B (soft) multilayers[J]. IEEE Trans.Magn., 1997,33(5):3712-3714
    [73] T. Yamaki, M. Sekine, T. Haraki et al. Giant magnetostrictive thin film formation by plasma process[J]. Surface and Coatings Technology, 2003,169-170:613-615
    [74] M.Inoue,T.Fujii,M.R.J.Gibbs. Improvement of low field magnetostriction of amorphous TbFe sputtered films by thermal annealing[J]. IEEE Trans.Magn., 1996,32(5):4758-4760
    [75] 万红,李再轲,邱轶等.TbDyFe 超磁致伸缩薄膜的低场磁敏特性[J].中国有色金属学报,2004,14(1):37-41
    [76] 谢海涛,刘希从,斯永敏等.热处理对Tb_(0.27)Dy_(0.73)Fe_2巨磁致伸缩薄膜性能的影响[J].材料科学与工程,2001,19(3):38-42
    [77] 谢海涛,斯永敏.豫对低场下的薄膜磁致伸缩性能影响模型[J].材料科学与工式程,2002,20(3):396-398,409
    [78] 谢海涛,刘希林,斯永敏等.热处理对Tb0.27Dy0.73Fe2巨磁致伸缩薄膜性能的影响[J].材料科学与工程,2001,19(3):38-42
    [79] T.Shimizu,K.Ishida,Y.Matsumura et al. Ion irradiation effects on magnetostriction of Tb-Fe thin film[J].Surface and Coatings Technology,2003,169-170:616-619
    [80] W.F.Brown. Magnetic energy formulas and their relation to magnetization theory[J]. Review of Modern Physics, 1953, 25:131-135
    [81] C. Kittel. Physical theory of ferromagnetic domain[J]. Review of Modern Physics, 1949 21:541-583
    [82] E. Kloklolm. The measurement of magnetostriction in ferromagnetic thin films[J]. IEEE Trans. Magn., 1976,12(6):819-821
    [83] E.du.Tremolet de Lacheisserie, J.C.Peuzin. Magnetostriction and internal stresses in thin films: the cantilever method revisited [J]. J. Magn. Magn.Mater., 1994, 136:189-196
    [84] P. M. Marcus, Magnetostrictive bending of a cantilevered film-substrate system[J]. J. Magn. Magn. Mater., 1997, 168:18-24
    [85] V. Iannotti, L. Lanotte. lmproved model for the magnetostrictive deflection of a clamped film-substrate system[J]. J. Magn.Magn.Mater., 1999, 202:191-196
    [86] R. Watts, M. R. J. Gibbs, W. J. Karl et al. Finite element modeling of magnetostrictive bending of a coated cantilever[J]. Appl. Phys. Lett., 1997, 70:2607-2609
    [87] Y.C.Shu, M.P.Lin, K.C.Wu. Micromagnetic modeling of magnetostrictive materials under intrinsic stress[J]. Mechanics of Materials, 2004, 36:975-997
    [88] 汤如俊,交换耦合磁致伸缩多层膜微磁学研究[D]:硕士学位论文,电子科技大学,中国:2006
    [89] G. Choe, B.Megdal. High precision magnetostriction measurement employing the B-H looper bending method[J]. IEEE Trans.Magn., 1999,35(5):3959-3961
    [90] X.Jin, C.O.Kim, Y.P.Lee et al. Simultaneous measurements of the magnetostrictive coefficient, Young's modulus, and poisson ratio of thin films[J]. Appl. Phys. Lett., 2001,79(5): 650-1-4
    [91] Anon. Non-destructive measurement of magnetostriction in thin films[J]. Journal of Research of the National Institute of Standards and Technology, 2001,106(4):759-1-3
    [92] W.Bruckner, C.Lang, C.M.Schneider. Sensitive measurement of magnetostriction effects in thin films by means of a two-beam free-sample deflection method[J]. Review of Scientific Instruments,2001,72(5):2496-1-4
    [93] Y. H. Lee, Y. D. Shin, P. H. Herr, et al. DC based capacitance method for measuring thin film magnetostriction and △ E effect[J]. IEEE Trans.Magn., 1994,30(6):45664568
    [94] 万红,邱佚,谢海涛等.电容位移法测量磁性薄膜的磁致伸缩系数[J].功能材料, 2002,33(3):263-266
    [95] 朱军,余晋岳,张宏.薄膜磁致伸缩系数λs的简易测量[J].磁性材料及器件,1999,30(2):22-24
    [96] Andrew C. Tam, Holger Schroeder. A new high-precision optical technique to measure magnetostriction of a thin magnetic film deposited on a substrate[J]. IEEE Trans.Magn., 1989,25(3):2629-2638
    [97] http://www.lafouda.com
    [98] 林黎蔚.纳米交换耦合高灵敏度磁致伸缩材料的研究[D]:硕士学位论文,电子科技大学,中国:2005
    [99] G.Herzer. Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets[J]. IEEE Trans.Magn., 1990,26(5):1397-142
    [100] 钟文定.铁磁学(中册).北京,科学出版社,1987:576-592
    [101] Don L. DeVoe, Albert P. Pisano. Modeling and optimal design of piezoelectric cantilever microactuators[J]. Journal of Microelectromechanical Systems, 1997,6(3):266-270.
    [102] W.A.纳什.材料力学(第四版)(赵志刚译)[M].北京:科学出版社,2002
    [103] G A Gehring, M D Cooke, I S Gregory, et al. Cantilever unified theory and optimization for sensors and actuators[J]. Smart Marter. Struct, 2000,9:918-931
    [104] Hamamatsu photonics k..k. 2D PSD signal processing circuit for Pin-cushion type PSD-type No.C6069 operation manual
    [105] T.Honda, Y.Hayashi, K.I.Arai et al. Magnetostriction of sputtered Sm-Fe thin films[J]. IEEE Trans.Magn., 1993, 29(6): 3126-3128
    [106] Y.Hayashi,T.Honda, K.I.Arai et al.Dependence of magnetostriction of sputtered Tb-Fe films on preparation conditions[J]. IEEE Trans.Magn., 1993, 29(6): 3129-3131
    [107] 吴自勤,王兵.薄膜生长[M].北京:科学出版社,2001
    [108] 王煜明.非晶体及晶体缺陷的X射线衍射[M].北京,科学出版社,1988
    [109] M.L. Escrivao, A.M.C. Moutinho, M.J.P. Maneira. Planar magnetron glow discharge on copper: Empirical and semiempirical relations[J]. J. Vac. Sci. Technol.,1994, A 12(3):723-726.
    [110] 戴道生,韩汝琪.非晶态物理[M].北京:电子工业出版社,1989
    [111] R.Watts, M R J Gibbs, W J Karl et al. Finite-element modeling of magnetostrictive bending of a coated cantilever[J]. Appl. Phys. Lett. 1977,70:2607~2609
    [112] W.F.Jr.Brown Jr, Micromagnetics[M], New York: Interscience, 1963
    [113] A.Aharoni, Introduction to the Theory of Ferromagnetism, Monographs on Physics[M], Oxford University Press, 1996
    [114] T.L.Gilbert. A lagrangian formulation of gyromagnetic equation of the magnetization field[J]. Phys. Rev., 1955,100:1243-1247
    [115] W.Scholz. Micromagnetic Simulation of Thermally Activated Switching in Fine Particles[D]: Vienna University of Technology, 1999
    [116] W.F Jr. Brown. Thermal fluctuations of fine ferromagnetic particles[J]. IEEE Trans. Magn., 1979, 15:1196-1208
    [117] J.C.Mallinson. On damped gyromagnetic precession[J]. IEEE Trans. Magn., 1987, 23:2003-2004
    [118] T.leineweber, H.Kronmueler. Micromagnetic examination of exchange coupled ferromagnetic nanolayers[J]. J. Magn.Magn.Mater., 1997, 176: 145-154
    [119] T.Suzuki, F.Sequeda, H.Do et al. Magnetic and magneto-optic properties of Bi-substituted garnet films crystallized by rapid thermal processing[J]. J. Appl. Phys.,1990,67(9):4435-4437
    [120] H.W.Zhang, H.J.Kim, S.Q.Yang. Structure and magneto-optical properties of fine-grain garnet thin films[J]. J. Magn. Magn. Mater., 1995,150(3):377-382
    [121] 文歧业.磁性存储器相关磁三明治材料及其应用特性研究[D]:博士学位论文,电子科技大学,中国:2005
    [122] J.Kaczer. Ferromagnetism domains in uniaxial materials[J]. IEEE Trans. Magn., 1970,6(3):442-445

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700