动态的车间环境下自适应调度器及其关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济全球化的深入,面对激烈的市场竞争,许多制造企业采取了基于时间理念的竞争策略,新产品的快速研制和分销配送是该策略的重要核心。因此要求企业能够对动态多变的生产订单做出及时、准确的响应。在制造企业的车间内部建立一套高效的运营管理机制是解决上述问题的有效途径之一。
     以实现柔性和对多变市场需求作出及时响应为目标的制造执行系统(Manufacturing Execution System, MES)日益为21世纪企业所采用。在MES的研究中,如何使车间制造系统的资源和其控制结构(调度方式)快速、高效和经济地适应市场需求是MES的核心部分。对于我国大部分制造企业而言,尽管已在硬件方面营建了实施MES的条件,但还是普遍缺乏有效和适合的调度等控制技术的支持,因此,从MES的角度研究企业的车间制造系统控制结构及其复杂的优化问题,将对我国制造企业部署MES、提高企业竞争力起到有力的指导和推进作用。
     本文在分析国内外有关自适应调度理论及相关技术的研究成果的基础上,针对MES系统的特点以及实际需要,对在车间复杂动态环境下建立自适应调度器的关键技术进行了系统深入的研究,全文主要的研究工作如下:
     建立了自适应调度器的系统框架。自适应调度器由调度知识获取算法、调度知识系统和控制器三个关键部分组成。调度器采取了扩展的自适应调度策略,并使用基于模型参考自适应控制理论设计的体系架构,使之能够在运行策略和体系架构上均能满足复杂动态环境的苛刻要求。调度器还采用了基于工艺过程语言本体论的工艺规划信息表示方案,能够与车间内部其它异构信息系统无缝集成。
     研究了基于混合归纳学习的调度知识获取算法。将模拟退火算法作为变异算子以串联的形式融入遗传算法,构建成为混合优化方法。再使用Wrapper方式将混合优化方法和决策树学习算法结合。混合优化方法求解不同调度目标下制造系统的最优特征子集,并确定控制决策树规模的最优参数。决策树学习算法用于评价混合优化方法求解过程中染色体编码的适应度。在获取到最优特征子集和最优参数后,决策树学习算法生成调度知识。
     建立了基于面向对象技术的调度知识系统模型。利用面向对象建模语言描述了调度知识系统的需求模型,设计模型和实现模型,建立了反映知识系统静态结构和动态行为的各种视图,并使用对象约束语言对在设计模型中出现的类对象进行精确语义约束。
     设计了实施调度策略具有三阶段工作方式的控制器。将完整的调度策略实施过程划分“监测?决策?执行”三个阶段,使之与扩展自适应调度策略的运行机理相匹配。以此为指导思路,构建了具有三阶段工作方式的控制器基本结构,并设计了各功能模块。根据控制器的需要,还定义了仿真模型的组成,给出了生成仿真模型所必需的步骤,分析了仿真时搜索空间的复杂度。这种工作方式大大增强了调度策略的准确性和可实现性。
     开发了本文研究成果为核心的自适应调度器(AS2-SCHED)。系统支持生产调度人员在车间复杂动态的环境下直观自如地进行调度、介绍了系统的软件结构和工作流程,按照功能的划分描述系统的主要实现技术和主要界面,验证了本文提出的关键技术。
In the twenty-first century, the rapid development of new products, coupled with promoted customer delivery, is the foundation of the time-based competition strategies, which have been adopted by many manufacturing enterprises. Accordingly, firms need to react adequately to dynamically changing job orders. The shop floor must posses sophisticated operation management mechanisms for various delivery criteria (e.g. throughput, cycle time, and so forth).
     Manufacturing Execution System (MES) has been adopted in the 21-century enterprises, which aims at realizing flexibility and response to the changing market requirements as quick as possible. In the researches on MES, how to make the resources and the control structure (scheduling method of resources) of enterprise’s production system adapt to the market requirements quickly, high-efficiently and economically is the core idea. To Chinese manufacturing enterprises, most of them have had the hardware conditions to implement agile manufacturing. However, they still lack effective and proper software technologies to support scheduling and etc. Therefore, to research control structure in the shop floor manufacturing system and their complex optimization problems from MES viewpoint will be a powerful guidance and propulsion.
     According to features of MES and practical requirements, and based on the research work of the adaptive scheduling techniques done by international and domestic scholars as well. This thesis provides a systematic research on the key techniques of adaptive scheduler under the complex dynamical environment in the shop floor. The research works have been done as follows:
     The framework of adaptive scheduler, which contains a scheduling knowledge acquisition algorithm, a scheduling knowledge-based system and a controller, was established. The scheduler utilized an Extended Adaptive Scheduling Strategy (EASS) and a Model Reference Adaptive Control (MRAC) theory-based architecture. These technologies make the scheduler adapt harsh requirements of the complex dynamical environment in the respects of strategy and architecture. The process specification language ontology-based representation of process plan information used can enable seamless integration of the scheduler and other heterogeneous information systems in a shop floor.
     A hybrid inductive learning-based scheduling knowledge acquisition algorithm was proposed. As a mutation operator of GA, SA was in series with GA to develop a hybrid optimization method which called GA&SA. DT and GA&SA were combined in the way of Wrapper. GA&SA was utilized to resolve the optimal subset of manufacturing system attributes and determine the optimal parameters of DT under different scheduling objectives; DT was used to evaluate the fitness of chromosome in the method and generate the scheduling knowledge after obtaining the optimal attributes subset, optimal DT’s parameters.
     A model for the Scheduling Knowledge-Based System (SKBS), using the object-oriented technology was presented. It employed object-oriented modeling language to describe the requirement model, design model and implementation model of SKBS, so various views were built up to explore the static structure and dynamic behavior of SKBS. The semantics of class in the design model was exactly constrained by using object constraint language.
     A controller that can deploy the scheduling strategy with a three-phase working approach was proposed. An entire process of the scheduling strategy was divided into three phases which contains monitoring, decision-making and execution. It matched well the mechanism of EASS. It was a guideline to design the basic structure and the function module of the controller. According to the requirement of the controller, the composition of the simulate model was researched and the procedure of the model generation was given. The complexity of the search space was also analyized. This working way strengthens the effectuation and rightness of the control strategy.
     A prototype system named AS2-SCHED(Adaptive Strategy and Adaptive Structure-based SCHEDuler ) is developed based on the kernel technique mentioned above. AS2-SCHED supports the scheduler in the shop floor in a natural and intuitive manner. The function model and architecture of proposed system are introduced practically. Finally, the application of the system is illustrated to validate these key techniques.
引文
1曹江辉,王宁生,解放.制造执行系统现状与发展趋势[J].高技术通讯.2003, (6): 100-105.
    2 AMR Consulting. Integratable MES: The challenge and the Opportunity [M]. 1995-4/2003-10-9.
    3 MESA International. MES Explained: A High Level Vision [EB/OL] .http://www. mesa.org/whitepapers/pap6.pdf. 1997-9/2003-10-6.
    4 MESA International. The Controls layer: Controls Definition&MES to Controls Data Flow Possibilities [EB/OL]. http://www.mesa.org/ whitepapers/pap2.pdf. 2000-2/2003-10-6.
    5 MESA International. MES Functionalities&MRP to MES Data Flow Possibilities [EB/OL]. http://www.mesa. org/whitepapers/pap2.pdf.1997-3/2003-10-6.
    6王万雷.制造执行系统(MES)若干关键技术研究[D].博士学位论文,大连理工大学,大连, 2005.
    7 McKay K N, Wiers C S. Unifying the theory and practice of production scheduling [J]. Journal of Manufacturing System. 1999, 18 (4):241-255.
    8 Cook S A. The complexity of theorem proving procedures [J]. Proceeding of the 3rd Annual ACM Symp on Theory of Computing. New York: ACM Press, 1971, 151-158.
    9谷峰.柔性作业车间调度中的优化算法研究[D].博士学位论文.中国科技大学,合肥, 2006.
    10胡咏梅.基于粗集的车间动态调度研究[D].博士学位论文.山东大学,济南, 2004.
    11徐俊刚,戴国忠,王宏安.生产调度理论和方法研究综述[J].计算机研究和发展, 2004, 41(2):257-267.
    12 Montazeri M, Van Wassehove L N. Analysis of scheduling rules of an FMS [J]. International Journal of Production Research, 1990, 28(4):785-802.
    13叶春明.生产计划与控制[M].北京:高等教育出版社, 2005.
    14 Panwalkar S S, Lskander W. A survey of scheduling rules [J]. Operation Research, 1977, 25(1): 45-61.
    15王艳红,尹朝万,张宇.基于多代理和规则调度的敏捷调度系统研究[J].计算机集成制造系统, 2000, 6(8):45-50.
    16王艳红,尹朝万.一类基于多Agent和分布式的敏捷生产调度[J].控制与决策, 2004,21(4):526-531.
    17 Sabuncuoglu I. A Study of Scheduling rules of flexible manufacturing system: a simulation approach [J]. International Journal of Production Research.1998, 36(2): 527-746.
    18 Choi B K, You N K. Dispatching rules for dynamic scheduling of one-of-a-kind production [J]. International Journal of Computer Integrated Manufacturing, 2006, 19(4): 383-392.
    19王凌.车间调度及其遗传算法[M].北京:清华大学出版社,Springer, 2003.
    20葛宏伟.基于计算智能的若干优化问题研究[D]..博士学位论文,吉林大学,长春, 2006.
    21 Geyik F, Cedimoglu I H. The strategies and parameters of tabu search for job-shop scheduling [J]. Journal of Intelligent Manufacturing, 2004, 15(4): 439-448.
    22黄志,黄文奇.一种基于禁忌搜索技术的作业车间调度算法[J],小型微型计算机系, 2005, 26(2): 222-225.
    23 Nowicki E, Smutnicki C. An advanced tabu search algorithm for the job shop problem [J]. Journal of Scheduling, 2005,8(2): 145-159
    24宋晓宇,朱云龙,尹朝万,李富明.求解模糊Job Shop调度问题的改进禁忌搜索算法[J].沈阳建筑大学学报(自然科学版), 2006.22(5):841-845.
    25玄光男,程润伟著.于韵杰,周根贵译.遗传算法与工程优化[M].北京:清华大学出版社, 2004.
    26柴永生,孙树栋,于建军,吴秀丽,基于免疫遗传算法的车间动态调度[J].机械工程学报, 2005, 41(10): 23-27.
    27 Liu T K, Tsai J T, Chou J H. Improved genetic algorithm for the job-shop scheduling problem [J]. International Journal of Advanced Manufacturing Technology, 2006, 27(9-10):1021-1029.
    28黄明,王佳,梁旭.双阙值控制的遗传算法求解作业车间调度问题[J].计算机集成制造系统, 2007,13(2):229-332.
    29 Yoo M, Gen M. Scheduling algorithm for real-time tasks using multi-objective hybrid genetic algorithm in heterogeneous multiprocessors system [J]. Computers and Operations Research, 2007, 34(10):3084-3098.
    30王凌,智能优化算法及其应用[M].北京:清华大学出版社, Springer, 2001.
    31 Yang S, Wang D. A new adaptive neural network and heuristics hybrid approach for job-shop scheduling [J]. Computers & Operations Research, 2001, 28 (10) : 955~971.
    32王万良,吴启迪,徐新黎.基于Hopfield神经网络的作业车间生产调度方法[J].自动化学报, 2002, 28(5): 838-844.
    33 El-Bouri A, Shah P.A neural network for dispatching rule selection in a job shop [J]. International Journal of Advanced Manufacturing Technology, 2006, 31(3-4), 342-349.
    34 Sha D Y, Hsu C Y. A hybrid particle swarm optimization for job shop scheduling problem [J]. Computers and Industrial Engineering, 2006, 51(4): 791-808.
    35彭传勇,高亮,邵新宇,周驰.求解作业车间调度问题的广义粒子群优化算法[J].计算机集成制造系统, 2006, 12(6):911-918.
    36潘全科,王文宏,朱剑英,赵保.基于粒子群优化和变邻域搜索的混合调度算法[J].计算机集成制造系统, 2007, 13(2):323-328.
    37郑大钟,赵千川.离散事件动态系统[M].北京:清华大学出版社, 2001.
    38孙容磊,基于逻辑网的知识表示、推理、学习及其在FMS调度中的应用[D].博士学位论文,华中科技大学,武汉, 2002.
    39 Mejia G, Odrey N G. An approach using Petri nets and improved heuristic search for manufacturing system scheduling[J]. Journal of Manufacturing Systems, 2005, 24(2):79-92.
    40潘全科,左凤朝,朱剑英.面向绿色制造模式调度的Petri网模型及优化算法[J].机械工程学报, 2006, 42(9):48-54.
    41李琳,江志斌,张志英.基于RW监控理论的虚拟生产系统控制[J].上海交通大学学报, 2005, 39(10):1693-1699.
    42 Golmakani H R, Mills J K, Benhabib B. On-line Scheduling and control of flexible manufacturing cells using automata theory [J]. International Journal of Computer Integrated Manufacturing, 2006, 19(2): 178-193.
    43 Baker K R, Sequencing rules and due-date assignments in a job-shop [J].Management Science, 1984, 30(9):1093-1104.
    44 Park S C, Raman N, Shaw M J. Adaptive scheduling in dynamical flexible manufacturing systems: a dynamic rule selection approach [J]. IEEE Transaction on Robotics and Automation, 1997, 13(4):486-502.
    45 Arzi Y, Herbon A. Machine learning based adaptive production control for a multi-cell flexible manufacturing system operating in a random environment [J]. International Journal of Production Research, 2000, 38(1); 161-185.
    46 Li W, Tu Y, Xue D. Adaptive production scheduling and control for one-of-a-kind production shop floor [J]. Transactions of the North American Manufacturing Research Institute of SME, 2006, 34:159-166.
    47 Wilkin T, Frayman Y, Rolfe B. Adaptive control of the closed loop behaviour of manufacturing processes [C]. In Proceedings of 8th Biennial ASME Conference on Engineering Systems Design and Analysis, 2006.
    48 Priore P, De La Fuente D, Gomez A, Puente J. A review of machine learning in dynamic scheduling of flexible manufacturing systems[J]. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 2001, 15(3): 251-263.
    49 Fox M S, Smith S F. ISIS: a knowledge based system for factory scheduling [J]. Expert Systems Journal, 1984, 1(1):25-49.
    50 Zweben M, Fox M, San Francisco. OPIS: A methodology and architecture for reactive scheduling [J]. Intelligent Scheduling, edited by Zweben M, Fox M. San Francisco, California: Morgan Kaufman, 1995, 29-66.
    51 Bensanna E, Bel G, Dubois D. OPAL: a multi-knowledge based system for industrial job shop scheduling [J]. International Journal of Production Research, 1985, 26(5):795-819.
    52 Le P C. Scheduling as intelligent control of decision-making and constraint propagation [J]. Intelligent Scheduling, edited by Zweben M, Fox M. San Francisco, California: Morgan Kaufman, 1995, 67-98
    53卫军胡,韩九强,孙国基.离散事件系统仿真技术在制造系统调度中的应用[J].系统仿真学报,2000, 12(1):27-30.
    54 Wysk R, Wu D, Yang R. A multi-pass expert control system (MPECS) for flexible manufacturing systems [M]. NBS Special Publication, 1986,724:251-278.
    55 Wu S D, Wysk R A. An application of discrete-event simulation to on-line control and scheduling in flexible manufacturing [J]. International Journal of Production Research, 1989, 27(9):1603-1623.
    56 Jeong K C, Kim Y D. A real-time scheduling mechanism for a flexible manufacturing system: using simulation and dispatching rules [J]. International Journal of Production Research, 1998, 36(9):2609-2626.
    57 Cho H. Son Y J. Jones A. Design and conceptual development of shop-floor controllers through the manipulation of process plans [J]. International Journal of Computer Integrated Manufacturing, 2006, 19(4): 359– 376.
    58王国新,宁汝新,王爱民,唐承统,武志军.基于仿真的调度规则组合决策研究.[J].北京理工大学学报, 2006, 26(7):598-602.
    59 Pierreval H, Ralambondrainy H. A simulation and technique for generating knowledge about manufacturing systems behavior [J]. Journal of Operational Research Society, 1990, 41:461-474.
    60 Shaw M J, Park S, Raman N. Intelligent scheduling with machine learning capabilities: the induction of scheduling knowledge [J]. IIE Transactions, 1992, 24(2):156-168.
    61 Nakasuka S, Yashida, T. Dynamic scheduling system utilizing machine learning as a knowledge acquisition tool [J]. International Journal of Production Research. 1992, 30(2):411-431.
    62 Mitchell T著,曾华军,张银奎译.机器学习[M].北京:机械工业出版社, 2003.
    63 Nilsson J Nils著,郑扣根,庄越挺译.人工智能[M].北京:机械工业出版社. 2000.
    64 Pham D T, Afify A A. Machine-learning techniques and their applications in manufacturing [C]. In Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2005, 219(5): 395-412.
    65 Priore P, De La Fuente D, Puente J, Parreno J. A comparison of machine-learning algorithms for dynamic scheduling of flexible manufacturing systems [J]. Engineering Applications of Artificial Intelligence, 2006,19(3):247-255.
    66 Arzi Y, Iaroslavitz L. Neural network-based adaptive production control system for a flexible manufacturing cell under a random environment [J]. IIE Transactions, 1999, 31(3): 217-230.
    67 Rovithakis G A, Christodoulou M A. Application of a neural-network scheduler on a real manufacturing system [J]. IEEE Transactions on Control Systems Technology, 2001, 9(2): 261-270.
    68 Cakar T. Cil I. Artificial neural networks for design of manufacturing systems and selection of priority rules [J]. International Journal of Computer Integrated Manufacturing, 2004, 17(3): 195-211.
    69彭观,陈统坚,欧阳惠芳.基于神经网络的FMS动态调度决策[J].华南理工大学学报(自然科学版). 1998, 26(6):60-64.
    70 Metaxiotis K, Psarras J. Neural networks in production scheduling: Intelligent solutions and future promises [J]. Applied Artificial Intelligence, 2003, 17(4):361-373.
    71 Sun Y L, Chang T M, Yih Y. Learning-based adaptive controller for dynamic manufacturing cells [J]. International Journal of Production Research, 2005, 43(14): 3011-3025.
    72洪家荣.归纳学习—算法、理论、应用[M].北京:科学出版社, 1997.
    73 Wang Jue, Cui Jia, Zhao Kai. Investigation on AQ11, ID3 and the principle of discernibility matrix [J].Journal of Computer Science and Technology, 2001, 16(1):1-12.
    74 Arzi Y, Iaroslavitz L. Operating an FMC by a decision-tree-based adaptive production control system [J]. International Journal of Production Research, 2000, 38(3): 675-697.
    75 Shiue Y R, Su C T. An enhanced knowledge representation for decision-tree based learning adaptive scheduling [J]. International Journal of Computer Integrated Manufacturing, 2003, 16(1): 48-60.
    76孙容磊,熊有伦,杜润生,丁汉.规则调度的迭代优化[J].计算机集成制造系统, 2002, 8(7): 546-550.
    77孙容磊,熊有伦,杜润生,丁汉.基于适应策略的迭代学习调度[J].信息与控制, 2002, 31(6):481-485.
    78孙容磊,熊有伦,杜润生,丁汉. FMS适应调度知识稳定性分析[J].机械工程学报, 2003,39(1):29-32.
    79 Shiue Y R, Guh R S. Learning-based multi-pass adaptive scheduling for a dynamic manufacturing cell environment [J]. Robotics and Computer-Integrated Manufacturing, 2006, 22(3): 203-216.
    80 Chen C C. Yih Y. Identifying attributes for knowledge-based development in dynamic scheduling environments [J]. International Journal of Production Research, 1996, 34(6): 1739-1755.
    81 Chen C C, Yih Y, Wu Y C. Auto-bias selection for developing learning-based scheduling systems [J]. International Journal of Production Research, 1999, 37(9): 1987-2002.
    82 Shiue Y R. Su C T. Attribute selection for neural network-based adaptive scheduling systems in flexible manufacturing systems [J]. International Journal of Advanced Manufacturing Technology, 2002, 20(7): 532-544.
    83 Siedlecki W, Sklansky J. On automatic feature selection [J]. International Journal of Pattern Reorganization Artificial Intelligent, 1998, 2(2):197-220.
    84 Siedlecki W, Sklansky J. A note on genetic algorithm for large-scale feature selection [J]. Pattern Reorganization Letter, 1999, 10:335-347.
    85 Su C T. Shiue Y R, Intelligent scheduling controller for shop floor control systems: A hybrid genetic algorithm/decision tree learning approach [J]. International Journal of Production Research, 2003, 41(13): 2619-2641.
    86 Shiue, Yeou-Ren; Guh, Ruey-Shiang, The optimization of attribute selection in decision tree-based production control systems [J]. International Journal of Advanced Manufacturing Technology.2005, 28(7-8): 737-746.
    87 Giarratano J, Riley G著,印鉴等译.专家系统原理与编程[M].北京:机械工业出版社, 2001.
    88王晓东.基于Ontology知识库系统建模与应用研究[D].博士学位论文,上海:华东师范大学, 2003.
    89 Buchanan B, Shortliffe E. Rule-Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic Programming [M]. Menlo Park, Calif: Addison-Wesley, 1984.
    90 Morris K, Ullman J, Gelder A. Design Overview of the NAIL!. System [C]. In Proceedings of the 3rd International Conference on LogicProgramming, London, England, Springer-Verlag, 1986.
    91 Schreiber A T, Wielinga B, Akkermans J M, De Velde W, De Hoog R. CommonKADS: a comprehensive methodology for KBS development [J]. IEEE Expert.1994, 9 (6):28-37.
    92 Angele J, Fensel D, Landes D, Studer R. Developing Knowledge-Based Systems with MIKE [J]. Journal of Automated Software Engineering, 1998, 5(4):389-418.
    93 Cuena J. Demazeau Y, Garcia A, Treur J. Knowledge Engineering and Agent Technology [M]. Amsterdam: IOS Press, 2001.
    94 Kingston K C J. Designing knowledge based systems: the CommonKADS design model [J]. Knowledge-Based Systems, 1998, 11:311-319.
    95 Guus Schreiber, et al. Knowledge Engineering and Management: The CommonKADS Methodology [M]. USA: Massachusetts Institute of Technology, 2000.
    96 Slotine J E, Li Weiping著,程代展译,应用非线性控制[M].北京:机械工业出版社. 2006.
    97 Katsuhiko Ogata著.韩建友,李威,邱丽芳,边新孝译.系统动力学[M],北京:机械工业出版社, 2005.
    98于长官主编,现代控制理论(第二版) [M],哈尔滨:哈尔滨工业大学出版社. 1997.
    99吴士昌,吴忠强著.自适应控制(第二版) [M],北京:机械工业出版社, 2005.
    100魏丽,郑联语.现代产品开发中的概要工艺规划研究[J],计算机集成制造系统, 2006.12(10):1621-1628.
    101 Knutilla A, Schlenoff C, Ray S, et al. Process specification language: an analysis of existing representations [S]. NISTIR 6160, 1998. (Gaithersburg, MD: National Institute of Standards and Technology).
    102 Schlenoff C, Gruninger M, Tissot F, et al. The process specification language (PSL): overview and version1.0 specifications[S]. NISTIR 6759, 2000 (Gaithersburg, MD: National Institute of Standards and Technology).
    103严隽琪,林毅.产品工艺计划描述语言研究现状及设计特点[J],计算机集成制造系统, 2001, 7(8):33-36.
    104马庆龙,殷国富,龙红能,苏斌,戈鹏.过程规范语言应用分析[J],计算机集成制造系统, 2001,7(9)46-50.
    105龙红能,殷国富,成尔京,周丹晨.基于本体论的过程规范语言的语义分析[J].计算机集成制造系统2003, 9(10):926-931.
    106胡耀光,范玉顺,童晓艳.基于XML和过程本体的多学科设计优化过程集成与资源共享[J],计算机集成制造系统, 2007,13(6):1076-1082.
    107 NIST. PSL Ontology - current theories and extensions [EB/OL]. [2006207210]. http: //www.mel.nist.gov/psl/ontology.html.
    108史忠植著.知识发现.北京:清华大学出版社[M], 2002.
    109 Langley P. Selection of relevant features in machine learning[C]. Proceedings of the AAAI Fall Symposium on Relevance. Menlo Park, CA: AAAI Press, 1994, 140-144.
    110 Davies S, Russl S. Np-completeness of searches for smallest possible feature sets[C]. Proceedings of the AAAI Fall 94 Symposiums on Relevance. Menlo Park, CA: AAAI Press, 1994, 37-39.
    111 Blum A L. Learning boolean functions in an infinite attribute space [J]. Machine Learning, 1992, 9(4): 373-386.
    112 John G, Kohavi R, Pfleger K. Irrelevant features and the subset selection problem[C]. In: Cohen W W, Hirsh H, Eds. The 11th International Conference on Machine Learning. San Francisco: Morgan Kaufmann, 1994, 121-129.
    113 Aha D W, Bankert R L. Feature selection for case-based classification of cloud types An empirical comparison[C]. In: Aha D W Eds. In Working Notes of the AAAI94 Workshop on Case-based Reasoning. Menlo Park, CA: AAAI Press, 1994, 106-112.
    114 Inza I, Larrinaga P, Sierra B. Feature subset selection by Bayesian networks based on optimization [J]. Artificial Intelligence, 2001, 123(1-2): 157-184.
    115杨炳儒.知识工程与知识发现[M].北京:冶金工业出版社, 2000.
    116 Wolpert D H, Macready W G. No free lunch theorems for optimization [J]. IEEE Trans. on Evolutionary Computation, 1997, 1(1):67-82.
    117 Suzuki J. A Markov Chain Analysis in Simple Genetic Algorithms [J]. IEEE Trans on System, Man and Cybernetics, 1995, 26(4): 655-659.
    118 Kreinovich V, Quintana C. Fuentes O. Genetic Algorithms: What FitnessScaling is Optional? [J] Cybernetics and Systems, 1993, 24(1): 9-36.
    119 Schmitt L M, Nehaniv C L, Fujii R H. Linear-analysis of genetic algorithms [J]. Theoretical Computer Science, 1998, 200(1-2):101-134.
    120王小平,曹立明.遗传算法一理论、应用与软件实现[M].西安:西安交通大学出版社, 2003.
    121 Hakansson A. UML as an approach to modeling knowledge in rule-based systems [C]. In Proceedings of ES 2001, the Twenty-first SGAI International Conference on Knowledge Based Systems and Applied Artificial Intelligent 2001:187-200.
    122 Chung W W C, Pak J J F. A case study: using UML to develop a knowledge-based system for supporting business in a small financial institute [J]. International Journal of Computer Integrated Manufacturing, 2006, 19(1):59-68.
    123 Rumbaugh J, Jacobson I, Booch G著.姚淑珍,唐发根等译. UML参考手册[M].北京:机械工业出版社, 2001.
    124 Joseph Giarratano, Gray Riley著,印鉴等译.专家系统原理与编程[M].,北京:机械工业出版社, 2001.
    125蔡自兴,约翰.德尔今,龚涛.高级专家系统:原理、设计及应用[M].北京:科学出版利, 2005.
    126 Doug Rosenberg, Kendall Scott著.徐海,周靖,陈华伟译.UML用例驱动对象建模:一种实践方法[M].北京:清华大学出版社,2003.
    127邵维忠,杨芙清.面向对象的系统设计[M].北京:清华大学出版社, 2003.
    128 Grady Booch, James Rumbaugh, Ivar Jacobson著. UML用户指南[M].邵维忠,麻志毅,张文娟,孟祥文译.北京:机械工业出版社, 2001.
    129 Prakash A, Khilwani N, Tiwari M K, Cohen Y. Modified immune algorithm for job selection and operation allocation problem in flexible manufacturing systems[J], Advanced Engineering Software (2007), doi:10.1016/ j.advengsoft.2007.01.024
    130 Khilwani N, Prakash A, Shankar R, Tiwari M K. Fast clonal algorithm[J], Engineering Applications of Artificial Intelligence (2007), doi:10.1016/j.engappai.2007.01.004.
    131 Arena User’s Guide[S]. USA: Rockwell Software Inc, 2005.
    132 Wysk R A, Peters B, Smith J S, A process planning schema for shop floorcontrol [J], Engineering Design Automation Journal. 1995, 1:3-20.
    133周凯,现代制造系统[M].北京:清华大学出版社, 2005:248-249.
    134 Glover F. Kelly J P. Laguma M. The OptQuest Library User’s Documentation[S]. USA: Optimization Technologies Inc, 1999.
    135 Sten Sundblad,Per Sundblad著,前导工作室译, WindowsDNA可扩展设计[M].北京:机械工业出版社, 2001.
    136王大玲,于戈,鲍玉斌.一个分类规则的存储结构及查询策略.东北大学学报. 2002, 23(9):821-824.
    137 CLIPS, http://www.siliconvalleyone.com/clips.htm.
    138 Medsker L R, Hybrid intelligent systems [M], Boston, MA: Kluwer Academic Publishers, 1995.
    139李敬花.基于多Agent的多型号生产调度技术研究[D].博士学位论文,哈尔滨工业大学,哈尔滨, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700