基于视觉传感管道焊接机器人跟踪系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国西北地区油气资源丰富,而东部沿海市场需求巨大,这样的产销分离促使管道输送业蓬勃发展。目前管道建设中管道对接环形焊缝的现场焊接多由手工完成,或采用需要人工干预的轨道式自动焊接设备,严重制约了管道建设的发展。因此开展智能化管道焊接机器人研究,提高管道焊接质量和效率,具有巨大的经济效益和社会效益。
     管道焊接机器人属特种机器人研究领域。本研究针对大型油气输送管道(直径≥Φ600mm)现场施工条件下对接环形焊缝的自动化焊接技术,在结构光视觉传感器的模型建立及参数选择,焊缝图像的处理方法,移动焊接机器人跟踪控制方法等方面进行深入研究,研制出基于视觉传感的管道焊接机器人焊缝跟踪系统。
     本文应用透视成像原理通过坐标变换推导出结构光视觉传感器的模型,建立传感器成像点与被测物上点之间的变换关系。应用光度学理论,结合光学成像系统与带通滤光片的作用,推导出视觉传感器输出灰度图像的弧光干扰模型,指导结构光视觉传感器设计过程中传感检测位置以及摄像机倾角等参数的确定,以减少弧光干扰,有效地提高了焊缝图像的信噪比。
     由视觉传感器焊缝图像快速可靠提取焊缝特征信息是实现焊缝跟踪的关键。通过对图像处理方法的深入研究,针对结构光视觉传感器焊缝图像中干扰的特点,采用一维离散LoG(Laplacian of Gaussian)滤波、邻域均值滤波、基于先验知识改进的最大方差阈值分割和标记法小区域去噪组成焊缝图像预处理方法,快速获得清晰的焊缝图像。然后对焊缝图像进行数学形态学细化处理得到焊缝骨架,可靠提取了焊缝特征信息。结果表明,采用这种处理方法结构光视觉传感图像具有良好的抗干扰性,处理一幅像素400×300图像的时间不大于0.08秒,满足焊缝跟踪的需要。
     针对滑动转向移动机器人和直角坐标焊枪调整机构组成的管道焊接机器人,应用Lyapunov稳定性理论设计了管道焊接机器人环形运动控制律;提出基于圆柱坐标的管道焊接机器人环形焊接焊缝跟踪算法;为提高焊缝跟踪精度,研究了当管道焊接机器人车轮轴线与管道轴线有偏角时的跟踪补偿方法。
     研制出焊枪侧置形式的管道焊接机器人样机,由永磁轮吸附在焊缝一侧的被焊管道上运动,与骑跨在焊缝上的管道焊接机器人相比,使焊缝跟踪精度不受管道对口精度的影响,并可以完成管道弯角对接焊缝的焊接,扩大了其工作范围。
     研制出一套结构光视觉传感器,编制了焊缝图像处理软件。基于LabVIEW软件平台研制出能实现图像采集、角度传感器信号采集、伺服电机运动控制等的管道焊接机器人测控系统。
     实验表明,基于视觉传感管道焊接机器人跟踪系统可靠性高,满足管道焊接对跟踪系统的要求。
In northwest China there are abundant resources of oil and natural gas, but tremendous market requirement are there in southeast China. So the enormous separation between product and sale promotes of pipeline transportation industry. Recently, the pipeline construction technology relies on manual welding or orbited-welding device manipulated by workman, which enormously restricts the development of pipeline transportation industry. Therefore, development of intelligent pipeline welding robot will bring immense economic and society benefit.
     Pipeline welding robot belongs to the research field of special type robotics. Aimed at automatic girth welding of the large diameter pipelines on condition of field operations, researches are lucubrated on modeling and parameters selection of structured light sensor, processing methods of seam images, seam tracking of mobile welding robot. A seam tracking system for girth-welding robot based on vision sensing is developed.
     The model of a vision sensor based on structured light is educed with perspective imaging and coordinate transform principle. Using luminosity theory and considering the function of optics imaging system and light filter, the model of sensing image influenced by arc noise is established, with the distance between the arc point and the structured light stripe on the work-piece and the angle between the axis of CCD camera and the plane of structured light. With the model, approaches are derived to decrease arc disturbance and improve quality of sensing images, guiding to optimize the structure parameters of structured light sensors.
     Adaptive thresholding segmentation method used Maximal square difference within selected section based on priori information is developed. A compounding including this developed method, one dimension discrete LoG (Laplacian of Gaussian) filter, neighborhood averaging filter, labeling technique for small dollops removal is to be used to pre-process seam images. Then the skeleton of seam is extracted using morphologic thinning. As a result, the characteristic information is extracted rapidly and stably. Experiments show that by using this compounding processing, the seam tracking system acquires powerful anti-jamming ability. Within 0.08s, a 400×300 picxels image can be processed, so it can meet the requirement of field welding.
     Aimed at the pipeline welding robot, the controller for girth locomotion is designed using Lyapunov stability theory. A seam tracking arithmetic based on cylinder coordinate is developed aimed at pipeline girth welding robot, and compensate value is calculated when axis of welding robot departs from the pipeline axis.
     A prototype of pipeline welding robot with welding torch positioned at one side of welding robot is developed. Attaching on one of welded pipelines by permanent magnet wheels, it avoids effect of the staggered butt joint on precision of seam tracking, compared with the structure straddling on both side of welded pipeline. For an extended work, it can be used on welding of butt joint of two non-coaxial pipelines.
     A structured light sensor and the control system using LabVIEW with image picking, inclinometer information picking and servo motors control are taken in practice and the soft program is worked out.
     Seam tracking experiment shows the seam tracking system is with high reliability, and meets the requirement of pipeline girth welding.
引文
1 蔡鹤皋. 机器人将是 21 世纪技术发展的热点. 中国机械工程. 2000, 11(1-2): 58-60
    2 H. R. Nicholls, M. H. Lee. A Survey of Robot Tactile Sensing Technology. The International Journal of Robotics Research. 1989, 8(3): 3-30
    3 P. Drews, G. Starke. Welding in the Century of Information Technology. Welding in the World. 1994, 34: 1-20
    4 Trailer. Manufacturer Depends on Robotic Welding to Boast Production. Welding Journal. 1995, 74(7): 49-51
    5 蒋新松. 未来机器人技术发展方向的探讨. 机器人. 1996, 18(5): 287-291
    6 J. D. Lane. Robotic Welding State of the Art. Robotic Welding International Trends in Manufacturing Technology. IFS (Publications) Ltd. UK, 1987: 110
    7 B. H.You, J. W. Kim. A Study on an Automatic Seam Tracking System by Using an Electromagnetic Sensor for Sheet Metalarc Welding of Butt Joints. Proc. InstnMech. Engrs, Part B: J. Engineering Manufacture. 2002, 216(B6): 911-920
    8 T. Araya, S. Saikawa. Recent Activities on Sensing and Adaptive Control of Arc Welding. In 3rd International Conference on Trends in Welding Research. Gatlinburg, June 1992: 833-842
    9 P. Drews, G. Starke, K. Willms. The Current State of Development of Sensors for Gas-Shielded Welding Robots. Welding and Cutting. 1990, 36(4): 57-59
    10 J. E. Agapakis, J. M. Katz, M. Koifman, et al. Joint Tracking and Adaptive Robotic Welding Using Vision Sensing of the Weld Joint Geometry. Weld. J. 1986, 65(11): 33-41
    11 刘永, 王克鸿. IGM 弧焊机器人大型工作站仿真系统设计. 焊接学报. 2006, 27(2): 59-63
    12 符娅波, 边美华, 许先果. 弧焊机器人的应用与发展. 机器人技术与应用. 2006, (3): 38-41
    13 王敏捷, 姜淑兰, 王勇. 世界管道建设综述. 国外油田工程. 2005, 21(7): 26-32
    14 V. D. Makarenko, S. P. Shatilo and I. O. Makarenko. Welding Nonrotating Joints in Petroleum Pipelines. Chemical and Petroleum Engineering. 2004, 40(s): 5-6
    15 杨俊伟, 李岩. 全位置自动焊接在管道建设中的应用. 油气储运. 2001, 20(12): 27-28
    16 http://www.crc-evans.com/AW/externalwm.htm
    17 梁君直, 曾惠林, 闫政. 高效焊接与管道施工. 高效焊接国家论坛论文集. 2002: 174-177
    18 王军波, 孙振国, 陈强, 等. 基于 CCD 传感器的球罐焊接机器人焊缝跟踪. 焊接学报. 2001, 22(2): 31-34
    19 潘际銮, 阎炳义, 高力生, 等. 爬行式全位置弧焊机器人. 电焊机. 2005, 35(6): 1-5
    20 闫政, 梁君直, 陈江. PAW200 管道全位置自动焊机. 2005, 35(6): 47-53
    21 胡安鑫, 苏欣, 孙华锋, 等. 国内外长输管道自动焊现状. 天然气与石油. 2006, 24(2): 12-14, 18
    22 http://www.riet.com.cn/jishuly/hanjie.htm
    23 王伟, 薛龙. 全位置管道焊接设备的研究. 管道技术与设备. 2002, (4): 15-16
    24 H. C. Kuo, L. J. Wu. An Image Tracking System for Welded Seams Using Fuzzy Logic. Journal of Materials Processing Technology. 2002, 120(1-3): 169-185
    25 G. Bolmsjo, M. Olsson and P. Cederberg. Robotic Arc Welding Trends and Developments for Higher Autonomy. The Industrial Robot. 2002, 29(2): 98-104
    26 Asai. Present State and Future Development of Sensing and Monitoring Systems for Welding. Journal of High Temperature Society. 2005, 31(2): 100-111
    27 J. W. Kim, S. J. Na. A Study on an Arc Sensor for Gas Metal Arc Welding of Horizontal Fillet Joints. Weld Journal. 1991,70(8): 216-221
    28 M. Ushio, W. J. Mao. Modeling of the Arc Sensor for DC MIG/MAG Welding in Open Arc Mode-A Study of the Improvement of the Sensitivity and the Reliability of the Arc Sensor in GMA Welding(1st Report). Quarterly Journal of the Japan Welding Society. 1996, 14(1): 99-107
    29 M. Kodama. Automatic Fillet Welding Process with High Frequency Oscillation Arc Sensor. Proc. Conf. IIW. 2003, Doc. XII: 1766-1793
    30 潘际銮. 电弧传感器物理数学模型研究. CMES Doc. H-XⅡ: 13-90
    31 吴世德. 电弧传感器焊缝跟踪的信息处理技术. 清华大学博士论文. 1997
    32 洪波. 电弧传感移动式焊接机器人的数学建模及仿真. 湘潭大学博士论文. 2005
    33 D. C. Kim, S. H. Rhee and K. W. Um. A Study of Welding Pool Width Control in Gas Tungsten Arc Welding Using the Digital Image Processing. J. KSME(A). 1996, 20(9): 2760-2769
    34 J. Testa. The Vision-Guide Robot Grows up Industrial Robot. An Industrial Jounal. 1999, 26(5): 15-18
    35 K. Bae, T. H. Lee and K. C. Ahn. An Optical Sensing System for Seam Tracking and Weld Pool Control in Gas Metal Arc Welding of Steel Pipe. Journal of Materials Processing Technology. 2002, 120(1-3): 458-465
    36 G. J. Zhang, Z. H. Yan and L. Wu. Visual Sensing of Weld Pool in Variable Polarity TIG Welding of Aluminum Alloy. Transactions of Nonferrous Metals Society of China. 2006, 16(3): 522-526
    37 L. P. Li, S. B. Chen and T. Lin. The Modeling of Welding Pool Surface Reflectance of Aluminum Alloy Pulse GTAW. Materials Science and Engineering A. 2005, 394(1-2): 320-326
    38 S. Satoru. Sensing Technology for the Welding Process. Welding International. 2006, 20(3): 183–196
    39 张虓, 马兆瑞, 郑军, 等. 结构光视觉焊缝跟踪传感器光学系统的研究. 电焊机. 2006, 36(3): 22-26
    40 N. Shibata, A. Hirai, Y. Takano, et al. Development of Groove Recognition Algorithm with Visual Sensor. Welding Research Abroad. 2000, 46(6): 9-17
    41 石永华, 钟继光, 刘桑王, 等. 视觉传感及图像处理技术在焊接中的应用. 电焊机. 1999, 29(9): 1-4
    42 王伟, 邹奇仕, 朱六妹, 等. 传感焊缝跟踪技术的发展状况及实施方案探讨. 电焊机. 2002, 32(5): 1-8
    43 Kiyohara, Hisakai. High Function Arc Welding Robot with Laser Sensor. Proc. Conf. National Conference. Welding Society. 1997: 61-100
    44 G. Agapiou, C. Kasiouras and A. A. Serafetinides. A Detailed Analysis of the MIG Spectrum for the Development of Laser-Based Seam Tracking Sensors. Optics and Laser Technology. 1999, 31:157-161
    45 张明路, 丁承君, 段萍. 移动机器人的研究现状与趋势. 河北工业大学学报. 2004, 33(2): 110-115
    46 欧青立, 何克忠. 室外智能移动机器人的发展及其关键技术研究. 机器人. 2000, 22(6): 519-526
    47 G. Bourhis, O. Hom. An Autonomous Vehicle for People with Motor Disabilities. IEEE Robotics and Automation Magazine. 2001, 8(l): 20-28
    48 G. Antonelli, S. Chiaverini and N. Sarkar. External Force Control for Underwater Vehicle-Manipulator Systems. IEEE Trans. on Robotics and Automation. 2001, 17(6): 931-938
    49 K. Tcbon, R. Muszynski. Instantaneous Kinematics and Dexterity of Mobile Manipulators. Proceedings of International Conference on Robotics and Automation . San Francisco , California. 2000, 3: 2493-2498
    50 Q. Huang, S. S. Katol. Stability Control for a Mobile Manipulator Using a Potential Method. Proceedings of the IEEE/RSJ/GI International Conference on Intelligent Robots and Systems. 1994, 2: 839-846
    51 S. Dubowsky, E. E. Vance. Planning Mobile Manipulator Motions Considering Vehicle Dynamic Stability Constraints. Proceedings of International Conference on Robotics and Automation. 1989, 3: l271-1276
    52 H. Qiang, S. S. Katol and K. Tanie. Motion Planning for a Mobile Manipulator Considering Stability and Task Constraints. Proceedings of International Conference on Robotics and Automation. 1998, 3: 2192-2198
    53 M. T. Mason, D. K. Pai, D. Rus, et al. A Mobile Manipulator. Proceedings of International Conference on Robotics and Automation. 1999, 3: 2322-2327
    54 E. PaPadopoulos, J. Poulakakis. Planning and Model-based Control for Mobile Manipulators. Proceedings of International Conference on Intelligent Robots and Systems. 2000, 3: l8l0-1815
    55 H. G. Tanner, S. G. Loizou and K. J. Kyriakopoulos. Nonholonomic Navigation and Control of Cooperating Mobile Manipulators. IEEE Transactions on Robotics and Automation. 2003, 19(l): 53-64
    56 J. Albaric, R. Zapata. Motion Planning of Cooperative NonholonomicMobile Manipulators. Proceedings of International Conference on Systems, Man and Cybemetics. 2002, 6: 328-333
    57 Y. Suga , A. Muto. Automatic Tracking of Welding Line by Autonomous Mobile Robot for Welding of Plates ( Tracking of Linear and Angled Welding Lines) . Transactions of the Japan Society of Mechanical Engineers(Part C). 1997, 612 (63): 2918-2924
    58 B. O. Kam , Y. B. Jeon. Motion Control of Two Wheeled Welding Mobile Robot with Seam Tracking Sensor. ISIE, 2001: 850-856
    59 S. Dubowsky, P. Y. Gu and J. F. Deck. The Dynamic Analysis of Flexibility in Mobile Robotic Manipulator Systems. Proceedings of the Eighth World Congress on the Theory of Machines and Mechanisms, Prague, Czechoslovakia. August, 1990
    60 O. Khatib. Mobile Manipulation: The Robotic Assistant. Robotics and Autonomous Systems. 1999, 26: 175-183
    61 W. S. Yoo, J. D. Kim and S. J. Na. A Study on a Mobile Platform-Manipulator Welding System for Horizontal Fillet Joints. Mechatronics. 2001, 11(7): 853-868
    62 H. G. Tanner, K. J. Kyriakopoulos and N. I. Krikelis. Advanced Agricultural Robots: Kinematics and Dynamics of Multiple Mobile Manipulators Handling Non-Rigid Material. Computers and Electronics in Agriculture. 2001, 31(1): 91-105
    63 王军波, 孙振国, 陈强, 等. 基于 CCD 传感器的球罐焊接机器人焊缝跟踪. 焊接学报. 2001, 22(2): 31-34
    64 焦向东, 蒋力培, 薛龙, 等. 球罐全位置焊接机器人智能控制系统. 焊接学报. 2000, 21(4): 1-5
    65 熊光明, 龚建伟, 徐正飞, 等. 轮式移动机器人滑动转向研究综述. 机床与液压. 2003, (6): 9-12
    66 P. K. Khosla, C. P. Neuman and F. B. Prinz. An Algorithm for Seam Tracking Applications. Int. J. Robot Res. 1985, 3(1): 46-54
    67 潘沛霖, 韩秀琴, 赵言正, 等. 日本磁吸附爬壁机器人的研究现状. 机器人. 1994, 14(6): 379-382
    68 王宝光, 贺忠海, 陈林才, 等. 结构光传感器模型及特性分析. 光学学报. 2002, 22(4): 481-484
    69 尤政, 胡庆英. 结构光传感器的成像分析及其数学模型. 宇航计测技术. 1997, 17(4): 5-8
    70 A. Satoru, T. Kushi and K. Katsumi. Development of Fully Automatic GMAW System with Visual Sensor. IIW Doc. XII-1546, International Institute of Welding, Vienna. 1998: 245-272
    71 R. Neipold, F. Brummer. In Robotic Welding. (Ed. J. Lane), Bedford, UK, Ifs (Publications) Ltd. 1987: 129-140
    72 S. B. Chen, X. Z.Chen and T. Qiu. Acquisition of Weld Seam Dimensional Position Information for Arc Welding Robot Based on Vision Computing. Journal of Intelligent and Robotic Systems. 2005, 43: 77–97
    73 岳宏, 孙立新, 蔡鹤皋.基于结构光的机器人焊接实时图像处理方法的研究. 机器人. 1999, 21(2): 144-147
    74 S. D. Zenzo. Advances in Image Segmentation. Image and Vision Computing. 1983, 1(4): 196-21
    75 R. M. Haralick, L. G. Shapiro. Survey: Image Segmentation Techniques. Computer Vision, Graphics and Image Processing. 1985, 29:100-132
    76 N. R. Pal, S. K. Pal. A Review on Image Segmentation Techniques. Pattern Recognition. 1993, 26(9): 1277-1294
    77 应俊, 叶秀清, 顾伟杭.一个基于知识的边沿提取算法. 中国图像图像学报. 1999, 4A(3): 239-242
    78 靳宏磊, 朱蔚萍, 李立源, 等. 二维灰度直方图的最佳分割方法. 模式识别与人工智能. 1999, 12(3): 329-333
    79 S. H. Park, L. D. Yun and S. U. Lee. Color Image Segmentation Based on 3-D Clustering: Morphological Approach. Pattern Recognition. 1998, 31(8): 1061-1076
    80 P. Schmid. Segmentation of Digitized Dermatoscopic Images by Two Dimensional Color Clustering. IEEE Trans. On Medical Imaging. 1999, 18(2): 164-171
    81 胡世英, 周源华. 模糊选择多分辨率 Kohonen 聚类网络用于灰度图像分割. 电子学报. 1999, 27(10): 34-37
    82 I. Grinias and G. Tziritas. A Semi-Automatic Seeded Region Growing Algorithm for Video Object Localization and Tracking. Signal Processing: Image Communication. 2001, 16(10): 977-986
    83 尹平, 王润生. 基于边缘信息的分开合并图像分割算法. 中国图像图形学报. 1998, 3A(6): 450-454
    84 毕凌燕, 余英林. 基于 XYZ 空间的区域生长法分割图像. 计算机工程与应用. 2003, 17: 56-57
    85 J. P. Wang. Stochastic Relaxation on Partitions with Connected Components and Its Application to Image Segmentation. IEEE Trans. Pattern Analysis and Machine Intelligence. 1998, 20(8): 619-636
    86 张炯, 吴林. 一种识别薄板对接接头的视觉方法. 材料科学与工艺. 1997, (2): 45-47
    87 徐晓夏, 陈泉林. 基于视频的车辆检测中阈值分割算法的改进. 信息技术. 2005, (9): 10-12
    88 李亮玉. 微机控制的焊缝自动跟踪系统. 工业控制计算机. 1994, (2): 17-19
    89 杨淑莹, 边奠英. VC++图像处理程序设计. 北京: 清华大学出版社, 2003: 163
    90 P. A. Maragos, R. W. Schafer. Morphological Skeleton Representation and Coding of Binary Images. IEEE Transactions on Acoustics, Speech, and Signal Processing. 1986, 34(5): 1228-1244
    91 D. T. Lee. Medial Axis Transformation of a Planar Shape. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1982, 4(4): 363-369
    92 D. Shaked, A. M. Bruckstein. The Curve Axis. Computer Vision and Image Understanding. 1996, 63(2): 367-379
    93 H. I. Choi, S. W. Choi, H. P. Moon, et al. New Algorithm for Medial Axis Transform of Plane Domain. Graphical Models and Image Processing. 1997, 59(6): 463-483
    94 T. C. Lee, R. L. Kashyap. Building Skeleton Models via 3-D Medial Surface/Axis Thinning Algorithms. CVGIP: Graphical Models and Image Processing. 1994, 56(6): 462-478
    95 S. Lobregt, P. W. Verbeek and F. C. Groen. A Three-Dimensional Skeletonization: Principle and Algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1980, 2(1): 75-77
    96 R. Kimmel, D. Shaked and N. Kiryati. Skeleton via Distance Maps andLevel Sets. Computer Vision and Image Understanding. 1995, 62(3): 382-391
    97 F. Leymarie, M. D. Levine. Simulating the Grassfire Transform Using an Active Contour Model. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1992, 14(1): 56-75
    98 D. Ivanov, E. Kuzmin and S. Burtsev. An Efficient Integer-based Skeletonization Algorithm. Computersand Graphics. 2000, 24(1): 41-51
    99 寇忠. 油气长输管道常用直径研究. 石油规划设计. 2005, 16(3): 16-18
    100 J. L.Overholt, K. C. Cheok and G. E.Smid. Behaviorist-Based Control of an Autonomous Skid-Steer Robot Using Threshold Fuzzy Systems.Proc. SPIE Int. Soc. Opt. Eng.. 2001, 4364:39-50
    101 K. R. Weiss. Skid-Steering. Automobile Engineer. 1971, 61(4): 22- 25.
    102 K. Kozlowski, D. Pazderski. Modeling and Control of 4-Wheel Skid-Steering Mobile Robot. Int.J.Appl. Math. Comput. Sci. 2004, 14(4): 477-496
    103 L. Caracciolo, A. D. Luca and S. Iannitti. Trajectory Tracking Control of a Four-Wheel Differentially Driven Mobile Robot. IEEE Int. Conf. Robotics and Automation, Detroit, MI. 1999: 2632–2638
    104 D. Pazderski, K. Kozlowski and W. E. Dixon. Tracking and Regulation Control of a Skid Steering Vehicle. http://www.ornl.gov/~webworks/cppr/y2001/pres/119373.pdf
    105 熊光明, 曹晓燕, 高峻峣, 等. 基于速度的轮式滑动转向移动机器人航向跟踪. 北京理工大学学报. 2004, 24(8): 663-666
    106 薛龙, 姚斌, 李明利. 球罐焊接机器人行走机构的磁轮研制. 机械加工与自动化. 2002, (9): 11-12
    107 王书铨, 宫海, 王义杰, 等. 一种磁吸附壁面移动机构. 机器人. 1995, 17(1): 21-24
    108 郑学家. 第三代永磁体—钕铁硼. 辽宁化工. 2002, 31(2): 60-61
    109 徐志锋, 蔡长春, 严青松, 等. 强吸力钕铁硼永磁起重机. 起重运输机械. 2004, (3): 28-30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700