强化垂直流—水平流组合人工湿地处理生活污水研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对垂直流-水平流(vertical flow-horizontal flow,简称VF-HF)组合人工湿地系统普遍存在脱氮能力季节性差异和HF段反硝化碳源不足等问题,本研究通过在VF段填充一定量沸石基质,构建离子交换-生物再生强化组合人工湿地系统(enhanced vertical flow-horizontal flow hybrid constructed wetland,简称VF2-HF2),暖季和寒季,实现微生物与沸石基质协同脱氮,并以曲阳污水处理厂初沉池出水为试验用水,与VF段填充砾石构建的组合人工湿地系统(verticalflow-horizontal flow hybrid constructed wetland,简称VF1-HF1)进行了COD、NH_4~+-N、TN和TP处理效果比较研究。同时,开展了沸石生物再生动力学和水生植物枯叶强化HF段反硝化的动力学小试试验研究。
     当水力停留时间为4.4~17.6d,进水COD 120~300 mg·L~(-1)、氨氮12~33 mg·L~(-1)、总氮24~42 mg·L~(-1)和总磷2.8~9.4 mg·L~(-1)时,VF1-HF1组合湿地系统全年的去除率分别为64%~94%、4%~72%、3%~71%和15%~98%,而VF2-HF2组合湿地系统全年的去除率分别为82%~99%、52%~98%、34%~91%和20%~98%。当HRT≥4.4d,VF2-HF2组合湿地系统出水COD、氨氮、总氮和总磷全年可稳定达到《城镇污水处理厂污染物排放标准》(GB18918-2002)规定的一级B标准。如以出水水质达到GB18918-2002规定的一级B为主要目标,综合考虑处理水量和沸石生物再生要求,推荐VF1-HF1组合湿地系统采用HRT=17.6d,VF2-HF2组合湿地系统采用HRT=8.8d运行较为合适。
     基质类型对COD去除效果无显著影响,有机物的降解主要是通过厌氧菌和好氧菌的生物作用实现的,基质主要作为微生物附着的载体;菖蒲和水葱组成的多植物系统具有较发达的根系,能为微生物的附着生长提供更多的表面积,同时对有机物也具有较高的吸收能力,因此对COD的去除能力要优于单一的芦苇植物系统。对全年脱氮途径的分析和计算结果表明,生物脱氮占69%,是VF2-HF2人工湿地主要的脱氮形式,沸石吸附仅占16%,证明暖季沸石的吸附能力可以实现生物再生;对全年磷去除途径计算和分析可知,VF2-HF2组合人工湿地系统除磷作用主要发生在VF段,基质的吸附和沉淀作用是除磷的主要途径,占除磷总量的84%,植物收割仅占4%,证实植物收割除磷对高负荷污水处理的作用是有限的。
     沸石生物再生小试试验结果表明,沸石对氨氮的吸附和离子交换作用主要在2d内完成,沸石对NH_4~+的饱和吸附量为3.32mgN·g~(-1);阳离子浓度、曝气、硝化细菌和异养菌对饱和沸石再生效率的影响均可用一级动力学方程(y=1-e~(-kt))模拟,曝气吹脱作用可使再生效率在再生液阳离子自然再生基础上提高1.5%,异养菌的存在可使再生效率提高7.7%,硝化细菌的存在可使再生效率提高48.9%。异养菌与硝化细菌共存时,再生时间超过80d时,硝化细菌和异养菌的生长存在底物抑制。通过对沸石再生前后沸石中的主要阳离子浓度(K~+、Na~+、Ca~(2+)和Mg~(2+))测定可知,K~+和Na~+在沸石氨氮再生过程中起主要作用,这与四种离子与氨氮的分离因数测定结果相一致。
     植物枯叶释放有机碳源强化HF段反硝化是可行的。香蒲枯叶在投加后7~11d内反硝化速率最快,植物生长可将反硝化动力学常数k提高0.72倍,香蒲枯叶的投加可将反硝化动力学常数k提高3.56倍,香蒲枯叶经预处理后可将反硝化动力学常数k提高10.35倍;香蒲枯叶经碱洗预处理后,氨氮的释放速率和释放量随之增加,易降解含氮有机物在植物枯叶投加后10 d内分解较快,难降解有机氮化合物在在植物枯叶投加后17 d,可在酶催化剂作用下水解。PCR-DGGE分析结果表明,香蒲枯叶的投加和植物的生长都使反应器中的Shannon-Wiener指数发生一定变化。对DGGE结果进行测序分析和比对结果表明,反应器内主要存在的反硝化菌为Leptolyngbya属和Escherichia属,其相似性都达到了99%。
In this research,enhanced hybrid constructed wetland system of vertical-flow (VF)and horizontal-flow(HF)using a zeolite,clinoptilolite in the vertical-flow constructed wetland(VF2-HF2)was designed,to chemically store ammonia in cold temperatures and regenerate biologically the ammonia adsorped under the conditions that are more conducive for nitrification,to solute poor nitrogen removal in colder climates.The other hybrid constructed wetland system of vertical-flow and horizontal-flow(VF1-HF1)filled with gravel instead of zeolite in VF was also designed,to find out the removal difference in COD,NH_4~+-N,TN and TP between the two systems.As well,the kinetics of zeolite biological regeneration and enhanced denitrification by harvested leaves of hydrophyte in the horizontal-flow was investigated in the laboratory research.
     When hydraulic retention time(HRT)was 4.4~17.6d,with COD 120~300 mg·L-1,NH_4~+-N 12~33 mg·L-1,TN 24~42 mg·L-1,TP 2.8~9.4 mg·L-1 in the influent,the removal efficiency of COD,NH_4~+-N,TN and TP was 64%~94%,4%~72%,3%~71%,15%~98%in VF1-HF1,and was 82%~99%,52%~98%,34%~91%,20%~98%in VF2-HF2.When HRT is above 4.4d,the concentration of COD, NH_4~+-N,TN and TP in the effluent of VF2-HF2 can steadily comply to the standard of I level-B of discharge standard of pollutants for municipal wastewater treatment plant(GB18918-2002).Therefore,when the effluent should comply to the standard of I level-B of GB18918-2002,and treatment ability and zeolite biological regeneration are considered,it is advised to operate with HRT=17.6d for VF1-HF1,with HRT=8.8d for VF2-HF2.
     The main mechanism responsible for organic matter removal is the microbial activity of aerobic and anaerobic bacteria,the types of substrate have no significant influence on the degradation of COD,which mainly act as the carrier of microorganism growth.The iris and bulrush have a more vigorous root system,and provide an expanded surface area for attached microbial growth and additional nutrient uptake.Therefore,they have an higher removal efficiency of COD than reed. HRT has the significant influence on the removal efficiency of NH_4~+-N in spring, summer and autumn,that of TN and TP in spring,summer and winter.There was a very strong positive correlation between influent load and removal rate of NH_4~+-N, TN and TP.The removal path of nitrogen shows that biological removal accounts for 69%;the adsorption of zeolite accounts for just 16%,which proves the happen of biological regeneration of zeolite in warm climates.The removal path of phosphorus shows that the removal of phosphorus is mainly happened in VF1,substrate adsorption accounts for 84%,plant absorption just accounts for 4%,which is proved that the removal of phosphorus in high load wastewater treatment by plant harvest is limited.
     The result of zeolite biological regeneration showed that ion-exchange of NH_4~+-N mainly happened in two days,the saturated adsorption capability of zeolite is 3.32mgN·g~(-1).The influence of cation concentration,aeration,nitrifying bacteria and heterotrophic bacteria on the regeneration efficiency fits the fist order kinetic reaction. The regeneration efficiency can be raised by 1.5%with aeration on the basis of regeneration of cation concentration,7.7%with heterotrophic bacteria,and 48.9% with nitrifying bacteria.When heterotrophic bacteria and nitrifying bacteria coexisted in a reactor,the functions of nitrifying bacteria and heterotrophic bacteria were inhibited by substrate competition when the regeneration times were above 80d.The determination of cation concentration before and after zeolite biological regeneration showed that K~+ and Na~+ took an important role in the biological regeneration,which is consistent with the separation factor between NH_4~+-N and other cation.
     It is feasible that harvested plants are used to supply carbon source for denitrification in HF reactor,the rate of denitrification is the fastest after 7~11d added of harvested cattail.The denitrification kinetic constant can be raised by 0.72 times because of the growth of live reed plant,3.56 times because of the addition of the leaves of dead cattail,10.35 times because of the addition of harvested cattail after pretreatment.The rate of NH_4~+-N released goes up after the harvested cattail pre-treated by NaOH alkali solution.The result of PCR-DGGE shows that the Shannon-Wiener changes with the addition of harvested cattail and the growth of standing reed plant.The result of DGGE shows that the main bacteria existed in the reactor are Leptolyngbya and Escherichia with the similarity of 99%.
引文
[1]孙海如,周虎城,王俊玉.村镇生活污水处理技术整合研究[J].给水排水,2006,32(7):23-25
    [2]刘霞,陈洪斌.村镇及小区污水的生态处理技术[J].中国给水排水,2003,19(12):32-35
    [3]Odegaard H.,Skrovseth A.F.An evaluation of performance and process stability of different process for small wastewater treatment plants[J].Water Science Technology,1997,35(6):119-127
    [4]Huang J.,Reneau R.B.,Hagedorn C.Nitrogen removal in constructed wetlands employed to treat domestic wastewater[J].Water Research,2000,34(9):2582-2588
    [5]Steer D.,Fraser L.,Boddy J.,Seibert B.Efficiency of small constructed wetlands for subsurface treatment of single-family domestic effluent[J].Ecological Engineering,2002,18(4):429-440
    [6]Hench K.R.,Bissonnette G.K.,Sexstone A.J.,et al.Fate of physical,chemical and microbial contaminants in domestic wastewater following treatment by small constructed wetlands[J].Water Research,2003,37(4):921-927
    [7]刘超翔,胡洪营,张健,等.人工复合生态床处理低浓度农村污水[J].中国给水排水,2002,18(7):1-4
    [8]刘志强,苗群,邵长飞,等.滇池流域村镇生活污水污染及处理技术[J].青岛建筑工程学院学报,2003,24(1):13-17
    [9]Jan Vymazal.Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment[J].Ecological Engineering,2005,25(7):478-490
    [10]Kadlec R.H.,Knight R.L.Treatment wetlands[M].New York:CRC Press,1996
    [11]US EPA.Constructed wetlands treatment of municipal wastewaters manual.Cincinnati,Ohio.EPA/625/R-99/010.2000
    [12]Kadlec R.H.,Knight R.L.,Vymazal J.,et al.Constructed wetlands for pollution control:processes,performance,design and operation[R].Scientific and Technical Report No.8.London:IWA Publishing.2000
    [13]Neralla S.,Weaver R.W.,Lesikar B.J.,et al.Improvement of domestic wastewater quality by subsurface flow constructed wetlands[J].Bioresource Technology,2000,75(1):19-25
    [14]Reddy K.R.Fate of nitrogen and Phosphorus in a wastewater retention reservoir containing aquatic macrophytes[J].Journal of Environmental Quality,1983,12(1):137-141
    [15]Huertas E.,Folch M.,Salgot M.,et al.Constructed wetlands effluent for streamflow augmentation in the Beso's River(Spain)[J].Desalination,2006,188(1-3):141-147
    [16]Kadlec R.H.,Tanne C.C,Hally V.M.,et al.Nitrogen spiraling in subsurface-flow constructed wetlands:Implications for treatment response[J].Ecological Engineering,2005,25(4):365-381
    [17]Badkoubi A.,Ganjidoust H.,Ghaderi A.,et al.Performance of a subsurface constructed wetland in Iran[J].Water Science and Technology,1998,38(1):345-350
    [18]尹炜,李培军,尹澄清,等.潜流人工湿地的局限性与运行问题[J].中国给水排水,2004,20(11):36-38
    [19]高拯民,李宪法.城市污水土地处理利用设计手册[M].北京:中国标准出版社,1991
    [20]US EPA.Constructed wetlands and aquatic plant systems for municipal wastewater treatmen manual.Washington,1988:20-52
    [21]Andrew Wood.Construction wetlands in water pollution control:fundamentals to their understanding[J].Water Science and Technology,1995,32(3):21-29
    [22]Magmedov V.G.,Zakharchenko M.A.,Yakovleva L.I.,et al.The use of constructed wetlands for the treatment of run-off and Drainage Waters:the UK and UKraine experience[J].Water Science and Technology,1996,33(4):315-323
    [23]Morris M.,Hebert R.The design and performance of a vertical flow reed bed for the treatment of high ammonia/low suspended solid organic effluents[J].Water Science and Technology,1998,35(5):197-204
    [24]Reed S.C,Brown D.Subsurface flow wetlands - a performance evaluation[J].Water Environment Research,1995,67(2):244-248
    [25]Lantzke I.R.,Heritage A.D.,Pistillo G.,et al.Phosphorus removal rates in bucket size planted wetlands with a vertical hydraulic flow[J].Water Research,1998,32(6): 1888-1990
    [26]Peter F.B.,Alan J.C.Root zone Dynamics in Constructed wetlands receiving wastewater:a comparison of vertical and horizontal flow systems[J].Water Science and Technology,1995,32(3):281-290
    [27]Cooper P.Constructed wetlands for wastewater treatment[M].USA:Michigan Lewis Publishers,1989:153-172
    [28]Kadlec R.H.,Knight R.L.Constructed treatment wetlands-a global technology[J].Water 21,2000(7),57-58.
    [29]温东辉.天然废水吸附-生物再生技术及其在滇池流域暴雨径流污染控制中的试验与机理研究[M].北京:中国环境出版社,2003
    [30]Kadlec R.H.Chemical,physical and biological cycles in treatment wetlands[J].Water Science and Technology,1999,40(3):37-44
    [31]Ayaz S.C,Akca L.Treatment of wastewater by natural systems[J].Environment International,2001,26(3):189-195
    [32]Shilton A.N.,Elmetri I.,Drizo A.,et al.Phosphorus removal by an 'active' slag filer- a decade of full scale experience[J].Water Research,2006,40(7):113-118
    [33]吴献花,侯长定,王林,等.人工湿地处理污水的机理[J].玉溪师范学院学报,2002,18(1):103-105
    [34]梁继东,周启星.人工湿地污水处理系统研究及性能改进分析[J].生态学杂志,2003,22(2):49-55
    [35]梁威,胡洪营.人工湿地净化污水过程中的生物作用[J].中国给水排水,2003,19(10):28-31
    [36]吴晓磊.人工湿地废水处理机理[J].环境科学,1995,16(3):83-86
    [37]Reddy K.R.Fate of Nitrogen and Phosphorus in a wastewater Retention Reservoir Containing Aquatic Macrophytes[J].Environmental Quality,1983,12(1):137-141
    [38]缪绅裕,陈桂珠,黄玉山,等.人工湿地中的磷在模拟秋茄湿地系统中的分配与循环[J].生态学报,1999,19(2):236-241
    [39]林鹏,林光辉.九龙江口红树林研究Ⅳ:秋茄群落的氮、磷的积累和循环[J].植物生态学与植物学丛刊,1985,9(1):21-32
    [40]Tanner C.C,Sukias J.P.S.,Upsdell M.P.Organic matter accumulation during maturation of gravel-bed constructed wetlands treating farm dairy wastewaters[J].Water Research,1998,32(10):3046-3054
    [41]Vrhovsek D.,Kukanja V.,Bulc T.Constructed wetland(CW)for Industrial Wastewater Treatment[J].Water Research,1996,30(10):2286-2292
    [42]Brix H.Use of constructed wetland in water pollution control:historical development,present status and future perspectives[J].Water Science and Technology,1994,30(8):209-223
    [43]廖新俤,骆明,吴银宝,等.人工湿地处理废水有机物动态模型的研究[J].工业用水与废水,2004,35(4):23-26
    [44]王世和,王薇.潜流式人工湿地的运行特性研究[J].中国给水排水,2003,19(4):9-11
    [45]Breen P.F.A mass balance method for assessing the potential of artificial wetlands for wastewater treatment[J].Water Research,1990,24(6):689-697
    [46]IWA.Constructed wetlands for pollution control:Processes,performance,design and operation[R].Scientific and Technical Report NO.8.London:UK,2000
    [47]史云鹏,周琪.人工湿地污染物去除动力学模型研究进展[J].工业用水与废水,2002,33(6):12-15
    [48]Hammer D.A.,Knight R.L.Designing constructed wetlands for nitrogen removal[J].Water Science and Technology,1994,29(4):15-27
    [49]Brown D.S.,Reed S.C.Inventory of constructed wetlands in the United States[J].Water Science and Technology,1994,29(4):309-318
    [50]Kadlec R.H.Overview:surface flow constructed wetlands[J].Water Science and Technology,1995,32(3):1-12
    [51]Kemp M.C,George D.B.Subsurface flow constructed wetlands treating municipal wastewater for nitrogen transformation and removal[J].Water Environmental Research,1997,69(7):1254-1262
    [52]Reed S.C,Brown D.Subsurface flow wetlands- a performance evaluation[J].Water Environmental Research,1995,67(2):244-248
    [53]White K.D.Enhancement of nitrogen removal in subsurface flow constructed wetlands employing 2-stage configuration,an unsaturated zone,and recirculation[J].Water Science Technology,1995,32(3):59-67
    [54]张荣社.自由表面人工湿地脱氮效果中试研究[J].环境污染治理技术与设备,2002, 3(12):9-11
    [55]Vymazal J.,Brix H.,Cooper P.F.,et al.Constructed Wetlands for Wastewater Treatment in Europe[M].Netherlands:Backhuys Publishers,1998
    [56]Sikora F.J.,Tong Z.,Behrends L.L.,et al.Ammonium removal in constructed wetlands withrecirculating subsurface flow:removal rates and mechanisms[J].Water Science and Technology,1995,32(3):193-202
    [57]Moshiri G.A.,Brix H.Wastewater treatment in constructed wetlands:system design,removal processes,and treatment performance,Constructed Wetlands for Water Quality Improvement[M].BocaRaton,FL:CRC Press,9-22
    [58]Reed S.C.Natural systems for waste management and treatment[M].New York:McGraw-Hill,1995
    [59]胡霭堂.植物营养学(下册)[M].北京:北京农业大学出版社,1995
    [60]Johansen N.H.,Brix,H.Design criteria for a two-stage constructed wetland.Paper presented at the 5th international conference on constructed wetlands systems for water pollution control,Vienna,Austria,September.1996
    [61]Ciupa R Results of nutrient removal in constructed wetlands in Sobiechy-North-Eastern Poland.Paper presented to the workshop "Nutrient cycling and reduction in wetlands and their use for wastewater treatment.Trebon,Czech Republic,September.1995
    [62]House C.H.Combining constructed wetlands and aquatic and soil filter for reclamation and reuse of water[J].Ecological Engineering,1999,12(1-2):27-38
    [63]Cooper P.A review of the design and performance of vertical-flow and hybrid reed bed treatment systems[J].Water Science and Technology,1999,40(3):1-9
    [64]刘雯.复合人工湿地系统处理生活污水的研究:[硕士学位论文],广州:华南农业大学,2004
    [65]Seidel K.Phenol-Abbau in Wasser durch Scirpus lacustris L wehrend einer versuchsdauer von 31 Monaten.Naturwissenschaften 1965,52,398-406
    [66]Seidel K.Neue Wege zur Grundwasseranreicherung in Krefeld,vol.II.Hydrobotanische Reinigungsmethode.GWF Wasser/Abwasser 30,1965,831-833
    [67]Lienard A.,Boutin C,Esser D.Domestic wastewater treatment with emergent helophyte beds in France.In:Constructed wetland in water pollution control.Oxford,1990,183-192
    [68]Laberetal J.R.,Perfler R.,Haberl R.Two strategies for advanced nitrogen elimination in vertical flow constructed wetlands[J].Water Science and Technology,1997,35(5):71-77
    [69]Von Felde K.,Kunst S.N-and COD removal in vertical flow wetland[J].Water Science and Technology,1997,35(5):79-85
    [70]崔玉波,尹车,韩国奎,等.间歇式潜流人工湿地中COD,NH_4~+-N的动态变化特征[J].环境工程,2003,21(3):62-64
    [71]罗莉.生活污水垂直流-水平流复合人工湿地处理系统研究:[硕士学位论文],广州:华南农业大学,2005
    [72]Shammas N.K.Interactions of temperature,pH and biomass on the nitrification process[J].JWPCF,1986,58(1):52-59
    [73]Hosomi M.,Murakami A.,Sudo R.A four-year mass balance for a natural wetland treatment system receiving domestic wastewater[J].Water Science and Technology,1994,30(8):235-244
    [74]Wittgren H.B.,Tobiason S.Nitrogen removal from pretreated wastewater in surface flow wetlands[J].Water Science and Technology,1995,32(3):69-78
    [75]Brix H..Treatment of wastewater in the rhizosphere of wetland plants- the root zone method[J].Water Science and Technology,1987,Vol.19:107-118
    [76]S·华莱士,G·帕金,C·考思,等寒冷地区污水处理的人工湿地设计与运行[J].中国环保产业,2003(6):40-42
    [77]Laber J.R.,Perfler R,Haberl R.Two strategies for advanced nitrogen elimination in vertical flow constructed wetlands[J].Water Science and Technology,1997,35(5):71-77
    [78]Huang Z.T.,Petrovich A.M.Clinoptilolite zeolite influence on nitrate leaching and nitrogen use efficiency in simulated sand based golf greens[J].Journal of Environmental Quality,1994,23:1190-1194
    [79]Ames L.L.The cation sieve properties of clinoptilolite[J].American.Mineral,1960,47:689-700
    [80]Goto I,Ninaki M.Studies on the agricultural utilization of natural zeolites as soil conditioners:III.Determination of the ion-exchange selectivity coefficients of natural zeolites.[J].Journal Agriculture Science,1980,25(2):168
    [81]Bemal M.P.,Lopez-Real J.M.Natural zeolites and septiolites as ammonium and ammonia adsorbent materials[J].Bioresource Technology,1993,43:27-33
    [82]Haralambous A.,Maliou E.,Malamis M.The use of zeolite for ammonium uptake[J].Water Science and Technology,1992,25(1):139-145
    [83]Koon J.M.,Kaufman W.J.Optimization of ammonia removal by ion exchange using clinoptilolite.University of California Berkley,1971
    [84]Tsitsishvili G.V.,Andronikashvili T.G.Natural Zeolites.Chichester,England:Ellis Horwood Limited,1992,86-91
    [85]Green Michal,Mels Adriaan,Lahav Ori,et al.Biological-ion exchange process for ammonium removal from secondary effluent.Water Science and Technology,1996,34(122):449-458
    [86]Lahav O.,Green M.Ammonium removal from primary and secondary effluents using a bioregenerated Ion-exchange process.Water Science and Technology,2000,42(1):179-185
    [87]Dimova G.,Mihailov G.,Tzankov Tz.Combined filter for ammonia removal-Part I:minimal zeolite Contact Time and Requirements for Desorption.Water Science and Technology,1999,39(8):123-129
    [88]付融冰.强化人工湿地对富营养化水体的修复及作用机理研究:[博士学位论文],上海:同济大学,2007
    [89]Gersberg R.M.,Elkins B.V.,Goldman C.R.Nitrogen removal in artificial wetlands[J].Water Research,1983,17(9):1009-1014
    [90]Hamma,D.A.,Bastian R.K.Wetlands ecosystems:natural water purifiers.Constructed wetlands for wastewater treatment:municipal,industrial and agricultural[M].Chelsea,Michigan:Lewis Publishers,1989:831
    [91]Baker L.A.Constructed wetlands for water quality in the arid west? Universities Council on Water Resources,Big Sky,MT,1994
    [92]Davidsson T.E.,Leonardson L.G.Effects of nitrate and organic carbon additions on denitrification in two artificially flooded soils[J].Ecological Engineering,1996,7:139-149
    [93]Ingersoll T.L.,Baker L.A.Nitrate removal in wetland microcosms[J].Water Research,1998,32(3):677-684
    [94] Home A. J. Nitrogen removal from waste treatment pond or activated sludge plant effluents with free-surface wetlands [J]. Water Science and Technology, 1995, 33:341-351
    [95] Brezonik P. L. Chemical kinetics and process dynamics in aquatic systems [M]. Florida: CRC Press, 1994
    [96] Crumpton W. G., Isenhart T. M., Fisher S. W., et al. The fate of nonpoint source nitrate loads in freshwater wetlands: results from experimental wetland mesocosms. Constructed Wetlands for Water Quality Improvement [M]. Boca Raton, FL, Lewis Publishers, 1993:283-292
    [97] Gale P. M., Reddy K. R., Graetz D. A. Nitrogen removal from reclaimed water applied to constructed and natural wetland microcosms [J]. Water Environment Research, 1993, 65(2):162-168
    [98] Phipps R. G., Crumpton W. G. Factors affecting nitrogen loss in experimental wetlands with different hydrologic loads [J]. Ecological Engineering, 1994, 3(4):399-408
    [99] Crumpton, W. G. Fate of nitrogen loads in experimental wetlands. The Des Plains River Wetlands Demonstration Proiect. Chicago, Wetlands Research, 1992:3
    [100] Kadlec R. H. The inadequacy of first-order treatment wetland models [J]. Ecological Engineering, 2000,15:105-119
    
    [101] Reddy K. R., Patrick W. H., Phillips R. E. The role of nitrate diffusion in determining the order and rate of denitrification in flooded soil I: Experimental results [J]. Soil Science Society of America Journal, 1978,42:268-272
    [102] Thurman E. M. Developments in biogeochemistry: Organic geochemistry of natural waters. Kluwer Academic, 1985
    
    [103] Isenhart T., Crumpton W. G. The role of plant litter in the transformation and fate of non-point source nitrate in freshwater wetlands [J]. Bulletin of Ecological Society of America, 1993,74:289
    [104] Russell J. M., van Oostrom A. J., Lindsey S. B. Denitrifying sites in constructed wetlands treating agricultural industry wastes: a note. Environmental Technology [J], 1994, 15:95-99
    [105] Maia S., Singer F., Alexander J. H. Enhanced nitrate removal efficiency in wetland microcosms using an episediment layer for denitrification [J]. Environmental Science and Technology, 2002,36:1231-1237
    [106] Bikem O. Batch biological denitrification using Arundo donax, Glycyrrhiza glabra, and Gracilaria verrucosa as carbon source. Process Biochemistry, 2006,41:1289-1295
    [107] McJannet C. L., Keddy P. K., Pick F. R. Nitrogen and phosphorous tissue concentrations in 41 wetland plants: a comparison across habitats and functional groups [J]. Functional Ecology, 1995,9:231-238
    [108] Swift M. J., Heal O. W., Anderson J. M. Decomposition in terrestrial ecosystems. Berkeley. California: University of California Press, 1979
    [109] Heal O. W., Flanagan P. W., French D. D., et al. Decomposition and accumulation of organic matter. Tundra ecosystems: A comparative analysis. England: Cambridge University Press, 1981:587-633
    [110] Godshalk G. L., Wetzel R. Decomposition in the littoral zone of lakes. Freshwater Wetlands: Ecological Processes and Management Potential. New Yoak: Academic Press, 1978:133-144
    [111] Berg B., Staaf H. Leaching, accumulation and release of nitrogen in decomposing forest litter [J]. Ecol. Bull. F. E. C. a. T. Rosswall, 1981, 33:163-178
    [112] Melillo J. M., Aber J. D., Muratore J. F. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics [J]. Ecology, 1982, Vol. 63(3):621-626
    [113] Bachand P. A. M., Home A. J. Denitrification in constructed free-water surface wetlands: I. Very high nitrate removal rates in a macrocosm study [J]. Ecological Engineering, 2000,14:9-15
    [114] Hume N. P. Effects of Plant Carbon Quality on Microbial Nitrate Reduction in Wetlands. Civil and Environmental Engineering, Berkeley, University of California, 2000,159
    
    [115] Home A. J., Goldman C. R. Lirnnoloey. New York, McGraw-Hill, Inc., 1994
    [116] Guntenspergen G. R., Stearns F., Kadlec J. A. Wetland vegetation. Constructed Wetlands for Wastewater Treatment [M]. Chelsea, MI: Lewis Publishers, 1989,73-88
    [117] Greenway M. Nutrient content of wetland plants in constructed wetland plants receiving municipal effluent in tropical Australia [J]. Water Science and Technology, 1997, Vol.35:135-142
    [118] Cronk J. K., Siobhan Fennessy M. Wetland Plants: Biology and Ecology. Boca Raton. FL,CRC Press LLC,2001
    [119]Brock T.D.,Madigan M.T.Biology of Microorganisms.Englewood Cliffs,N.J.,Prentice Hall,1991
    [120]Portier R.J.,Palmer S.J.Wetlands microbiology:form,function,processes.Constructed Wetlands for Wastewater Treatment,Municipal,Industrial and Agricultural.D.A.Hammer.Chelsea,MI,Lewis Publishers,1989,89-106
    [121]Firestone M.K.Biological Denitrification.Nitrogen in Agricultural Soils,Agronomy Monograph No.22.Madison,1982,WI:290-326
    [122]Knowles R.Denitrification[J].Microbiological Reviews,1982,46(1):43-70
    [123]Knowles R.Denitrification.Terrestrial Nitrogen Cycles,F.E.a.R.Clark,T.Stockholm,Sweden.1981,315-329
    [124]雒维国.潜流型人工湿地对氮污染物去除效果研究:[博士学位论文].南京:东南大学,2005
    [125]闻岳.水平潜流人工湿地净化受污染水体研究:[博士学位论文].上海:同济大学,2007
    [126]国家环保局.水与废水监测分析方法[M].北京:中国环境科学出版社,1998
    [127]中国土壤学会农业化学专业委员会土壤农业化学常规分析方法[M].北京:北京科学出版社,1983
    [128]Forbes M.G.,Dickson K.L,Saleh F.,et al.Recovery and fractionation of phosphorus retained by lightweight expanded shale and masonry sand used as media in subsurface flowtreatment wetlands[J].Environmental Science and Technology,2005,39:4621-4627.
    [129]Chang S.C,Jackson M.L.Fractionation of soil phosphorus[J].Soil Science,1957,84:133-144.
    [130]Quails R.G.,Richardson C.J.Forms of soil phosphorus along a nutrient enrichment gradient in the northern Everglades[J].Soil Science,1995,160:183-198.
    [131]Reddy K.R,Wand Y.,Debusk W.F.,et al.Forms of soil phosphorus in selected hydrologic unit of the Florida Everglades[J].Soil Science,1998,162:1134-1147.
    [132]Ivanoff D.B.,Reddy K.R.Chemical fractionation of organic phosphorus in selected histosols[J].Soil Science,1998,163:36-44.
    [133]Vymazal J.Algae and element cycling in wetlands.Boca Raton,FL,USA:CRC Press/Lewis Publisher.1995
    [134]Reddy K.R.,Patrick W.H.Nitrogin transformations and loss in flooded soils and sediment[J].CRC Critical Review Environment Control,1984,13:273-309
    [135]M.A.Camargo Valero and D.D.Mara.Nitrogen removal via ammonia volatilization in maturation ponds[J].Water Science and Technology,2007,55(11):87-92
    [136]张亚雷,李咏梅译.活性污泥数学模型[M].上海:同济大学出版社,2002.
    [137]Tanner C.C,Kadlec R.H.,Gibbs M.M,et al.Nitrogen processing gradients in subsurface-flow treatment wetlands - influence of wastewater characteristics[J].Ecological Engineering,2002,18:499-520.
    [138]Muyzer G.,Ellen C.W.,Andre G.U..Profiling of complex microbial populations by denaturinggradient gel electrophores is analysis of polymerase chain reaction genes coding for 16SrRNA[J].Applied and Environmental Microbiology,1993,59,695-700.
    [139]张木明,徐振林,张兴秀,等.预处理对稻草秸秆纤维素酶解产糖及纤维素木质素含量的影响[J].农产品加工,2006,58(3):4-6
    [140]王忠.植物生理学[M].北京:中国农业出版社,2000
    [141]Shamal C,Norio T.Estimating nitrogen budgets of Typha angustifolia by considering the regrowth shoot productivity and nitrogen content after harvesting aerial organs in different growing seasons[J].Landscape Ecological Engineering,2007,3:99-108
    [142]Herskowitz J.Listowel artificial marsh treatment project.In:Reddy,K.R.,Smith.W.H.(Eds.),Aquatic Plants for Water Treatment and Resource Recovery[M].Magnolia Publishing Co.Orlando,FL,pp.247-254
    [143]Crites R.W.Design criteria and practice for constructed wetlands[J].Water Science and Technology,1994,29(4):1-6
    [144]Brodrick S.J.Denitrification in an atural wetland receiving secondary treated effluent[J].Water Research,1988,22(4):431 -439
    [145]Newman J.M.et al.Seasonal performance of a wetland constructed to process dairy milk house wastewater in Connecticut[J].Ecological Engineering,2000,14(5):81-198
    [146]Reddy K,Rand Patrick,W.H.Nitrogen transformations and loss in flooded soil sand sediments[J].CRC Critical Reviews in Environmental Control,1984,13(8):273-309
    [147]Lahav O.,Green M.Ammonium removal using ion exchange and biological regeration[J].Water research,1998,32(7):2019-2028
    [148]Lin Y F,Jing S R,Wang T W,et aJ.Effects of macrophytes and external carbon source on nitrate removal from groundwater in constructed wetlands[J].Environmental Pollution,2002,119(3):413-420
    [148]贺锋,吴振斌,陶菁,成水平,付贵萍.复合垂直流人工湿地污水处理系统硝化和反硝化作用[J].环境科学.2005,1(26):47-50
    [149]Bernal M P,Lopez-Real J M.Natural zeolites and septiolites as ammonium and ammonia adsorbent materials[J].Bioresource Technology.1993,43:27-33

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700