阳离子—氯离子共转运体KCC2和NKCC1在PCPA致失眠模型大鼠脑干中的表达变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景及目的
     失眠是最为常见的一种睡眠障碍,是多种躯体、精神和行为疾病所具有的常见临床表现,但其确切的发生机制至今仍不明了。
     对睡眠发生的相关解剖结构研究发现,觉醒与睡眠主要与脑干的网状结构有关,其有睡眠诱导功能的脑干网状抑制系统(ascendingreticular inhibitory system,ARIS)。
     神经系统内阳离子-Cl~-共转运体(cation-chloride cotransporters,CCCs)是一个非常重要的影响和维持Cl~-浓度平衡的家族。目前报道的七种阳离子-Cl~-共转运体中,神经系统内仅表达KCC1、KCC2、KCC3和NKCC1四种,其中,K~+-Cl~-共转运体2(K~+-Cl~-cotransporter 2,KCC2)负责将神经元内Cl~-向外转运,而Na~+,K~+-2Cl~-共转运体1(Na~+,K~+-2Cl~-cotransporter1,NKCC1)则负责将胞外的Cl~-向胞内转运,二者构成一对平衡体,从而维持神经元内Cl~-浓度的稳定和平衡。阳离子-Cl~-共转运体的功能异常,可引起中枢神经系统的Cl~-的浓度异常,进而导致临床上多种神经系统疾病,如癫痫和持续性疼痛等,提示阳离子-Cl~-共转运体可能通过影响GABA能神经元,在神经兴奋/抑制的平衡中扮演了重要角色,而失眠正是一种神经兴奋/抑制功能失衡导致的临床疾病。
     作为经典的治疗失眠的药物,地西泮(安定)等属苯二氮卓受体激动剂,它们可通过促进GABA与GABA_A受体的结合而使Cl~-通道开放的频率增加,更多的Cl~-内流,引起突触膜超极化,产生快抑制性突触后电位(inhibitory postsynaptic potential,IPSP),而发挥神经抑制功能。而这个过程中,阳离子-Cl~-共转运体KCC2和NKCC1会发生什么同步变化呢?目前国内外尚未见相关报道。
     本研究拟采用腹腔注射PCPA制成大鼠失眠模型,并同步设立生理盐水对照组和地西泮干预组,分别检测各组大鼠脑干组织中KCC2mRNA和NKCC1 mRNA的表达变化,并检测细胞内氯离子浓度,以探讨其在失眠发病机制中的作用。
     方法
     1.动物分组及处理:采用清洁级成年雄性Sprague-Dawley(SD)大鼠为实验对象,随机分为3组,模型组:按照用量PCPA 300mg/Kg,用略碱性生理盐水(pH:7-8)溶解PCPA配制成混悬液,予以腹腔注射1ml/100g,每日1次,8:30-9:00 AM,连续2天,制作实验性失眠大鼠模型;对照组:与模型组同步对照,以生理盐水代替PCPA腹腔注射;干预组:自PCPA造模之后,按照地西泮片0.92mg/Kg的剂量,用蒸馏水溶解地西泮片配制成9.2%水溶液,予以灌胃,每日一次,9:00-9:30 AM,连续5天。
     2.将各组受试动物于治疗后第6天断头处死,取大鼠脑干组织,液氮内保存。
     3.RT-PCR法半定量检测大鼠脑干KCC2和NKCC1 mRNA的表达。
     4.用氯离子荧光探针MQAE,结合激光共聚焦显微镜检测脑干组织细胞内Cl~-浓度及变化。
     结果
     1.与对照组相比,模型组KCC2mRNA表达明显降低(P<0.01),干预组较模型组表达增加(P<0.01),但仍低于对照组(P<0.01)。
     2.与对照组相比,模型组NKCC1mRNA表达稍增加,但无显著性差异(P>0.05),干预组较对照组和模型组均降低(P<0.01)。
     3.与对照组相比,模型组细胞内氯离子浓度升高(P<0.01),干预组较模型组降低(P<0.01),但仍较对照组高,差异无显著性(P>0.05)。
     结论
     1、脑干KCC2 mRNA表达下调及细胞内Cl~-浓度的升高可能与失眠的发病有关。
     2、地西泮可能通过上调KCC2 mRNA和下调NKCC1 mRNA的表达,以及降低细胞内Cl~-浓度而发挥镇静催眠的作用。
Backgrounds
     Insomnia is one of the most common sleep disorder,and it also is a very common clinical manifestation of many physical,mental and behavioral diseases;however,its mechanism is not clear enough so far.
     As for anatomic structure of sleep,it is widely accepted that ascending reticular inhibitory system(ARIS) of brainstem is closely related to wakefulness-sleep since ARIS performs its sleep-inducing function.
     GABA_AR in brain is a kind of ionotropic receptor which consists of recognition site of GABA,benzodiazepine and chloride ion channel. Classical sedative and hypnotic drugs like diazepam excite GABA_AR, open Cl~- channel to make Cl~- influx,then synaptic membrane hyperpolarize to form quick postsynaptic inhibitory potential.
     Cation-Chloride Cotransporters(CCCs) is just a key family which plays very important role in maintaining the balance of concentration between intracellular chloride ion and extracellular chloride ion.Among seven types of CCCs,only KCC1,KCC2,KCC3 and NKCC1 are expressed in central nerve system.KCC2 is in charge of neuronal Cl~-extrusion while NKCC1 is responsible for neuronal Cl~- intrusion in order to form a pair of substances to maintain balance of concentration of Cl~-.A lot of researches have proved that dysfunction of CCCs induce many nerve system diseases related to abnormality of concentration of Cl~-,like epilepsy and lasting pain.All of these give us a hint that CCCs may interrupt GABA function.And insomnia is such a kind of disease induced by neuron excitation/inhibition dysfunction.
     As for classical drug for insomnia,diazepam,a kind of benzodiazepine receptor,is able to promote GABA to connect to GABA_A receptor,increase the frequency of chloride ion channel opening,and make more chloride ion influx so that synapse membrane hyperpolarize and form inhititory postsynaptic potential.In this process,what kind of change will happen to KCC2 and NKCC1 simultaneously? There is no report pertinent to it so far in the world.
     Objectives
     To make PCPA-induced experimental insomnia model,and design normal saline contral group and diazepam interference group at the same time,in order to investigate the possible roles of KCC2 and NKCC1 in mechanism of insomnia.
     Methods
     1.Grouping and building model:18 male adult Sprague-Dawley (SD) rattus were divided into three randomized groups.Model group:PCPA was injected intraperitoneally by 300mg/kg/d 8:30-9:00 AM for 2 days;Control group:NS was injected intraperitoneally instead of PCPA at the same time;Interference group:diazepam was administrated intragastricly by 0.92mg/kg/d for 5 days at 9:00-9:30 AM after making model.
     2.The expressions of KCC2mRNA and NKCC1mRNA in the brainstem were detectec by RT-PCR.
     3.The concentration of intracellular Cl~- in brainstem was detected by fluorescence probe MQAE with the help of laser confocal microscopy.
     Results
     1.Comparing with control group,the expression of mRNA of KCC2 in model group was down-regulated(p<0.01);however,it is up-regulated in interference group comparing with model group(p<0.01),and still down-regulated comparing with control group(p<0.01).
     2.Comparing with control group,the expression of mRNA of NKCC1 in model group was a little up-regulated,but there was no statistical difference;however,it is down-regulated in interference group comparing with model group(p<0.01) and control group(p<0.01).
     3.Comparing with control group,the concentration of intracellular Cl~- in model group is up-regulated(p<0.01);it is down-regulated in interference group comparing with model group(p<0.01),and higher than control group without statistical diference(p>0.05).
     Conclusions
     1、Insomnia may have something to do with the down-regulation of KCC2 mRNA and rise of intracellular concentration of Cl~-.
     2、The mechanism of sedative-hypnotic diazepam may have something to do with the up-regulation of KCC2 mRNA, down-regulation of NKCC1 mRNA,and decrease the intracellular concentration of Cl~-.
引文
[1]Landolt HP,Wehrle R.Antagonism of serotonergic 5-HT_(2A/2C) receptors:mutual improvement of sleep,cognition and mood? European Journal of Neuroscience,2009,29(9):1795-1809.
    [2]赵乐章.中缝背核5-羟色胺能神经元在睡眠调节中的作用研究.中国应用生理学杂志,2003,19(2):175-178.
    [3]章功良.中缝背核注射对氯苯丙氨酸观察睡眠的变化及5-羟色胺神经元形态学的改变.安徽医科大学学报,2002,37(3):175-177.
    [4]Luis GC,Salvador HL,Elvira G,et al.Serotoninergic dorsal raphe neurons possess functional postsynaptic nicotinic acetylcholine receptors.Synapse,2008,62(8):601-615.
    [5]Yan Lin,David Q,Adrian JD,et al.A.Stone.Possible dopaminergic stimulation of locus coeruleus α1-adrenoceptors involved in behavioral activation.Synapse,2008,62(7):516-523.
    [6]Krueger JM,Majde JA.Humoral Links between Sleep and the Immune System.Ann N Y Acad Sci,2003,992:9-20.
    [7]Brambilla D,Franciosi S.Interleukin-1 inhibits firing of serotonergic neurons in the dorsal raphe nucleus and enhances GABAergic inhibitory post-synaptic potentials.European Journal of Neuroscience,2007,26(7):1862-1869.
    [8]Dimitrov S,Lange T,Benedict C,et al.Sleep enhances IL-6 trans-signaling in humans.FASEB J,2006;20:2174 -2176.
    [9]Cavadini G,Petrzilka S,Kohler P,et al.TNF-α suppresses the expression of clock genes by interfering with E-box-mediated transcription.PNAS,2007,104:12843-12848.
    [10]Carol A.Everson.Clinical assessment of blood leukocytes,serum cytokines,and serum immunoglobulins as responses to sleep deprivation in laboratory rats.Am J Physiol Regulatory Integrative Comp Physiol,2005,289:1054-1063.
    [11]Rajaratnam SM,Polymeropoulos MH,Fisher DM,et al.Melatonin agonist tasimelteon(VEC-162) for transient insomnia after sleep-time shift:two randomised controlled multicentre trials.Lancet,2009,373(9662):482-491.
    [12]Srinivasan V,Pandi-Perumal SR,Trahkt I,et al.Melatonin and melatonergic drugs on sleep:possible mechanisms of action.Int J Neurosci,2009,119(6):821-846.
    [13]陈烨.Ghrelin和Obestatin及其对生长的作用研究进展.国际儿科学杂志,2007,34(6):458-461.
    [14]Szentirmai E,Krueger JM.Obestatin alters sleep in rats.Neurosci Lett,2006,404:222-226.
    [15]Barbara E.Jones.Modulation of Cortical Activation and Behavioral Arousal by Cholinergic and Orexinergic Systems.Annals of the New York Academy of Sciences,2008,1129:26-34.
    [16]Laure V,Patrice F,Damien G,et al.Localization of the neurons active during paradoxical(REM) sleep and projecting to the locus coeruleus noradrenergic neurons in the rat.The Journal of Comparative Neurology,2006,495(5):573-586.
    [17]Jentsch T J,Stein V,Weinreich F,et al.Molecular Structure and Physiological Function of Chloride Channels.Physiol Rev,2002,82:503-568.
    [18]Hebert S C,Mount DB,Gamba G.Molecular physiology of cation-coupled Cl~-cotransport,the SLC12 family.Pflugers Arch,2004,447:580-593.
    [19]Hoffmann EK.,Lambert IH.,Pedersen SF.Physiology of Cell Volume Regulation in Vertebrates.Physiol Rev,2009,89(1):193 - 277.
    [20]Herok GH,Millar TJ.,Anderton PJ.,et al.Role of Chloride Channels in Regulating the Volume of Acinar Cells of the Rabbit Superior Lacrimal Gland.Invest.Ophthalmol.Vis.Sci.,2008,49(12):5517 - 5525.
    [21]Kahle KT,Rinehart J,de Los Heros P,et al..WNK3 modulates transport of Cl~-in and out of cells:implications for control of cell volume and neuronal excitability.Proc Natl Acad Sci,2005,102:16783-16788.
    [22]Delpire E,Mount DB.Human and murine phenotypes associated with defects in cation-chloride cotransport.Annu Rev Physiol,2002,64:803-843.
    [23]Payne JA,Rivera C,Voipio J,et al.Cation-chloride co-transporters in neuronal communication,development and trauma.Trends Neurosci,2003,26:199-206.
    [24]王德广.氯离子转运体KCC2和脑缺血的研究:[中国博士学位论文].安徽:中国科学技术大学,2006,(04)
    [25]王伟.钾离子-氯离子共转运体2(KCC2)与突触可塑性的研究:[中国博士学位论文].安徽:中国科学技术大学,2006,(04)
    [26]刘涛.大鼠三叉神经中脑核神经元对GABA的反应及其相关发育学研究:[中国博士学位论文].西安:第四军医大学,2007,(05)
    [27]Ke LI,En XU,The role and the mechanism of γ-aminobutyric acid during central nervous system development,Neurosci Bull,2008,24(3):195-200.
    [28]Kristopher T,Kahle,Sarah M,et al.Decreased Seizure Activity in a Human Neonate Treated With Bumetanide,an Inhibitor of the Na~+-K~+-2Cl~- Cotransporter NKCC1.J Child Neurol,2009,24:572-576.
    [29]Gim(?)nez I.Molecular mechanisms and regulation of furosemide-sensitive Na-K-Cl cotransporters.Curr Opin Nephrol Hypertens.2006,15:517-523.
    [30]Kahle KT,Staley KJ.The bumetanide-sensitive Na-K-2Cl cotransporter NKCCl as a potential target of a novel mechanism-based treatment strategy for neonatal seizures.Neurosurg Focus,2008,25(3):E22.
    [31]Dzhala VI,Talos DM,Sdrulla DA,et al.NKCCl transporter facilitates seizures in the developing brain.Nat Med 2005,11:1205-1213.
    [32]Hekmat-Scafe DS,Lundy MY,Ranga R,et al.Mutation in the K~+-Cl~-cotransporter gene kazachoc(kcc) increase seizure susceptibility in Drosophila.J Neurosci 2006,26:8943-8954.
    [33]钱伯初,史红,郑晓亮.新的失眠动物模型研究概述.Chinese Journal of New Drugs,2008,17(1):245-248.
    [34]李海静,高月,刘萍等.失眠动物模型研究进展.Chinese Pharmacological Bulletin,2007,23(4):437-440.
    [35]肖成荣,马增春,李海静等.PCPA失眠大鼠模型的制作及其机制.毒理学杂志,2007(4):326-326
    [36]范利锋,王平仁,兰培敏.睡眠机制的研究概况.临床内科杂志,2005,22(10):662-665.
    [37]Hiki K,Andrea RJ D,Furze J,et al.Cloning,eharaeterization,and chromosomal location of a novel human K~+-Cl~-cotransporter.J Biolchem,1999,274:10661-10667.
    [38]Darman RB.,Flemmer A,Forbush B,et al.Modulation of ion transport by direct targeting of protein phosphatase type 1 to the Na-K-Cl cotransporter.J BiolChem, 2001,276:34359-34362.
    [39]李修彬.小鼠颞叶内侧癫痫形成与阳离子-氯离子共转运体的表达及海马重构关系的实验研究.中国优秀博硕士学位论文全文数据库,2008,(05).
    [40]Ganguly K,Sehinder AF,Wong ST,et al.GABA itself promotes the developmental switch of neuronal GABAergic responses from excitation to inhibition.Cell,105(2001):521-532.
    [41]Rivera C,Li H,Thomas-Crusells J,et al.BDNF-induced TrkB activation downregulates the K~+-CI~- cotransporter KCC2 and impairs neuronal Cl~-extrusion.J Cell Biol,2002,159:747-752.
    [42]Wake H,Watanabe M,Andrew J.et al.Early Changes in KCC2 Phosphorylation in Response to Neuronal Stress Result in Functional Downregulation.The Journal of Neuroscience,2007,27(7):1642-1650.
    [43]Banke TG.,Gegelashvili G.Tonic activation of group I mGluRs modulates inhibitory synaptic strength by regulating KCC2 activity.The Journal of Physiology,2008,586(20):4925-4934.
    [44]Sehomberg SL,Bauer J,Kintner DB,et al.Cross talk between the GABA_A receptor and the Na-K-Cl cotransporter is mediated by intracellular Cl.J Neuro Physiol,2003,89:159-167.
    [45]Eichler SA,Kirischuk S,Ren(?) J(u|¨)ttner,et al.Glycinergic tonic inhibition of hippocampal neurons with depolarizing GABAergic transmission elicits histopathological signs of temporal lobe epilepsy.Journal of Cellular and Molecular Medicine.2008,12(6):2848-2866.
    [1]Kilduff TS,Lein Ed S,Horacio de la Iglesia,et al.New Developments in Sleep Research:Molecular Genetics,Gene Expression,and Systems Neurobiology.J.Neurosci,2008,28:11814-11818.
    [2]Archer SN,Viola AU,Kyriakopoulou V,et al.Inter-individual differences in habitual sleep timing and entrained phase of endogenous circadian rhythms of BMAL1,PER2 and PER3 mRNA in human leukocytes.Sleep,2008,31(5):608-617.
    [3]张景行,章功良.睡眠-觉醒机制研究概况.中国现代神经疾病杂志,2006,6(1):11-17.
    [4]范利锋,王平仁,兰培敏.睡眠机制的研究概况.临床内科杂志,2005,22(10):662-665.
    [5]Saper CB,Cano G,Scammell TE.Homeostatic,circadian,and emotional regulation of sleep.J Comp Neurol,2005,493(1):92-98.
    [6]Jones BE.The sleep-wake-cycle:basic mechanisms.J Rheumatol Suppl,1989,19:49-51.
    [7]Peirano P,Algarin C,Uauy R.Sleep-wake states and their regulatory mechanisms throughout early human development.J Pediatr,2003,143(4Suppl):70-79.
    [8]吴江,贾建平,崔丽英.神经病学.北京:人民卫生出版社,2005(8):380.
    [9]Yin Da zhong.Is carbonyl detoxification an important anti-aging process during sleep? Med Hypoth,2000,54:519-522.
    [10]Phillips AJK,Robinson PA.A Quantitative Model of Sleep-Wake Dynamics Based on the Physiology of the Brainstem Ascending Arousal System.J Biol Rhythms,2007,22:167 - 179.
    [11]Takahashi K,Lin JS,Sakai K.Characterization and mapping of sleep-waking specific neurons in the basal forebrain and preoptic hypothalamus in mice.Neuroscience,2009,161(1):269-292.
    [12]Mendoza J,Challet E.Brain Clocks:From the suprachiasmatic Nuclei to a Cerebral Network.Neuroscientist,2009,doi:10.1177/1073858408327808.
    [13]Luo AH,Aston-Jones G.Circuit projection from suprachiasmatic nucleus to ventral tegmental area:a novel circadian output pathway.Eur J Neurosci,2009,29(4):748-760.
    [14]Michael L Lee,Beryl E Swanson,Horatio O de la Iglesia.Circadian Timing of REM Sleep Is Coupled to an Oscillator within the Dorsomedial Suprachiasmatic Nucleus.Curr Biol,April 15,2009.
    [15]赵乐章.中缝背核5-羟色胺能神经元在睡眠调节中的作用研究.中国应用生理学杂志,2003,19(2):175-178.
    [16]Galindo-Charles Luis,Hernandez-Lopez S,Galarraga E,et al.Serotoninergic dorsal raphe neurons possess functional postsynaptic nicotinic acetylcholine receptors.Synapse,2008,62(8):601-615.
    [17]Landolt HP,Wehrle R.Antagonism of serotonergic 5-HT2A/2C receptors:mutual improvement of sleep,cognition and mood? European Journal of Neuroscience.2009,29(9):1795-1809.
    [18]Lin Y,Quartermain D,Dunn Adrian J,et al.Possible dopaminergic stimulation of locus coeruleus αl-adrenoceptors involved in behavioral activation.Synapse,2008,62(7):516-523.
    [19]Verret L,Fort P,Gervasoni D,et al.Localization of the neurons active during paradoxical(REM) sleep and projecting to the locus eoeruleus noradrenergic neurons in the rat.The Journal of Comparative Neurology,2006,495(5):573-586.
    [20]Barbara E.Jones.Modulation of Cortical Activation and Behavioral Arousal by Cholinergic and Orexinergic Systems.Annals of the New York Academy of Sciences,2008,1129:26-34.
    [21]Ke LI,En XU.The role and the mechanism of γ-aminobutyric acid during central nervous system development.Neurosci Bull,2008,24(3):195-200.
    [22]Yo Oishi,Huang Zhi-Li,Fredholm Bertil B,et al.Adenosine in the tuberomammillary nucleus inhibits the histaminergic system via A_1 receptors and promotes non-rapid eye movement sleep.PNAS,2008,105:19992 - 19997.
    [23]Basher R,Strecker RE,Thakkar MM,et al.Adenosine and sleep-wake regulation.Prog Neurobiol,2004,73:379-396.
    [24]Van Dort Christa J.,Baghdoyan HA.,Lydic R,et al.Adenosine A_1 and A_2A Receptors in Mouse Prefrontal Cortex Modulate Acetylcholine Release and Behavioral Arousal.J.Neurosci.,2009,29:871 - 881.
    [25] Terao A, Huang ZL, Wisor JP, et al. Gene expression in the rat brain during prostaglandin D2 and adenosinergically-induced sleep. J Neurochem, 2008, 105(4): 1480-1498.
    [26] Simonneaux V, Ribelayga C. Generation of the Melatonin Endocrine Message in Mammals: A Review of the Complex Regulation of Melatonin Synthesis by Norepinephrine, Peptides, and Other Pineal Transmitters. Pharmacol Rev, 2003, 55:325-395,
    [27] Srinivasan V, Pandi-Perumal SR, Trahkt I, et al. Melatonin and melatonergic drugs on sleep: possible mechanisms of action. Int J Neurosci, 2009,119(6): 821-846.
    [28] Rajaratnam SM, Polymeropoulos MH, Fisher DM, et al. Melatonin agonist tasimelteon (VEC-162) for transient insomnia after sleep-time shift: two randomised controlled multicentre trials. Lancet, 2009,373(9662): 482-491.
    [29] Kluge M, Schussler P, Bleninger P, et al. Ghrelin alone or co-administered with GHRH or CRH increases non-REM sleep and decreases REM sleep in young males. Psychoneuroendocrinology, 2008,33(4): 497-506.
    [30] Brambilla D, Franciosi S, Opp MR, et al. Interleukin-1 inhibits firing of serotonergic neurons in the dorsal raphe nucleus and enhances GABAergic inhibitory post-synaptic potentials. European Journal of Neuroscience, 2007,26(7): 1862-1869.
    [31] Dimitrov S, Lange T, Benedict C, et al. Sleep enhances IL-6 trans-signaling in humans. FASEB J, 2006; 20:2174 - 2176.
    
    [32] Foley John F. Sleepy Time with TNF-α. Sci. STKE, 2007, 398:tw280.
    [33] Aouizerat B, Dodd M, Lee K, et al. Preliminary Evidence of a Genetic Association Between Tumor Necrosis Factor Alpha and the Severity of Sleep Disturbance and Morning Fatigue. Biol Res Nurs, 2009, doi: 10.1177/1099800409333871
    [34] Cavadini G, Petrzilka S, Kohler P, et al. TNF-α suppresses the expression of clock genes by interfering with E-box-mediated transcription. PNAS, 2007,104: 12843 -12848.
    [35] Loseva EV, Loginova NA, Akmaev IG, et al. The role of interferon-alpha in regulation of nervous system functions. Usp Fiziol Nauk, 2008,39(2): 32-46.
    [36] Obal Jr, Krueger JM. Biochemical regulation of non-rapid-eye-movement sleep. Front Biosci, 2003, 8: d520-50.
    [37]Grigor'ev VV,Ivanova TA,Kustova EA,et al.Effects of delta sleep-inducing peptide on pre- and postsynaptic glutamate and postsynaptic GABA receptors in neurons of the cortex,hippocampus,and cerebellum in rats.Bull Exp Biol Med,2006,142(2):186-188.
    [38]Dugovic C,Shelton JE,Aluisio LE,et al.Blockade of orexin-1 receptors attenuates orexin-2 receptor antagonism-induced sleep promotion in the rat.J.Pharmacol.Exp.Ther,2009,10.1124/jpet.109.152009.
    [39]黄坚,赵忠新,邵福源.大鼠正常睡眠和睡眠剥夺后食欲素原mRNA的表达.中华神经科杂志,2005,38(2):87-90.
    [40]Diniz Behn CG.,Kopell N,Brown EN,et al.Delayed Orexin Signaling Consolidates Wakefulness and Sleep:Physiology and Modeling.J Neurophysiol,2008,99:3090 - 3103.
    [41]Matsuki T,Nomiyama M,Takahira H,et al.Selective loss of GABA_B receptors in orexin-producing neurons results in disrupted sleep/wakefulness architecture.PNAS,2009,106:4459 - 4464.
    [42]Liu Zh W,Gao X B.Adenosine Inhibits Activity of Hypocretin/Orexin Neurons by the Al Receptor in the Lateral Hypothalamus:A Possible Sleep-Promoting Effect.J Neurophysiol,2007,97:837 - 848.
    [43]Andersen,Monica L,et al.Sleep disturbance induced by substance P in mice.Behavioural brain research,2006,167(2):212-218.
    [44]Zhang GL,Wang L Ch,Liu H.Substance P promotes sleep in the ventrolateral preoptic area of rats.Brain research,2004,1028(2):225-232.
    [45]Ursavas A.Upregulating substance P levels to treat obstructive sleep apnea.Expert Opin Ther Targets,2008,12(5):583-588.
    [46]王德广.氯离子转运体KCC2和脑缺血的研究:[中国博士学位论文].安徽:中国科学技术大学,2006,(04)
    [47]Blaesse P,Airaksinen MS,Rivera C,et al.Cation-chloride cotransporters and neuronal function.Neuron,2009,61(6):820-838.
    [48]Ganguly K,Sehinder AF,Wong S T,et al.GABA itself promotes the developmental switch of neuronal GABAergic responses from excitation to inhibition.Cell,2001,105:521-532.
    [49]李修彬.小鼠颞叶内侧癫痫形成与阳离子-氯离子共转运体的表达及海马重构关系的实验研究:[中国博士学位论文].广州:中山大学 附属第一医 院, 2008, (05).
    [50] Dzhala VI, Talos DM, Sdrulla DA, et al. NKCC1 transporter facilitates seizures in the developing brain. Nat Med 2005,11:1205-1213.
    [51] Kahle KT, Staley KJ. The bumetanide-sensitive Na-K-2C1 cotransporter NKCC1 as a potential target of a novel mechanism-based treatment strategy for neonatal seizures. Neurosurg Focus,2008,25(3): E22.
    
    [52] Hekmat-Scafe DS, Lundy MY, Ranga R, et al. Mutation in the K~+-Cl~- cotransporter gene kazachoc (kcc) increase seizure susceptibility in Drosophila. J Neurosci 2006,26:8943-8954.
    [53] Pfeffer arsten K., Stein V, Damien J. et al. NKCC1-Dependent GABAergic Excitation Drives Synaptic Network Maturation during Early Hippocampal Development. J. Neurosci,2009,29: 3419 - 3430.
    [54] Hiroaki Wake, Miho Watanabe, Andrew J. Moorhouse, et al. Early Changes in KCC2 Phosphorylation in Response to Neuronal Stress Result in Functional Downregulation. The Journal of Neuroscience, 2007,27(7): 1642-1650.
    [55] Banke Tue G, Gegelashvili G. The Journal of Physiology Tonic activation of group I mGluRs modulates inhibitory synaptic strength by regulating KCC2 activity. 2008, 586(20):4925-4934.
    [56] Sehomberg SL, Bauer J, Kintner DB, et al. Cross talk between the GABA_A receptor and the Na-K-Cl cotransporter is mediated by intracellular Cl, J Neuro Physiol, 2003,89:159-167.
    [57] Gimenez I. Molecular mechanisms and regulation of furosemide-sensitive Na-K-Cl cotransporters. Curr Opin Nephrol Hypertens, 2006,15:517-523.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700