应激对大鼠延髓和下丘脑胃机能调控中枢神经通路影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
束缚-浸水应激(Restraint Water-Immersion Stress, RWIS;水温21±1℃)是一种心理和躯体的复合应激模型,刺激强度较大。该模型可在短时间内导致大鼠情绪改变、体温降低和胃肠机能紊乱,包括胃运动机能亢进、胃酸分泌增多、急性胃粘膜损伤等。
     传统观点认为应激(stress)主要启动“下丘脑-腺垂体-肾上腺皮质”轴,通过引发一系列生物学反应进而改变器官系统的功能状态,从而使机体内环境保持稳态以应对应激性刺激。而众多研究表明RWIS主要诱导副交感神经系统的活动加强。
     延髓是胃机能初级调控中枢,其内的迷走神经背核和疑核发出迷走神经中的副交感纤维到胃,支配胃的活动。延髓的孤束核是内脏感觉信息的接受核团,来自胃肠的感觉信息经孤束核中继向更高级中枢传导。由此可见,延髓是直接对胃机能状态进行调控的神经中枢。下丘脑是调节内脏活动的较高级中枢。形态学研究发现,RWIS在导致大鼠产生应激性胃粘膜损伤的同时,还引起大鼠延髓迷走神经背核、孤束核、最后区及下丘脑室旁核、视上核内Fos表达加强。可见延髓、下丘脑胃机能调控中枢内神经元活动加强与应激性胃粘膜损伤的产生具有密切关联。
     众多研究表明,室旁核与迷走神经背核、孤束核间均存在双向的纤维联系。室旁核和视上核都是位于下丘脑视前区的两个非常重要的神经核团,其大细胞性分泌神经元分泌的抗利尿激素和催产素分别经室旁垂体束和视上垂体束运输至神经垂体。研究表明室旁核和视上核是下丘脑在RWIS状态下参与胃机能调控的两个神经核团。既然室旁核与延髓部位纤维联系密切,那么视上核也应该与延髓部位的核团之间存在纤维联系,有研究已经证明它和孤束核之间是有直接纤维联系,那么还有一个问题需要解决:视上核与迷走神经背核之间是否存在纤维联系?
     越来越多的研究表明应激能改变轴浆运输和突触的机能状态,在一定情况下甚至还能使“沉默突触”激活。那么RWIS这种强大的复合型应激是否也会对神经通路产生类似的影响,从而促使应激性胃粘膜损伤的产生?
     另一个问题是,如果膈肌下切断迷走神经,消除来自外周(胃肠)的应激反馈信息后,RWIS状态下大鼠延髓和下丘脑对胃肠的调控会发生怎样的变化?
     针对以上提出的问题,本文分两部分。
     第一部分应用辣根过氧化物酶逆行追踪方法探讨两个问题:(1)视上核与迷走神经背核间是否存在纤维联系。(2)RWIS是否对延髓、下丘脑两个胃机能调控中枢间的神经通路产生影响。将雄性Wistar大鼠随机分为2组:束缚-浸水应激组,对照组。应激组动物,向迷走神经背核内微量注射HRP,动物清醒后给予RWIS 3h,注射HRP 48~60h后,过量戊巴比妥钠腹腔注射麻醉动物,快速心脏灌流固定脑组织、脱水处理,然后进行冰冻切片。漂浮切片进行HRP组化显色。对照组动物除不进行RWIS外,其余操作均同应激组。
     结果显示,无论是对照组还是应激组,在下丘脑室旁核、视上核均发现HRP标记的神经元胞体;应激组室旁核内HRP标记的神经元胞体数目较对照组显著增多(P<0.01),而视上核内无显著性变化;同侧室旁核HRP标记的神经元胞体数较对侧室旁核多(P<0.01)。这些结果提示:视上核有向迷走神经背核投射的神经元,说明视上核和室旁核在胃机能调控中都起重要作用;RWIS使室旁核到迷走神经背核的神经纤维末梢(指“沉默末梢”被激活成“活性末梢”的数目)增多了,说明室旁核与迷走神经背核之间神经通路在RWIS过程中对胃肠调控起重要的作用。
     第二部分应用免疫组织化学方法探讨切断膈肌下迷走神经阻断来自胃肠的应激反馈信息和传出指令后,在束缚-浸水应激状态下,大鼠延髓、下丘脑神经元Fos的表达情况,从另一方面研究应激反馈信息对中枢调控的影响。本研究将雄性Wistar大鼠随机分2组:手术组、对照组。手术组切断双侧膈肌下迷走神经,对照组同样暴露神经但不切断。术后6 d进行实验,将大鼠束缚-浸水应激3 h后处死,测腹腔温度;取胃,观察胃粘膜损伤程度;取脑,应用免疫组化染色方法观察两组动物延髓、下丘脑神经元的Fos表达。结果发现,手术组动物延髓迷走神经背核、孤束核、下丘脑室旁核Fos表达较对照组减弱(P<0.05),延髓最后区减弱最为显著(P<0.01);腹腔温度低于对照组(P<0.05);胃粘膜损伤程度较对照组减轻(P<0.05)。这些结果提示切断膈肌下迷走神经后进行束缚-浸水应激,延髓迷走神经背核、孤束核、最后区、下丘脑室旁核神经元Fos表达均减弱,结合第一部分结果,说明了切断膈肌下迷走神经消除应激反馈信息后,延髓与下丘脑之间跨突触信息传递呈减弱趋势。
Restraint water-immersion stres(sRWIS; 21±1℃), considered to be a mixture of physical and psychological stressors, has very strong effect on body. It can induce lower body temperature, emotion change and gastric disfunction, which include vagally-mediated gastric hypercontractility, hypersecretion of gastric acid and acute gastric erosions.
     It is well known that stress can activate hypothalamus-pituitary-adrenocortical(HPA) axis,which change the functional state of organ system through a series of biological reactions,and keep steady-state. However, according to the former research, RWIS mainly induced the hyperactivity of the parasympathetic nervous system.
     Medulla is the primary centre of gastric function. The vagal parasympathetic neurons innervating the stomach are largely located in the dorsal motor nucleus of the vagus(DMV) and partly in the nucleus ambiguus(NA). The nucleus of solitary tract receive the sensory information from the stomach. Therefore, medulla is a nerve center which dominate gastrointestinal function directly. Hypothalamus is a higher nerve centre of gastric function. Research on morphology shows that Fos expression in medullary DMV, NTS and hypothalamic SON, PVN were enhanced markedly when stress ulcer were arisesed by RWIS. From above we see that enhanced activity of nerve centre of gastric function are closely associated with appearance of stress ulcer.
     Many studies show that there is a two-way connection of nerve fiber between PVN and DMV, so as PVN and NTS is similar. PVN and NTS are very important nuclei in preoptic region of hypothalamus.Magnocellular neurosecretory neurons distributed both in PVN and SON, and this kind of cell can secret vasopressin and oxytocin. The hormones released by PVN and SON were transported to neurohypophysis through paraventriculohypophyseal tract and supraopticohypophyseal tract respectively, and both of the two nuclei took part in the regulation of gastric function. Since PVN and medullary have close link, SON may have close fiber link with medullary. It has already been proved that there is nerve fiber contact between SON and NTS, but the situation is unhnow between SON and DMV.
     More and more studies show that stress can change the state of axonal transport and synapse, and in some cases, silent synapse can even be activated. While RWIS, as a powerful compound stress, whether has function to change neural pathway and leads to stress ulcer eventually?
     In the context of having solved the above problems and learned the effect of stress on neural pathway , we cut off the vagus nerve to block the feedback information of stress and dictate from nerve centre,then the approach to influence neural pathway of stress is decrease. under the state of RWIS,the Fos expression in medulla and hypothalamus is unknow.
     Aimed at the above questions, this research were divided into two parts。
     Part1:We applied retrograde tracing method of horse radish(HRP) to discuss two qustions. (1) If there is direct nerve fiber connection between SON and DMV? (2)If RWIS influence neural pathway in nerve centre of gastric function?
     Male Wistar rats were randomly divided into 2 groups designated according to suffering RWIS or not. In stress group, we inject HRP into DMV. After operation, rats were replaced in their home cages for 60 min before restraint water-immersion stress(RWIS)to recover consciousnes. Rats were then restrained and immersed in cold water(21±1℃) for 3 h. 48-60h after injection, the rat was anesthetized with pentobarbital sodium,and then was perfused quickly with buffer. Afterward, the brain was removed immediately and cryoprotected overnight in 20% sucrose in 0.1 mol/l PB at 4℃until sectioning. Histochemical detection of HRP were applied in sections. In control group, rats were operate in the same way as the above besides not suffering RWIS. We found: Cells labelled by HRP were found in SON; The number of cells labelled by HRP in stress group was more than that of control group(P <0.01);The amount of labelled cells in the PVN of the same side as jinjection site is larger than the opposite(P <0.01).These show that there is direct nerve fiber connection between SON and DMV; RWIS can change neural pathway between PVN and DMV; PVN have more nerve fiber project to the same side DMV.
     Part 2: In this part we applied immuno-histochemical methods to observe the Fos expression in medulla and hypothalamus under RWIS after bilateral subdiaphragamatic vagotomy. Since the operation can block the feedback information of stress, from Fos expression we can investigate the influence of this information on Information transfer across synapses. Male Wistar rats weighting 180-220 g were randomly divided into two groups: Operation group, Control group. Bilateral subdiaphragamatic vagotomy was performed in rats of operation group, the vagus were uncovered but were not cut off in control group. Six days after operation, rats were put into death after restraint water-immersion stress(3 h). The abdominal cavity temperature was measured, the gastric mucosal ulcer index was determined according to Guth criteria, and the immuno-histochemical methods were used to detect the Fos expression in medulla and hypothalamus. We found: Expression of Fos was decreased significantly in DMV, NTS and PVN after bilateral subdiaphragamatic vagotomy(P<0.05), and the decrease in AP was the most prominent (P<0.01); the abdominal cavity temperature was lower than that of the control group(P<0.05); the gastric mucosal ulcer index was reduced significantly(P<0.05). The results suggest that the feedback regulation information from the gastrointestinal tract, rather than lower body temperature and psychological stressor, play a dominant role in inducing the Fos expression in DMV, NTS, AP and PVN. Since Fos expression is a mark of neuronal excitability, combining the results of part 1,the results show that the transfer of information among medulla and hypothalamus tend to be weaker after the feedback information of stress were bated.
引文
[1]蒋春雷,路长林.应激医学[M].上海:上海科学技术出版公司, 2006: 36-40.
    [2]王枫,崔大祥,陈耀明等.冷应激大鼠肾上腺差异表达基因的克隆[J]. 2000, 21(7): 195-197.
    [3]李瑞纲,马学恩,郑秉武等.冷应激小鼠免疫器官的病理形态学变化[C].中国畜牧兽医学会兽医病理学分会第十三次学术讨论会和中国病理生理学会动物病理生理专业委员会第十二次学术讨论会论文集. 2005:
    [4]张玉玉.大鼠束缚-浸水应激不同时间段不同脑区c-Fos表达的比较研究[D].济南:山东师范大学, 2009:
    [5] Li Y Q, Sheng C F, Li Y Q,, et al.The characteristic of molecular redundancy in life evolution[J]. Scientific Chinese,1996,6:38.
    [6] Lu CF, Wang H, Jian LC, et al. Progress in study of plant antifreeze proteins [J]. Progress in Biochemistry and Biophysics, 1998, 25 (3): 210-216.
    [7] Kubo T, Arai Y Tadahashi K. Expression of t ransduced HSP 70 gene protects chondrocytes from stress[J]. The Journal of Rheumatology, 2001. 28(2):160-172.
    [8]屠云洁,耿照玉,陈国宏等.动物冷应激反应中多种基因调控机制的研究[J].中国畜牧兽医, 2010, 37(1): 84-87.
    [9] Leandro N S, Gonzales E, Ferro J A , et al. Expression of heat shock protein in broiler embryo tissues af ter acute cold or heat stress[J]. Mol Reprod Dev, 2004, 67(2):172-177.
    [10] Quintero L, Cuesta M C, Silva J A, et al. Repeated swim st ress increases pain2induced expression of c-Fos in t he rat lumbar cord[J]. Brain Res, 2003, 965(1-2):259-268.
    [11] Tan Z, Nagata S. PVN c- fos expression, HPA axis response and immune cell dist ribution during rest raint stress[J]. J uoeh, 2002, 24(2): 131-149.
    [12]蓝妮,谢启文,王淑芬.大鼠应激时垂体c-fos和催乳素基因表达关系的研究[J].中国医科大学学报, 2000. 29(4):244-246.
    [13]杨明,李庆芬.哺乳动物冷应激的主要神经内分泌反应[J].动物学研究, 2002, 23(4): 335-341.
    [14] Arancibia S, Rage F, Astier H, et al. Neuroendocrine and autonomous mechanisms underlying thermoregulation in cold environment[J]. Neuroendocrinology, 1996, 64:257-267.
    [15] Bamshad M, Song C K, Bartness T J. CNS origins of sympathetic nervous system outflow to brown adipose tissue[J]. Am. J .Physiol, 1999, 276:1569-1578.
    [16] Fluharty SJ, Snyder GL, Stricker EM, et al. Short-and long-term changes in adrenal tyrosinehydroxylase activity during insulin-induced hypoglycemia and cold stress[J]. Brain Res, 1983, 267: 284-387.
    [17] Fukuhara K, Kvetnansky R, Cizza G, et al. Interrelations between sympathoadrenal system and hypothalamo-pituitary-adrenocortical / thyroid systems in rats exposed to cold stress[J]. Neuroendocrinol, 1996, 8(7):533-541.
    [18] Hatalski C G, Guirguis C, Baram T Z. Corticotropin releasing factor mRNA expression in the hypothalamic parabventricular nucleus and the central nucleus of the amygdala is modulated by repeated acute stress in the immature rat[J]. Neuroendocrinol, 1998, 10(9):663-669.
    [19] Hashhimoto K, Makino S, Asaba K, et al. Physiological roles of corticotropin-releasing hormone receptor type 2[J]. Endocrine J, 2001, 48(1): 1-9.
    [20]侯建军,李庆芬,黄晨西.布氏田鼠冷暴露中的适应性产热机理[J].动物学报, 1999, 45(2):143-147.
    [21]杨明,李庆芬,黄晨西,下丘脑-垂体-甲状腺轴在冷暴露长爪沙鼠产热中的作用[J].动物学研究, 2002, 23(5):12-15.
    [22] Schneider MJ, Fiering S N, Pallud S E, et al. Targeted disruption of the type 2 selenodeiodinase gene (DIO2) results in a phenotype of pituitary resistance to T4[J]. Mol.Endocrinol, 2001, 15(12):2137-2148.
    [23] Jiri Vanecek. Cellular mechanisms of melatonin action. Physiol.Review, 1998, 78(3): 687-721.
    [24] K onakchieva R, Mitev Y, Almeida O F, et al. Chronic melatonin treatment and the hypothalamo- pituitary-adrenal axis in the rat: Attenuation of the secretory response to stress and effects on hypothalamic neuropeptide content and release[J]. Biol. Cell, 1997, 89(9): 587-596.
    [25] K onakchieva R, Mitev Y, Almeida O F, et al. Chronic melatonin treatment counteracts glucocorticoid- induced dysregulation of the hypothalamic-pituitary-adrenal axis in the rat[J]. Neuroendocrinology, 1998, 67(3) :171-180.
    [26] Houseknecht KL, Baile C A, Matteri R L. The biology of leptin[J]. Journal of Animal Science, 1998, 76:1045-1420.
    [27] Takanori Ida, Keiko Nakahara, Takayuki Murakami, Possible involvement of orexin in the stressreaction in rats[J]. Biochemical and Biophysical Research Communications, 2000, 270(1): 318-323.
    [28] Sainsbury A, Rohner-Jeanrenaud F, Cusin I, et al. Chroniccentral neuropeptide Y infusion in normal rats : Status of the hypothalamo-pituitary-adrenal axis, and vagal mediation of hyperinsulinaemia[J]. Diabetologia,1997, 40(11):1269-1277.
    [29] Bhatnagar S, Mitchell JB, Betito K, et al. Effects of chronic intermittent cold stress on pituitary adrenocortical and sympathetic adrenomedullary functioning[J]. Physiol Behav. 1995, 57(4): 633-639.
    [30] Bhatnagar S, Meaney MJ. Hypothalamic-pituitary-adrenal function in chronic intermittently cold-stressed neonatally handled and non handled rats[J]. J. Neuroendocrinol, 1995, 7(2):97-108.
    [31] Plotsky PM. Pathways to the secretion of adrenocorticotrophin: a view from the portal[J]. J Neuroendocrinol, 1991, 3(1):1-9.
    [32] De Goeij DC, Jezova D, Tilders FJ. Repeated stress enhances vasopressin synthesis in corticotropin -releasing factor neurones in the paraventricular nucleus[J]. Brain Res, 1992, 577(1):165-8.
    [33] De Goeij DC, DC De Goeij, H Dijkstra and FJ Tilders. Chronic psychosocial stress enhances vasopressin, but not corticotropin-releasing factor, in the external zone of the median eminence of male rats: Relationship to subordinate status[J]. Endocrinology, 1992, 131(2): 847-853.
    [34]马丽莉,万顺伦.应激启动下丘脑-垂体-肾上腺轴信号转导机制的实验研究[J].实用医学杂志, 2006, 23(12):1474-1486.
    [35] Zhang Y Y, Cao G H, Zhu W X et al. Comparative study of Fos expression in the rat dorsal vagal complex and nucleus ambiguus induced by different durations of restraint water-immersion stress[J]. Chinese Journal of Physiology, 2009; 52: 143-150
    [36] Zhang Y Y, Zhu W X, Cao G H et al. Fos expression in the supraoptic nucleus is the most intense during different durations of restraint water-immersion stress in the rat[J]. Journal of Physiological Sciences, 2009; 2009 59(5):367-75.
    [37]杨宏,杨青峰,鞠躬等.束缚应激引起小鼠脾内TrkC mRNA水平变化[J].自然科学进展, 2000, 10(4): 375-377.
    [38] Nathan C. Nitric oxide as a secretory product of mammalian cells[J]. The FASEB Journal, 1992,(6):3051 -3064.
    [39]宋春杰,齐建国,章为.束缚应激对大鼠下丘脑室旁核、视上核一氧化氮合酶活性的影响[J].中国组织化学与细胞化学杂志, 1997, 6(2): 139-143.
    [40] Costa A, Trainer P, Besser M, Nitric oxide modulates the release of cortico-trophin-relaesasing hormone from the rat hypothalamus in vitro[J]. Brain Res, 1993, 605(2): 187-92.
    [41] Sawchenko PE, Swanson LW. Immunohistochemical identification of neurons in the paraventricular nucleus of the hypothalamics that project to the medulla or to the spinal cord in the rat. J Comp Neurol, 1982, 205(3): 260-72.
    [42] Garrick T, Leung F W, Buack S, et al. Gastric motility is stimulated but overall blood flow is unaffected during cold restraint in the rat[J]. Gastroenterology, 1986, 91: 142-148.
    [43]艾洪滨,张震东.大鼠浸水应激性胃粘膜损伤机制的研究[J].生理学报, 1990, 42: 496-502
    [44] Ephgrave K S, Cullen JJ, Broadhurst K, Gastric contractions, secretions and injury in cold restraint[J]. Neurogastroenterol Motil, 1997. 9(3):187-92.
    [45] Maruyama M, Matsumoto H, Fujiwara K, et al. Prolactin-releasing peptide as a novel stress mediator in the central nervous system.[J]. Endocrinology, 2001, 142: 2032-2038.
    [46]许爽,蒋星红,郭试瑜等.水浸束缚应激及电击足底应激诱导的大鼠脑内Fos蛋白表达[J].中国应用生理学杂志, 1999, 15(4): 311-315.
    [47]张朝佑.人体解剖学[M].北京:人民卫生出版社, 1998: 1045.
    [48]鲁洁波.轴浆运输与中毒性周围神经病[J].国外医学卫生学分册, 1996, 23(5): 257-260.
    [49] Xie J, Nagle GT, Ritchie AK, et al. Cold Stress and Corticotropin-Releasing Hormone Induced Changes in Messenger Ribonucleic Acid for the 1-Subunit of the L-Type Ca2+ Channel in the Rat Anterior Pituitary and Enriched Populations of Corticotropes [J]. Neuroendocrinology, 1999, 70(1): 10-19.
    [50]闻武.铝的神经毒性[J].卫生毒理学杂志, 1990, 4(4): 265-271.
    [51] Yokoyama K, Araki S. Assessment of slow axonal transport in lead-exposed rats[J]. Environ Res, 1992,59: 440-446.
    [52] Blum K, Manzo L. Neurotoxicology[M].books.goole, 1985: 385-391.
    [53] Iqbal Z. Axoplasmic transport[J]. Wikipedia, 1986: 227-231.
    [54]彭敏,朱熊兆.心理应激与突触可塑性[J].国外医学精神病学分册, 2004, 31(2):127-128.
    [55] Coussens C M, Steven K D, Abraham WC. Glucocorticoid receptor activation lowers the threshold for NMDA-receptor-dependent homosynaptic long-term depression in the hippocampus through activation of voltage-dependent calcium channels[J]. J Neurophysiol, 1997. 78: 1-9.
    [56] Yamada K, McEwen B S, Pavlides C, et al. Site and time dependent effects of acute stress on hippocampal long-term potentiation in freely behaving rats[J]. Exp Brain Res, 2003. 152(1): 52-59.
    [57] Bamshad M, Song C K, Bartness T J, et al. CNS origins of the sympathetic nervous system outflow to brown adipose tissue[J]. Am J Physiol, 1999. 276(6):R1569-1578.
    [58] Fluharty SJ, Snyder GL, Stricker EM, et al. Short- and long-term changes in adrenal tyrosine hydroxylase activity during insulin-induced hypoglycemia and cold stress[J]. Brain Res, 1983,267(2): 384-387.
    [59] Hatalski C G, Guirguis C, Baram T Z. Corticotropin releasing factor mRNA expression in the hypothalamic parabventricular nucleus and the central nucleus of the amygdala is modulated by repeated acute stress in the immature rat[J]. J Neuroendocrinol, 1998, 10(9): 663-669.
    [60] Prusky G T, Reidel C, Douglas R M, et al. Environmental enrichment from birth enhances visual acuity but not place learning in mice[J]. Behav Brain Res, 2000;114:11-15.
    [61] Polley DB, Kvasnak E, Frostig R D, et al. Naturalistic experience transforms sensory map in the adult cortex of caged animals[J]. Nature, 2004, 429:67-71.
    [62] Singh P, Heera PK, Kaur G. Expression of neuronal plasticity markers in hypoglycemia induced brain injury[J]. Mol Cell Biochem.2003, 247(1-2):69-74.
    [63] Amaiz SL D, Amico C, Paglia N,et al.Enriched environment, nitric oxide production and synaptic plasticity prenent the aging-dependent impairment of spatial cognition[J]. Mol Aspects Med, 2004,25(1-2):91-101.
    [64] Sale A, Putignano E, Cancedda L, et al. Enriched environment and acceleration of visual systemdevelopment[J]. Neuropharmacol, 2004,47(5):649-660.
    [65]鲁利群,赵聪敏.丰富环境与神经可塑性[J].中国临床康复,2005, 9(16):141-143.
    [66]池霞.沉默突触的研究进展[J].国外医学儿童分册, 2003,30(1): 21-23.
    [67] Kwon Y W, Gumey M E. Brain-derived neurotrophic factor transiently stabilizes silent synapses on developing neuronuscular junctions[J]. J Neurobiol, 1996, 29(4):503-516.
    [68] Sasaki F, Wu P, Rougeau D, et al. Cytochemical studies of responses of corticotropes and thyrotropes to cold and novel environment stress[J]. Endocrinology, 1990, 127 (1): 285.
    [69] Travagli R A, Hermann G E, Browning K N, et al. Brainstem circuits regulating gastric function[J]. Annu Rev Physiol, 2006, 68: 279-305
    [70] Zhang JF, Zheng F, Zhan MC, Sun D, Yan CD. Effect of electrical stimulation of paraventricular nucleus on stress gastric mucosal lesion in rats. Acta Physiologica Sinica, 1992, 44: 583-590.
    [71] Zhang J F, Zheng F. The role of paraventricular nucleus of hypothalamus in stress-ulcer formation in rats[J]. Brain Res, 1997, 761: 203-209.
    [72] Fujikawa T, Tamura K, Kawase T, et al. Prolactin receptor knock-down in the rat paraventricular nucleus by amorpholino-antisense oligonucleotide causes hypocalcemia and stress gastric erosion[J]. Endocrinology, 2005, 146 (8): 3471-3480.
    [73] Ferguson A V, Marcus P, Spencer J, Allace JL. Paraventricular nucleus stimulation causes gastroduodenal mucosal necrosis in the rat. Am J Physiol, 1988, 255 (24): R861-R865.
    [74] Hierlihy LE, Wallace J H, Ferguson AV. Autonomic pathways in the development of neural stimulation-induced gastric mucosal damage. Am J Physiol, 1994, 266: G179-G185.
    [75] Zhang X G, Fogel R. Glutamate mediates an excitatory influence of the paraventricular hypothalamic nucleus on the dorsal motor nucleus of the vagus. J Neurophysiol, 2002, 88: 49-63.
    [1] Kalia.M, Mesulam.MM.Barin stem porjections of sensory and motor components of the wagus complex in the at: Laryngeal, tracheobranchial, pulmonary,cardiac, and gastrointestinal branches[J] .Comp Neurol.1980, 193:467-508.
    [2] Yoon SH,Sim SS,Hahn SJ,et al.Stimulatory role of the dorsal motor nucleus of the vagus in gastrointestinal motility through myoelectromechanical coordination in cats[J]. J Auton NervSyst. 1996,57(1-2):22-28.
    [3]祝建平.大鼠迷走背核、孤束核在胃运动及应激性胃粘膜损伤中的调控作用[D].济南:山东师范大学硕士论文.2005.
    [4] Zhang XY, Ai HB, Cui XY. Effects of nuclei ambiguus and dorsal motor nuclei of vagus on gastric H+ and HCO3- secretion in rats[J]. World J Gastroenterol, 2006, 12 (20): 3271-3274.
    [5] Zhou SY, Lu YX, Yao HR, Owyang C. Spatial organization of neurons in the dorsal motor nucleus of the vagus synapsing with intragastric cholinergic and nitric oxide/VIP neurons in the rat[J]. Am J Physiol, 2008, 294: G1201-G1209.
    [6] Krowicki ZK, Burmeister MA, Berthoud HR, Scullion RT, Fuchs K, Hornby PJ. Orexins in rat dorsal motor nucleus of the vagus potently stimulate gastric motor function[J]. Am J Physiol, 2002, 283: G465-G472.
    [7] Yoon SH,Sim SS,Hahn SJ,et al.Stimulatory role of the dorsal motor nucleus of the vagus in gastrointestinal motility through myoelectromechanical coordination in cats[J]. J Auton Nerv Syst.1996,57(1-2):22-28.
    [8]张朝佑.人体解剖学[M].北京:人民卫生出版社.1998:1045.
    [9] Zhang JF, Zheng F, Zhan MC, Sun D, Yan CD. Effect of electrical stimulation of paraventricular nucleus on stress gastric mucosal lesion in rats[J]. Acta Physiologica Sinica, 1992, 44: 583-590.
    [10] Eugene JZ, Koplovitz I. Gastric secretory response of the anesthetized dog after direct chemical stimulation of the supraoptic region[J]. Exp Neurol, 1977, 55: 122-132.
    [11] Zhang YY, Cao GH, Zhu WX, Cui XY, Ai HB. Comparative study of c-Fos expression in the rat dorsal vagal complex and nucleus ambiguus induced by different durations of restraint water-immersion stress[J]. Chin J Physiol, 2009, 52(3): 143-150.
    [12]丁炯,陶元祥,戴孝章.大鼠下丘脑室旁核向迷走神经背核投射的电镜观察[J].解剖学杂志. 1993(3).
    [13]池霞.沉默突触的研究进展[J].国外医学儿科学分册,2003,30(1):21-23.
    [14] Sasaki F, Wu P, Rougeau D, et al. Cytochemical studies of responses of corticotropes and thyrotropes to cold and novel environment stress[J]. Endocrinology, 1990, 127 (1): 285.
    [15] Zimmermann M. Ethical considerations in relation to pain in animal experimentation[J]. Acta Physiol Scand Suppl, 1986, 554: 221-233.
    [16]吕国蔚.实验神经生物学[M].北京:科技出版社.2002:234.
    [17]韩中胜.大鼠下丘脑到脊髓的直接纤维投射-WGA-HRP法研究[J].神经解剖学杂志,1988,4(2):193-199.
    [18]王昭金,饶志人,施际武.大鼠孤束核含酪氨酸羟化酶神经降压素和胆囊收缩素养神经元向伏核的投射-HRP和免疫细胞化学双重标记法的研究[J].解剖学报, 1992,23(1):37-42.
    [19]贾宏阁,饶志仁,施际武.大鼠孤束迷走复合体儿茶酚安能神经元向杏仁核的直接投射-HRP与免疫组织化学双标记研究[J].神经解剖学杂志,1992,8(2):233-237.
    [20] Paxinos G, Watson C. The rat brain in stereotaxic coordinates (fifth edition) [J]. Burlington, MA, USA: Elsevier Academic Press, 2005.
    [21]鲁洁波.轴浆运输与中毒性周围神经病[J].国外医学卫生学分册.1996.23(5):257-260.
    [22]薛景凤,张炎,张坤.大鼠坐骨神经局部缺血对其轴浆运输的影响[J].解剖学杂志,1998,21(4)325-328.
    [23]韩思源,宋涛,王玉新,刁尧.术后放疗对面神经轴浆运输影响的实验研究[J].2004.33(3):225-226.
    [24]彭敏,朱熊兆.心理应激与突触可塑性[J].国外医学精神病学分册.2004.31(2):27-28.
    [25]许能贵,汪帼斌,佘世峰.针刺百会大椎穴对局灶性脑缺血大鼠皮层脑源性神经生长因子表达的影响[J].广州中医药大学学报.2004,21(6):439-442.
    [26]许能贵,汪国斌,易玮.电针对不同时间段局灶性脑缺血大鼠缺血区皮层突触素P38和GAP-43表达的影响[J].针刺研.2004, 29(2): 85-89.
    [27]徐振华,许能贵,易玮等.针刺对大鼠脑缺血后海马突触可塑性的促进作用[J].安徽中医学院学报.2007.26(3):18-23.
    [28] Atwood HL, Wojtowicz JM. Silent synapses in neural plasticity: current exidence evidence[J]. Leam Mem, 1999,6(6):542-571.
    [29] Kwon YW,Guney ME. Brain-derived neurotrophic factor transiently stabilizes silent synapses on devuloping neuromuscular junctions[J].J Neurobiol, 1996,29(4):503-516.
    [30]池霞.沉默突触的研究进展[J].国外医学儿科学分册,2003,30(1):21-23.
    [31] Coulson RL,Klein M. Rpaid development of synaptic connections and plasticity beteween sensory neurons and mortor neurons of Aplysia in cell culture:implications for learning and regulation of synaptic strength[J]. J Neurophysiol, 1997,77(5):2316-2327.
    [1] Garrick T, Buack S, Bass P. Gastric motility is a major factor in cold restraint-induced lesion formation in rats[J]. Am J Physiol, 1986, 250: 191-199.
    [2] Garrick T, Leung F W, Buack S et al. Gastric motility is stimulated but overall blood flow is unaffected during cold restraint in the rat[J]. Gastroenterology, 1986, 91: 142-148.
    [3]艾洪滨,张震东.大鼠浸水应激性胃粘膜损伤机制的研究[J].生理学报, 1990, 42:496-502.
    [4]张玉玉,祝文兴,孙一耕等.大鼠束缚-浸水应激模型体温降低与应激性胃溃疡的关系.生物医学工程研究,2007, 26:282-284.
    [5] Zhang Y Y, Cao G H, Zhu W X et al. Comparative study of Fos expression in the rat dorsal vagal complex and nucleus ambiguus induced by different durations of restraint water-immersion stress[J]. Chinese Journal of Physiology, 2009, 52: 143-150.
    [6] Zhang Y Y, Zhu W X, Cao G H et al . Fos expression in the supraoptic nucleus is the most intense during different durations of restraint water-immersion stress in the rat. Journal of Physiological Sciences[J], 2009, DOI: 10.1007/s12576-009-0044-8.
    [7] Zimmermann M. Ethical considerations in relation to pain in animal experimentation[J]. Acta Physiol Scand Suppl, 1986, 554: 221-233.
    [8] Paxinos G, Watson C. The rat brain in stereotaxic coordinates(fifth edition)[M]. Burlington, MA, USA: Elsevier Academic Press, 2005.
    [9]李慧,纪丽珍,赵玉琳,艾洪滨.束缚+温水(36±1)℃应激对大鼠延髓及下丘脑Fos蛋白表达的影响[J]. 2010, 28(4):259-262.
    [10]槐瑞托,牛丽静,管振龙.孤束核的结构和功能[J].河北师范大学学报,2003,27:185-188.
    [11] Cruz M T, Murphy E C, Sahibzada N et al. A reevaluation of the effects of stimulation of the dorsal motor nucleus of the vagus on gastric motility in the rat[J]. Am J Physiol, 2007, 292: 291-307.
    [12] Zhou S Y, Lu Y X, Yao H R et al. Spatial organization of neurons in the dorsal motor nucleus of the vagus synapsing with intragastric cholinergic and nitric oxide/VIP neurons in the rat[J]. Am J Physiol, 2008;294: 1201-1209.
    [13] Zhang X, Fogel R, Renehan W E. Stimulation of the paraventricular nucleus modulates the activity of gut-sensitive neurons in the vagal complex[J]. Am J Physiol, 1999; 2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700