大鼠外侧下丘脑orexin A的促觉醒效应及其对腺苷催眠效应的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Orexin[又称hypocretin)是在外侧下丘脑区(lateral hypothalamic area, LHA)合成的具有神经兴奋作用的小分子肽。Orexin有两个单体:orexin A和orexin B,它们来自同一基因转录产物—前orexin原的酶解产物,主要通过两个G蛋白偶联受体orexin-1受体(orexin-1 receptor,OX1R)和orexin-2受体(orexin-2 receptor,OX2R)发挥作用。Orexin神经元胞体位于下丘脑侧下及穹窿周围区核团,数量仅约数千个但其纤维及受体分布却十分广泛,又有明显的投射投向多个脑区。中枢orexin系统对觉醒起关键作用:orexin能神经元密集地投向参与睡眠调控的脑区;orexin基因敲除小鼠或其受体基因自发突变后导致发作性睡病样表型包括猝倒和病态快速动眼(rapid eye movement, REM)睡眠。另外,人发作性睡病患者脑脊液及血浆中orexin水平也有降低。LHA的orexin神经元不仅作为觉醒激动系统中的一个结构参与觉醒促进作用,而且还通过对其他觉醒启动系统的统一控制实现睡眠-觉醒的调控。研究发现,在LHA微注射orexin A能够增加Glu释放,并且在LHA注射Glu促进觉醒。尽管如此,与Glu突触传递有关的orexin能神经元激活对睡眠-觉醒的调节机制尚未阐明。
     腺苷(adenosine, AD)是广泛存在于中枢神经系统细胞内、外的一种小分子物质,属于中枢抑制性递质,具有强烈抑制胆碱能和谷氨酸能神经元的功能。在中枢神经系统有4个G蛋白偶联的AD受体A1R,A2aR,A2bR和A3R,其中A1R,A2aR与睡眠-觉醒状态的调节有关。传统观点认为AD的作用位点主要位于基底前脑,但是最近—项下丘脑脑片的膜片钳实验证明,在外侧下丘脑这个觉醒促进区给外源性AD后,能抑制orexin能神经元的活性。本课题组前期采用脑片膜片钳技术研究发现,内源性AD通过激活其A1R抑制orexin能神经元的兴奋性突触传入。AD为生理性睡眠因子,在外侧下丘脑给予AD受体拟似剂(N6-cyclopentyladenosine, CPA)可诱发睡眠,而给予AD受体选择性的拮抗剂(1,3-dipropyl-8-phenylxanthine, DPX)可以促进觉醒,提示A1R主要参与其中。这些证据表明外侧下丘脑是AD调节睡眠-觉醒周期的另一个重要靶区。尽管如此,A2R是否参与外侧下丘脑区AD对睡眠-觉醒状态的调节以及在体情况下orexin对睡眠稳态因子AD催眠效应的调节尚未有文献报道。
     本研究采用多导睡眠记录和微注射技术,首先观察与谷氨酸能突触传递有关的orexin能神经元激活对睡眠-觉醒的影响,然后明确AD及其受体对外侧下丘脑orexin能神经元的抑制作用及orexin对睡眠稳态因子AD催眠效应的调节作用。结果如下:
     1. orexin A对睡眠-觉醒的调节作用
     外侧下丘脑orexin能神经元区内微量注射orexin A对大鼠睡眠-觉醒周期的影响。在LHA微量注射后的0-3 h内,给予10 pmol orexin A的大鼠觉醒期显著增加到微注射ACSF后的1.28倍,基线对照的1.31倍(P<0.05);非快速眼动(non-rapid eye movement, NREM)睡眠显著缩短到微注射ACSF后的90%,基线对照的89%(P<0.05);此时REM睡眠没有明显差异。在给予40 pmol orexin A后的0-3 h内,大鼠的觉醒期显著增加到微注射ACSF后的1.32倍,基线对照的1.35倍,并且NREM睡眠和REM睡眠均显著缩短(P<0.05)。在注射orexin A之前预先在相同位点微量注射SB-334867(OX1R特异性阻断剂)后,orexin A的促觉醒效应被明显抑制,表明OXlR介导了orexin A的作用。
     2.局部谷氨酸能神经元环路影响orexin A的促觉醒效应
     与ACSF自身对照相比,在LHA单侧微量注射80 ng Glu后,大鼠的觉醒时间在0~3h内增加到1.39倍,并且NREM睡眠时间减少到79%。而单侧微量注射40 ng Glu引起的睡眠-觉醒变化没有统计学差异。微量注射ACSF/orexin A后,0-3 h内的觉醒时间增加ACSF自身对照的1.36倍,而在给予orexin A之前预先注射Glu NMDA受体拮抗剂D-AP5后,orexin A的促觉醒效应被抑制,大鼠的睡眠-觉醒时间回复到ACSF自身对照水平。
     3.AD对睡眠-觉醒的调节作用
     在外侧下丘脑微注射AD 1、10 nmol和20 nmol后的0-3 h内大鼠觉醒时间分别减少到ACSF自身对照的84%、62%和60%;并且在10 nmol和20 nmol的高剂量AD给药后还伴有NREM和REM睡眠的显著增加。在3-6 h内SD大鼠ACSF自身对照和AD给药后的觉醒时间、NREM和REM睡眠时间在统计学上没有显著性差异。与ACSF自身对照相比,在给大鼠外侧下丘脑单侧微注射AD 20 nmol的第1、第2和第3 h内,AD明显减少觉醒时间(P<0.05),分别减少到ACSF自身对照的63%、61%和53%。并且在AD给药后的第5 h大鼠觉醒时间明显降低至ACSF自身对照的78%。此外给予A1R拮抗剂DPX促进大鼠觉醒,而给予A2R拮抗剂3,7-dimethyl-1-propargylxanthine (DMPX)没有类似效应,提示AD通过激活A1R,而不是A2R,发挥促睡眠效应。
     4. orexin A对AD促睡眠效应的抑制作用
     与自身对照组比较,在LHA微量注射AD/ACSF后的0-3 h内,大鼠觉醒时间减少到74%,并且NREM和REM睡眠分别增加到1.10、1.40倍(P<0.05)。当微注射AD/orexin A后,觉醒时间、NREM睡眠时间和REM睡眠时间回复到原来水平,与自身对照日没有显著的差异(P>0.05)。在微量注射后的3-6 h内,与自身对照组比较,AD/ACSF和AD/orexin A的觉醒、NREM和REM睡眠的变化差异无统计学意义(P>0.05)。此外,通过比较AD/ACSF和AD/orexin A的睡眠-觉醒调节作用,提示orexin A抑制AD的促睡眠作用。
     综上所述,本研究结果表明:第一,LHA微注射orexin A促进大鼠觉醒,并且减少NREM和REM睡眠。第二,外侧下丘脑orexin A通过局部谷氨酸能神经元环路发挥其促觉醒效应。第三,LHA微注射AD通过激活A1R,而不是A2R发挥促睡眠效应,并且orexin A能够拮抗其催眠效应。
The neuropeptide orexins, also called hypocretins, are produced by orexinergic neurons in the lateral hypothalamus area (LHA). Orexin system includes two separate peptides orexin A and B proteolytically derived from the same precursor protein and two specific G-protein-coupled receptors OX1R and OX2R.Although orexin neurons are localized in a subregion of hypothalamus, their projections and orexin receptors are widely distributed in the brain. The central orexin system plays a critical role in regulating sleep-wake cycle:the orexinergic neurons have extensive projections to the arousal systems; the loss of orexinergic cells or its malfunction has been linked to cataplexy like state in mice and abnormal rapid eye movement (REM) sleep. The orexin levels are low in cerebrospinal fluid and blood plasm. Orexins and orexin receptors play highly important roles in regulating sleep-awake states and the maintenance of arousal by regulating monoaminergic/cholinergic nuclei in the brain. The microinjection of orexin A into the lateral hypothalamus increase glutamate release, while glutamic acid stimulation of the lateral hypothalamic area promotes arousal and inhibits NREM/REM sleep. However, the mechanism of glutamatergic activation of orexin neurons on sleep-wake behavioral modulation is not known.
     Adenosine (AD), a byproduct of cell energy metabolism, serves as an effective sleep-promoting neurotransmitter in the central nervous system (CNS). Four subtypes of G protein-coupled adenosine receptors, A1R, A2aR, A2bR and A3R, are indicated in CNS, while A1Rs and A2aRs are involved in sleep-wake modulation. It is well illustrated that AD increases sleep by inhibition of the cholinergic region in basal forebrain through A1Rs. An in vitro study using electrophysiological methods reports that AD inhibits the activity of orexinergic neurons via A1Rs. A recent study in our lab has shown that AD inhibits the glutamatergic synaptic transmission to orexin neurons via A1Rs. Moreover, administration of adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA) in the orexinergic LHA could induce sleep and blockade of A1R by application of a selective AD A1R antagonist 1,3-dipropyl-8-phenylxanthine(DPX) could produce a significant increase in wakefulness. These evidences illuminate that there is another important target involved the modulation of endogenous adenosine on sleep-wakefulness in the orexinergic zone of LHA. But until now, whether A2R is involves in the sleep-inducing effect of adenosine in the orexinergic LHA and whether the sleep-inducing effect of adenosine could be abolished by the orexins are still little known.
     In the present study, using polysomnogram (PSG) recordings and microinjection technique, we firstly observed this modulation of orexinergic neurons which involved in glutamatergic synaptic transmission on spontaneous sleep-wakefulness. Subsequently, we evaluate the inhibition of adenosine and adenosine receptors on the orexin neurons in the lateral hypothamus as well as the excitation of orexin on the sleep-inducing effect of adenosine. The results show as follow:
     1. The arousal effects of orexin A
     Microinjection of 10 pmol orexin A into LHA could increase the total amount of wakefulness to 1.28 and 1.31-fold and decrease the entire time of NREM sleep to 0.90 and 0.89-fold during the first 3-h period, when compared with that of the ACSF treatment and baseline respectively. The change of REM sleep was under statistical level. Similarly, application of 40pmol orexin A into LHA significantly increased the total amount of wakefulness to 1.32 and 1.35-fold during the first 3-h session compared with the ACSF and baseline day respectively. The increase in wakefulness induced by 40 pmol orexin A was concomitant with the reduction in NREM/REM sleep。The time of wakefulness was increased after DMSO/orexin A application during the first 3-h post-injection sessions compared with control, and then recovered approximately to control level after SB-334867/orexin-A treatment.
     2. Orexin A promotes wakefulness via local glutamatergic neurons
     The significant increase in wakefulness to 1.39-fold (P<0.05) was concomitant with the decrease in NREM sleep to 79%(P<0.05) after the high dose of 80 ng glutamate microinjection during the 3-h post-injection recording period, when compared with ACSF treatment group. There is no significant change in any behavioral state after 40 ng glutamate administation. The ACSF/orexin A administration significantly increased the total amount of wakefulness during the 3-h sessions to 1.36-fold when compared with control, and then reduced approximately to control level after NMD A antagonist D-AP5/orexin A treatment.
     3. The sleep-inducing effect of AD
     AD administration to LHA at doses of 1,10,20 nmol decreased the total amount of wakefulness to 84%,62% and 60% during that first 3-h recording period and concomitantly increased NREM and REM sleep, when compared with baseline. AD administration into the LHA at 20 nmol dose shortened the wake time to 63%,61%,53% and 78% at the 1-h, 2-h,3-h and 5-h, respectively, over the ACSF control group. The reduction of wakefulness was concomitant with enhancements in NREM and REM. Microinjection of a selective AD A1R antagonist DPX into LHA could increase wakefulness and decrease sleep, but there is on similar effect on A2R antagonist DMPX application, suggesting A1R but not A2R involves in the sleep-inducing effect of AD.
     4. Orexin A attenuates the sleep-inducing effect of AD
     The total amount of wakefulness after AD/ACSF microinjection was significantly decreased to 74%(P<0.05) during the first 3-h post-injection sessions compared with the baseline, and then recovered approximately to baseline level after AD/orexin A treatment. Accordingly, the NREM and REM sleep was respectively increased to 1.10 and 1.40-fold by microinjection of AD, when compared with baseline, and then both recovered approximately to baseline level after AD/orexin A treatment. Moreover, by comparing the sleep-wake regulation of AD/ACSF and AD/orexin A, we find orexin A inhibits the sleep-inducing effect of AD.
     In conclusion, these observations provide evidences that the orexin A could promote wake and concomitantly decrease NREM and REM sleep via local glutamate circuits. In addition, AD reduces the amount of wakefulness through A1Rs, but not A2Rs. Furthermore, the sleep-inducing effect of adenosine on sleep-wakefulness is attenuated when orexin A tone was increased.
引文
1. de Lecea L., Kilduff T. S., Peyron C., et al. The hypocretins:hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A,1998,95(1):322-7.
    2. Sakurai T., Amemiya A., Ishii M., et al. Orexins and orexin receptors:a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell,1998,92(4):573-85.
    3. Zhu Y., Miwa Y., Yamanaka A., et al. Orexin receptor type-1 couples exclusively to pertussis toxin-insensitive G-proteins, while orexin receptor type-2 couples to both pertussis toxin-sensitive and-insensitive G-proteins. J Pharmacol Sci,2003,92(3): 259-66.
    4. Peyron C., Tighe D. K., van den Pol A. N., et al. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci,1998,18(23):9996-10015.
    5. Cutler D. J., Morris R., Sheridhar V., et al. Differential distribution of orexin-A and orexin-B immunoreactivity in the rat brain and spinal cord. Peptides,1999, 20(12):1455-70.
    6. Adamantidis A. R., Zhang F., Aravanis A. M., et al. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature,2007,450(7168):420-4.
    7. Ohno K. and Sakurai T. Orexin neuronal circuitry:role in the regulation of sleep and wakefulness. Front Neuroendocrinol,2008,29(1):70-87.
    8. Marcus J. N., Aschkenasi C. J., Lee C. E., et al. Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol,2001,435(1):6-25.
    9. Jones B. E. Arousal systems. Front Biosci,2003,8:s438-51.
    10. Murillo-Rodriguez E., Arias-Carrion O., Sanguino-Rodriguez K., et al. Mechanisms of sleep-wake cycle modulation. CNS Neurol Disord Drug Targets,2009,8(4):245-53.
    11. Rosenwasser A. M. Functional neuroanatomy of sleep and circadian rhythms. Brain Res Rev,2009,61 (2):281-306.
    12. Chemelli R. M., Willie J. T., Sinton C. M., et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell,1999,98(4):437-51.
    13. Lin L., Faraco J., Li R., et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell,1999,98(3):365-76.
    14. Liu Z. W. and Gao X. B. Adenosine inhibits activity of hypocretin/orexin neurons by the A1 receptor in the lateral hypothalamus:a possible sleep-promoting effect. J Neurophysiol,2007,97(l):837-48.
    15. Gao X. B. and van den Pol A. N. Melanin concentrating hormone depresses synaptic activity of glutamate and GABA neurons from rat lateral hypothalamus. J Physiol,2001, 533(Pt 1):237-52.
    16. Li Y., Gao X. B., Sakurai T., et al. Hypocretin/Orexin excites hypocretin neurons via a local glutamate neuron-A potential mechanism for orchestrating the hypothalamic arousal system. Neuron,2002,36(6):1169-81.
    17. Doane D. F., Lawson M. A., Meade J. R., et al. Orexin-induced feeding requires NMDA receptor activation in the perifornical region of the lateral hypothalamus. Am J Physiol Regul Integr Comp Physiol,2007,293(3):R1022-6.
    18.Alam M. A. and Mallick B. N. Glutamic acid stimulation of the perifornical-lateral hypothalamic area promotes arousal and inhibits non-REM/REM sleep. Neurosci Lett, 2008,439(3):281-6.
    19. Chagoya de Sanchez V., Hernandez Munoz R., Suarez J., et al. Day-night variations of adenosine and its metabolizing enzymes in the brain cortex of the rat--possible physiological significance for the energetic homeostasis and the sleep-wake cycle. Brain Res,1993,612(1-2):115-21.
    20. Benington J. H. and Heller H. C. Restoration of brain energy metabolism as the function of sleep. Prog Neurobiol,1995,45(4):347-60.
    21. Fredholm B. B., Chen J.F., Cunha R. A., et al. Adenosine and brain function. Int Rev Neurobiol,2005,63:191-270.
    22. Li Y., Fan S., Yan J., et al. Adenosine modulates the excitability of layer II stellate neurons in entorhinal cortex through A1 receptors. Hippocampus,2010.
    23. Basheer R., Strecker R. E., Thakkar M. M., et al. Adenosine and sleep-wake regulation. Prog Neurobiol,2004,73(6):379-96.
    24. Feldberg W. and Sherwood S. L. Infections of drugs into the lateral ventricle of the cat. J Physiol,1954,123(1):148-67.
    25. Haulica I., Ababei L., Branisteanu D., et al. Letter:Preliminary data on the possible hypnogenic role of adenosine. J Neurochem,1973,21(4):1019-20.
    26. Dunwiddie T. V. and Worth T. Sedative and anticonvulsant effects of adenosine analogs in mouse and rat. J Pharmacol Exp Ther,1982,220(1):70-6.
    27. Radulovacki M., Virus R. M., Djuricic-Nedelson M., et al. Adenosine analogs and sleep in rats. J Pharmacol Exp Ther,1984,228(2):268-74.
    28. Ticho S. R. and Radulovacki M. Role of adenosine in sleep and temperature regulation in the preoptic area of rats. Pharmacol Biochem Behav,1991,40(1):33-40.
    29. Yanik G., Glaum S. and Radulovacki M. The dose-response effects of caffeine on sleep in rats. Brain Res,1987,403(1):177-80.
    30. Virus R. M., Ticho S., Pilditch M., et al. A comparison of the effects of caffeine, 8-cyclopentyltheophylline, and alloxazine on sleep in rats. Possible roles of central nervous system adenosine receptors. Neuropsychopharmacology,1990,3(4):243-9.
    31.Schwierin B., Borbely A. A. and Tobler I. Effects of N6-cyclopentyladenosine and caffeine on sleep regulation in the rat. Eur J Pharmacol,1996,300(3):163-71.
    32. Fredholm B. B., Battig K., Holmen J., et al. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev,1999, 51(1):83-133.
    33. Porkka-Heiskanen T., Strecker R. E., Thakkar M., et al. Adenosine:a mediator of the sleep-inducing effects of prolonged wakefulness. Science,1997,276(5316):1265-8.
    34. Radek R. J., Decker M. W. and Jarvis M. F. The adenosine kinase inhibitor ABT-702 augments EEG slow waves in rats. Brain Res,2004,1026(l):74-83.
    35. Tobler I. and Scherschlicht R. Sleep and EEG slow-wave activity in the domestic cat: effect of sleep deprivation. Behav Brain Res,1990,37(2):109-18.
    36. Minor T. R., Rowe M. K., Soames Job R. F., et al. Escape deficits induced by inescapable shock and metabolic stress are reversed by adenosine receptor antagonists. Behav Brain Res,2001,120(2):203-12.
    37. Bjorness T. E. and Greene R. W. Adenosine and sleep. Curr Neuropharmacol,2009, 7(3):238-45.
    38. Gass N., Porkka-Heiskanen T. and Kalinchuk A. V. The role of the basal forebrain adenosine receptors in sleep homeostasis. Neuroreport,2009,20(11):1013-8.
    39. Jones B. E. Glia, adenosine, and sleep. Neuron,2009,61(2):156-7.
    40. Landolt H. P. Sleep homeostasis:a role for adenosine in humans? Biochem Pharmacol, 2008,75(11):2070-9.
    41. Blanco-Centurion C., Xu M., Murillo-Rodriguez E., et al. Adenosine and sleep homeostasis in the Basal forebrain. J Neurosci,2006,26(31):8092-100.
    42. Huston J. P., Haas H. L., Boix F., et al. Extracellular adenosine levels in neostriatum and hippocampus during rest and activity periods of rats. Neuroscience,1996,73(1):99-107.
    43. Portas C. M., Thakkar M., Rainnie D. G., et al. Role of adenosine in behavioral state modulation:a microdialysis study in the freely moving cat. Neuroscience,1997, 79(1):225-35.
    44. Basheer R., Porkka-Heiskanen T., Stenberg D., et al. Adenosine and behavioral state control:adenosine increases c-Fos protein and API binding in basal forebrain of rats. Brain Res Mol Brain Res,1999,73(1-2):1-10.
    45. Porkka-Heiskanen T., Strecker R. E. and McCarley R. W. Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep:an in vivo microdialysis study. Neuroscience,2000,99(3):507-17.
    46. Basheer R., Halldner L., Alanko L., et al. Opposite changes in adenosine A1 and A2A receptor mRNA in the rat following sleep deprivation. Neuroreport,2001,12(8): 1577-80.
    47. Arrigoni E., Chamberlin N. L., Saper C. B., et al. Adenosine inhibits basal forebrain cholinergic and noncholinergic neurons in vitro. Neuroscience,2006,140(2):403-13.
    48. Xia J., Chen F., Ye J., et al. Activity-dependent release of adenosine inhibits the glutamatergic synaptic transmission and plasticity in the hypothalamic hypocretin/orexin neurons. Neuroscience,2009,162(4):980-8.
    49. Thakkar M. M., Engemann S. C., Walsh K. M., et al. Adenosine and the homeostatic control of sleep:effects of A1 receptor blockade in the perifornical lateral hypothalamus on sleep-wakefulness. Neuroscience,2008,153(4):875-80.
    50. Alam M. N., Kumar S., Rai S., et al. Role of adenosine A(1) receptor in the perifornical-lateral hypothalamic area in sleep-wake regulation in rats. Brain Res,2009, 1304:96-104.
    51.Ganjavi H. and Shapiro C. M. Hypocretin/Orexin:a molecular link between sleep, energy regulation, and pleasure. J Neuropsychiatry Clin Neurosci,2007,19(4):413-9.
    52. Hoang Q. V., Bajic D., Yanagisawa M., et al. Effects of orexin (hypocretin) on GIRK channels. J Neurophysiol,2003,90(2):693-702.
    53. Liu R. J., van den Pol A. N. and Aghajanian G. K. Hypocretins (orexins) regulate serotonin neurons in the dorsal raphe nucleus by excitatory direct and inhibitory indirect actions. J Neurosci,2002,22(21):9453-64.
    54. Taylor M. M. and Samson W. K. The other side of the orexins:endocrine and metabolic actions. Am J Physiol Endocrinol Metab,2003,284(1):E13-7.
    55. Nunez A., Rodrigo-Angulo M. L., Andres I. D., et al. Hypocretin/Orexin neuropeptides: participation in the control of sleep-wakefulness cycle and energy homeostasis. Curr Neuropharmacol,2009,7(l):50-9.
    56. Huang Z. L., Sato Y., Mochizuki T., et al. Prostaglandin E2 activates the histaminergic system via the EP4 receptor to induce wakefulness in rats. J Neurosci,2003, 23(14):5975-83.
    57. Nishino S., Ripley B., Overeem S., et al. Low cerebrospinal fluid hypocretin (Orexin) and altered energy homeostasis in human narcolepsy. Ann Neurol,2001,50(3):381-8.
    58.Sakurai T. Roles of orexins in regulation of feeding and wakefulness. Neuroreport,2002, 13(8):987-95.
    59. Soffin E. M., Evans M. L., Gill C. H., et al. SB-334867-A antagonises orexin mediated excitation in the locus coeruleus. Neuropharmacology,2002,42(1):127-33.
    60. Li B., Chen F., Ye J., et al. The Modulation of Orexin A on HCN Currents of Pyramidal Neurons in Mouse Prelimbic Cortex. Cereb Cortex,2009.
    61. Sutcliffe J. G. and de Lecea L. The hypocretins:setting the arousal threshold. Nat Rev Neurosci,2002,3(5):339-49.
    1. Li Y., Gao X. B., Sakurai T., et al. Hypocretin/Orexin excites hypocretin neurons via a local glutamate neuron-A potential mechanism for orchestrating the hypothalamic arousal system. Neuron,2002,36(6):1169-81.
    2. Doane D.F., Lawson M. A., Meade J. R., et al. Orexin-induced feeding requires NMDA receptor activation in the perifornical region of the lateral hypothalamus. Am J Physiol Regul Integr Comp Physiol,2007,293(3):R1022-6.
    3. Alam M. A. and Mallick B. N. Glutamic acid stimulation of the perifornical-lateral hypothalamic area promotes arousal and inhibits non-REM/REM sleep. Neurosci Lett, 2008,439(3):281-6.
    4. Jones B. E. Arousal systems. Front Biosci,2003,8:s438-51.
    5. Murillo-Rodriguez E., Arias-Carrion O., Sanguino-Rodriguez K., et al. Mechanisms of sleep-wake cycle modulation. CNS Neurol Disord Drug Targets,2009,8(4):245-53.
    6. Rosenwasser A. M. Functional neuroanatomy of sleep and circadian rhythms. Brain Res Rev,2009,61(2):281-306.
    7. Landolt H. P. Sleep homeostasis:a role for adenosine in humans? Biochem Pharmacol, 2008,75(11):2070-9.
    8. Jones B. E. Glia, adenosine, and sleep. Neuron,2009,61(2):156-7.
    9. Ticho S. R. and Radulovacki M. Role of adenosine in sleep and temperature regulation in the preoptic area of rats. Pharmacol Biochem Behav,1991,40(1):33-40.
    10. Portas C. M., Thakkar M., Rainnie D. G., et al. Role of adenosine in behavioral state modulation:a microdialysis study in the freely moving cat. Neuroscience,1997, 79(1):225-35.
    11. Basheer R., Porkka-Heiskanen T., Stenberg D., et al. Adenosine and behavioral state control:adenosine increases c-Fos protein and AP1 binding in basal forebrain of rats. Brain Res Mol Brain Res,1999,73(1-2):1-10.
    12. Basheer R., Halldner L., Alanko L., et al. Opposite changes in adenosine A1 and A2A receptor mRNA in the rat following sleep deprivation. Neuroreport,2001,12(8): 1577-80.
    13. Liu Z. W. and Gao X. B. Adenosine inhibits activity of hypocretin/orexin neurons by the A1 receptor in the lateral hypothalamus:a possible sleep-promoting effect. J Neurophysiol,2007,97(1):837-48.
    14. Xia J., Chen F.,Ye J., et al. Activity-dependent release of adenosine inhibits the glutamatergic synaptic transmission and plasticity in the hypothalamic hypocretin/orexin neurons. Neuroscience,2009,162(4):980-8.
    15. Thakkar M. M., Engemann S. C., Walsh K. M., et al. Adenosine and the homeostatic control of sleep:effects of Al receptor blockade in the perifornical lateral hypothalamus on sleep-wakefulness. Neuroscience,2008,153(4):875-80.
    16. Alam M. N., Kumar S., Rai S., et al. Role of adenosine A(1) receptor in the perifornical-lateral hypothalamic area in sleep-wake regulation in rats. Brain Res,2009, 1304:96-104.
    17.Peyron C., Tighe D. K., van den Pol A. N., et al. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci,1998,18(23):9996-10015.
    18. de Lecea L., Kilduff T. S., Peyron C., et al. The hypocretins:hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A,1998,95(1):322-7.
    19. Thakkar M. M., Winston S. and McCarley R. W. Orexin neurons of the hypothalamus express adenosine A1 receptors. Brain Res,2002,944(1-2):190-4.
    20. Fredholm B. B., Chen J.F., Cunha R. A., et al. Adenosine and brain function. Int Rev Neurobiol,2005,63:191-270.
    21. Li Y., Fan S., Yan J., et al. Adenosine modulates the excitability of layer II stellate neurons in entorhinal cortex through A1 receptors. Hippocampus,2010.
    22. Basheer R., Strecker R. E., Thakkar M. M., et al. Adenosine and sleep-wake regulation. Prog Neurobiol,2004,73(6):379-96.
    23. Porkka-Heiskanen T., Strecker R. E., Thakkar M., et al. Adenosine:a mediator of the sleep-inducing effects of prolonged wakefulness. Science,1997,276(5316):1265-8.
    24. Huston J. P., Haas H. L., Boix F.,et al. Extracellular adenosine levels in neostriatum and hippocampus during rest and activity periods of rats. Neuroscience,1996,73(1):99-107.
    25. Murillo-Rodriguez E., Blanco-Centurion C., Gerashchenko D., et al. The diurnal rhythm of adenosine levels in the basal forebrain of young and old rats. Neuroscience, 2004,123(2):361-70.
    26. Landolt H. P., Retey J. V., Tonz K., et al. Caffeine attenuates waking and sleep electro- encephalographic markers of sleep homeostasis in humans. Neuropsychopharmacology, 2004,29(10):1933-9.
    27. Daly J. W. and Fredholm B. B. Caffeine--an atypical drug of dependence. Drug Alcohol Depend,1998,51(1-2):199-206.
    28. Fredholm B. B., Battig K., Holmen J., et al. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev,1999, 51(1):83-133.
    29. Virus R. M., Ticho S., Pilditch M., et al. A comparison of the effects of caffeine, 8-cyclopentyltheophylline, and alloxazine on sleep in rats. Possible roles of central nervous system adenosine receptors. Neuropsychopharmacology,1990,3(4):243-9.
    1. Campbell I. G. EEG recording and analysis for sleep research. Curr Protoc Neurosci, 2009, Chapter 10:Unit10.2.
    2.宋承辉和胡志安.Orexin:觉醒通路中一中重要的下丘脑神经肽.第三军医大学学报,2003,25(13):1207-10.
    3. Szymusiak R. and McGinty D. Hypothalamic regulation of sleep and arousal. Ann N Y Acad Sci,2008,1129:275-86.
    4. Lu J., Greco M. A., Shiromani P., et al. Effect of lesions of the ventrolateral preoptic nucleus on NREM and REM sleep. J Neurosci,2000,20(10):3830-42.
    5. Franken P. and Dijk D. J. Circadian clock genes and sleep homeostasis. Eur J Neurosci, 2009,29(9):1820-9.
    6.谌小维和胡志安.哺乳动物昼夜节律调节的神经基础——昼夜光感受器.生物化学与生物进展,2003,30(5):694-7.
    7.李洋,王得春和胡志安.睡眠的记忆巩固功能研究进展.生物化学与生物物理进展,2008,35(11):1209-24.
    8. Bjorness T. E. and Greene R. W. Adenosine and sleep. Curr Neuropharmacol,2009, 7(3):238-45.
    9. Wardas J. Neuroprotective role of adenosine in the CNS. Pol J Pharmacol,2002, 54(4):313-26.
    10. Cunha R. A. Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system:different roles, different sources and different receptors. Neurochem Int,2001,38(2):107-25.
    11. Dunwiddie T. V., Diao L. and Proctor W. R. Adenine nucleotides undergo rapid, quantitative conversion to adenosine in the extracellular space in rat hippocampus. J Neurosci,1997,17(20):7673-82.
    12. Pascual O., Casper K. B., Kubera C., et al. Astrocytic purinergic signaling coordinates synaptic networks. Science,2005,310(5745):113-6.
    13. Ralevic V. and Burnstock G. Receptors for purines and pyrimidines. Pharmacol Rev, 1998,50(3):413-92.
    14. Dixon A. K., Gubitz A. K., Sirinathsinghji D. J., et al. Tissue distribution of adenosine receptor mRNAs in the rat. Br J Pharmacol,1996,118(6):1461-8.
    15. Linden J. Molecular approach to adenosine receptors:receptor-mediated mechanisms of tissue protection. Annu Rev Pharmacol Toxicol,2001,41:775-87.
    16. Wan T. C., Ge Z. D., Tampo A., et al. The A3 adenosine receptor agonist CP-532,903 [N6-(2,5-dichlorobenzyl)-3'-aminoadenosine-5'-N-methylcarboxamide] protects against myocardial ischemia/reperfusion injury via the sarcolemmal ATP-sensitive potassium channel. J Pharmacol Exp Ther,2008,324(1):234-43.
    17. Phillis J. W. and Wu P. H. The role of adenosine and its nucleotides in central synaptic transmission. Prog Neurobiol,1981,16(3-4):187-239.
    18. Rudolphi K. A., Schubert P., Parkinson F. E., et al. Neuroprotective role of adenosine in cerebral ischaemia. Trends Pharmacol Sci,1992,13(12):439-45.
    19. Fredholm B. B. Adenosine and neuroprotection. Int Rev Neurobiol,1997,40:259-80.
    20. Von Lubitz D. K. Adenosine and cerebral ischemia:therapeutic future or death of a brave concept? Eur J Pharmacol,1999,365(1):9-25.
    21. Feldberg W. and Sherwood S. L. Infections of drugs into the lateral ventricle of the cat. J Physiol,1954,123(1):148-67.
    22. Haulica I., Ababei L., Branisteanu D., et al. Letter:Preliminary data on the possible hypnogenic role of adenosine. J Neurochem,1973,21(4):1019-20.
    23. Dunwiddie T. V. and Worth T. Sedative and anticonvulsant effects of adenosine analogs in mouse and rat. J Pharmacol Exp Ther,1982,220(1):70-6.
    24. Radulovacki M., Virus R. M., Djuricic-Nedelson M., et al. Adenosine analogs and sleep in rats. J Pharmacol Exp Ther,1984,228(2):268-74.
    25. Ticho S. R. and Radulovacki M. Role of adenosine in sleep and temperature regulation in the preoptic area of rats. Pharmacol Biochem Behav,1991,40(1):33-40.
    26. Fredholm B. B., Battig K., Holmen J., et al. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev,1999, 51(1):83-133.
    27. Yanik G., Glaum S. and Radulovacki M. The dose-response effects of caffeine on sleep in rats. Brain Res,1987,403(1):177-80.
    28. Virus R. M., Ticho S., Pilditch M., et al. A comparison of the effects of caffeine, 8-cyclopentyltheophylline, and alloxazine on sleep in rats. Possible roles of central nervous system adenosine receptors. Neuropsychopharmacology,1990,3(4):243-9.
    29. Landolt H. P., Dijk D. J., Gaus S. E., et al. Caffeine reduces low-frequency delta activity in the human sleep EEG.Neuropsychopharmacology,1995,12(3):229-38.
    30. Schwierin B., Borbely A. A. and Tobler I. Effects of N6-cyclopentyladenosine and caffeine on sleep regulation in the rat. Eur J Pharmacol,1996,300(3):163-71.
    31. Alam M. N., Szymusiak R., Gong H., et al. Adenosinergic modulation of rat basal forebrain neurons during sleep and waking:neuronal recording with microdialysis. J Physiol,1999,521 Pt 3:679-90.
    32. Thakkar M. M., Delgiacco R. A., Strecker R. E., et al. Adenosinergic inhibition of basal forebrain wakefulness-active neurons:a simultaneous unit recording and microdialysis study in freely behaving cats. Neuroscience,2003,122(4):1107-13.
    33. Portas C. M., Thakkar M., Rainnie D. G., et al. Role of adenosine in behavioral state modulation:a microdialysis study in the freely moving cat. Neuroscience,1997, 79(1):225-35.
    34. Chagoya de Sanchez V., Hernandez Munoz R., Suarez J., et al. Day-night variations of adenosine and its metabolizing enzymes in the brain cortex of the rat--possible physiological significance for the energetic homeostasis and the sleep-wake cycle. Brain Res,1993,612(1-2):115-21.
    35. Benington J. H. and Heller H. C. Restoration of brain energy metabolism as the function of sleep. Prog Neurobiol,1995,45(4):347-60.
    36. Huston J. P., Haas H. L., Boix F., et al. Extracellular adenosine levels in neostriatum and hippocampus during rest and activity periods of rats. Neuroscience,1996,73(1): 99-107.
    37. Porkka-Heiskanen T., Strecker R. E., Thakkar M., et al. Adenosine:a mediator of the sleep-inducing effects of prolonged wakefulness. Science,1997,276(5316):1265-8.
    38. Porkka-Heiskanen T., Strecker R. E. and McCarley R. W. Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep:an in vivo microdialysis study. Neuroscience,2000,99(3):507-17.
    39. Benington J. H., Kodali S. K. and Heller H. C. Stimulation of A1 adenosine receptors mimics the electroencephalographic effects of sleep deprivation. Brain Res,1995, 692(1-2):79-85.
    40. Karacan I., Thornby J. I., Anch M., et al. Dose-related sleep disturbances induced by coffee and caffeine. Clin Pharmacol Ther,1976,20(6):682-9.
    41. Landolt H. P., Retey J. V., Tonz K., et al. Caffeine attenuates waking and sleep electro-encephalographic markers of sleep homeostasis in humans. Neuropsychopharmacology, 2004,29(10):1933-9.
    42. Methippara M. M., Kumar S., Alam M. N., et al. Effects on sleep of microdialysis of adenosine Al and A2a receptor analogs into the lateral preoptic area of rats. Am J Physiol Regul Integr Comp Physiol,2005,289(6):R1715-23.
    43. Oishi Y., Huang Z. L., Fredholm B. B., et al. Adenosine in the tuberomammillary nucleus inhibits the histaminergic system via A1 receptors and promotes non-rapid eye movement sleep. Proc Natl Acad Sci U S A,2008,105(50):19992-7.
    44. Basheer R., Porkka-Heiskanen T., Stenberg D., et al. Adenosine and behavioral state control:adenosine increases c-Fos protein and AP1 binding in basal forebrain of rats. Brain Res Mol Brain Res,1999,73(1-2):1-10.
    45. Radek R. J., Decker M. W. and Jarvis M. F. The adenosine kinase inhibitor ABT-702 augments EEG slow waves in rats. Brain Res,2004,1026(1):74-83.
    46. Radulovacki M., Virus R. M., Djuricic-Nedelson M., et al. Hypnotic effects of deoxycorformycin in rats. Brain Res,1983,271(2):392-5.
    47. Retey J. V., Adam M., Honegger E., et al. A functional genetic variation of adenosine deaminase affects the duration and intensity of deep sleep in humans. Proc Natl Acad Sci US A,2005,102(43):15676-81.
    48. Reppert S. M., Weaver D. R., Stehle J. H., et al. Molecular cloning and characterization of a rat Al-adenosine receptor that is widely expressed in brain and spinal cord. Mol Endocrinol,1991,5(8):1037-48.
    49. Fink J. S., Weaver D. R., Rivkees S. A., et al. Molecular cloning of the rat A2 adenosine receptor:selective co-expression with D2 dopamine receptors in rat striatum. Brain Res Mol Brain Res,1992,14(3):186-95.
    50. Basheer R., Halldner L., Alanko L., et al. Opposite changes in adenosine Al and A2A receptor mRNA in the rat following sleep deprivation. Neuroreport,2001,12(8): 1577-80.
    51. Elmenhorst D., Meyer P. T., Winz O. H., et al. Sleep deprivation increases Al adenosine receptor binding in the human brain:a positron emission tomography study. J Neurosci, 2007,27(9):2410-5.
    52. Basheer R., Bauer A., Elmenhorst D., et al. Sleep deprivation upregulates Al adenosine receptors in the rat basal forebrain. Neuroreport,2007,18(18):1895-9.
    53. Liu Z. W. and Gao X. B. Adenosine inhibits activity of hypocretin/orexin neurons by the A1 receptor in the lateral hypothalamus:a possible sleep-promoting effect. J Neurophysiol,2007,97(1):837-48.
    54. Chamberlin N. L., Arrigoni E., Chou T. C., et al. Effects of adenosine on gabaergic synaptic inputs to identified ventrolateral preoptic neurons. Neuroscience,2003, 119(4):913-8.
    55. Morairty S., Rainnie D., McCarley R., et al. Disinhibition of ventrolateral preoptic area sleep-active neurons by adenosine:a new mechanism for sleep promotion. Neuroscience, 2004,123(2):451-7.
    56. Coleman C. G., Baghdoyan H. A. and Lydic R. Dialysis delivery of an adenosine A2A agonist into the pontine reticular formation of C57BL/6J mouse increases pontine acetylcholine release and sleep. J Neurochem,2006,96(6):1750-9.
    57. Hong Z. Y., Huang Z. L., Qu W. M., et al. An adenosine A receptor agonist induces sleep by increasing GABA release in the tuberomammillary nucleus to inhibit histaminergic systems in rats. J Neurochem,2005,92(6):1542-9.
    58. Gallopin T., Luppi P. H., Cauli B., et al. The endogenous somnogen adenosine excites a subset of sleep-promoting neurons via A2A receptors in the ventrolateral preoptic nucleus. Neuroscience,2005,134(4):1377-90.
    59. Satoh S., Matsumura H., Suzuki F., et al. Promotion of sleep mediated by the A2a-adenosine receptor and possible involvement of this receptor in the sleep induced by prostaglandin D2 in rats. Proc Natl Acad Sci U S A,1996,93(12):5980-4.
    60. Huang Z. L., Qu W. M., Eguchi N., et al. Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nat Neurosci,2005,8(7):858-9.
    61. Satoh S., Matsumura H., Kanbayashi T., et al. Expression pattern of FOS in orexin neurons during sleep induced by an adenosine A2A receptor agonist. Behav Brain Res, 2006,170(2):277-86.
    62. Stenberg D., Litonius E., Halldner L., et al. Sleep and its homeostatic regulation in mice lacking the adenosine A1 receptor. J Sleep Res,2003,12(4):283-90.
    63. Bjorness T. E., Kelly C. L., Gao T., et al. Control and function of the homeostatic sleep response by adenosine A1 receptors. J Neurosci,2009,29(5):1267-76.
    64. Urade Y., Eguchi N., Qu W. M., et al. Sleep regulation in adenosine A2A receptor-deficient mice. Neurology,2003,61(11 Suppl 6):S94-6.
    65. Sakata M., Sei H., Eguchi N., et al. Arterial pressure and heart rate increase during REM sleep in adenosine A2A-receptor knockout mice, but not in wild-type mice. Neuropsychopharmacology,2005,30(10):1856-60.
    66. Kalinchuk A. V., Urrila A. S., Alanko L., et al. Local energy depletion in the basal forebrain increases sleep. Eur J Neurosci,2003,17(4):863-9.
    67. Strecker R. E., Morairty S., Thakkar M. M., et al. Adenosinergic modulation of basal forebrain and preoptic/anterior hypothalamic neuronal activity in the control of behavioral state. Behav Brain Res,2000,115(2):183-204.
    68. Brambilla D., Chapman D. and Greene R. Adenosine mediation of presynaptic feedback inhibition of glutamate release. Neuron,2005,46(2):275-83.
    69. Rainnie D. G., Grunze H. C., McCarley R. W., et al. Adenosine inhibition of mesopontine cholinergic neurons:implications for EEG arousal. Science,1994, 263(5147):689-92.
    70. Pace-Schott E. F. and Hobson J. A. The neurobiology of sleep:genetics, cellular physiology and subcortical networks. Nat Rev Neurosci,2002,3(8):591-605.
    71. Blanco-Centurion C., Xu M., Murillo-Rodriguez E., et al. Adenosine and sleep homeostasis in the Basal forebrain. J Neurosci,2006,26(31):8092-100.
    72. Kalinchuk A. V., McCarley R. W., Stenberg D., et al. The role of cholinergic basal forebrain neurons in adenosine-mediated homeostatic control of sleep:lessons from 192 IgG-saporin lesions. Neuroscience,2008,157(1):238-53.
    73. Marcus J. N., Aschkenasi C. J., Lee C. E., et al. Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol,2001,435(1):6-25.
    74. Chemelli R. M., Willie J. T., Sinton C. M., et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell,1999,98(4):437-51.
    75. Nishino S., Ripley B., Overeem S., et al. Low cerebrospinal fluid hypocretin (Orexin) and altered energy homeostasis in human narcolepsy. Ann Neurol,2001,50(3):381-8.
    76. Sakurai T. Roles of orexins in regulation of feeding and wakefulness. Neuroreport, 2002,13(8):987-95.
    77. Arrigoni E., Chamberlin N. L, Saper C. B., et al. Adenosine inhibits basal forebrain cholinergic and noncholinergic neurons in vitro. Neuroscience,2006,140(2):403-13.
    78. Xia J., Chen F., Ye J., et al. Activity-dependent release of adenosine inhibits the glutamatergic synaptic transmission and plasticity in the hypothalamic hypocretin/orexin neurons. Neuroscience,2009,162(4):980-8.
    79. Alam M. N., Kumar S., Rai S., et al. Role of adenosine A(1) receptor in the perifornical-lateral hypothalamic area in sleep-wake regulation in rats. Brain Res,2009, 1304:96-104.
    80. Thakkar M. M., Engemann S. C., Walsh K. M., et al. Adenosine and the homeostatic control of sleep:effects of A1 receptor blockade in the perifornical lateral hypothalamus on sleep-wakefulness. Neuroscience,2008,153(4):875-80.
    81. Sherin J. E., Elmquist J. K., Torrealba F., et al. Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat. J Neurosci,1998,18(12):4705-21.
    82. Scammell T. E., Gerashchenko D. Y., Mochizuki T., et al. An adenosine A2a agonist increases sleep and induces Fos in ventrolateral preoptic neurons. Neuroscience,2001, 107(4):653-63.
    83. Mendelson W. B. Effects of microinjections of triazolam into the ventrolateral preoptic area on sleep in the rat. Life Sci,1999,65(25):PL301-7.
    84. Urade Y. and Hayaishi O. Prostaglandin D2 and sleep regulation. Biochim Biophys Acta,1999,1436(3):606-15.
    85. Marks G. A., Birabil C. G. and Speciale S. G. Adenosine Al receptors mediate inhibition of cAMP formation in vitro in the pontine, REM sleep induction zone. Brain Res,2005, 1061(2):124-7.
    86. Murillo-Rodriguez E., Liu M., Blanco-Centurion C., et al. Effects of hypocretin (orexin) neuronal loss on sleep and extracellular adenosine levels in the rat basal forebrain. Eur J Neurosci,2008,28(6):1191-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700