微管相关蛋白4在缺氧心肌细胞线粒体通透性转换孔开放和凋亡中的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞缺氧是严重烧伤最常见的病理生理现象之一。严重烧伤早期即存在器质性心肌损害,线粒体是心肌细胞缺氧损害的核心靶细胞器,线粒体通透性转换孔(MPTP)开放是启动线粒体途径凋亡的关键步骤,但其具体调节机制目前还不清楚。电压依赖的阴离子通道( VDAC )作为MPTP相关蛋白之一,可以调控MPTP的开放。有研究表明微管相关蛋白(microtubule associated proteins,MAPs)中的MAP2和Tau蛋白可以与线粒体外膜上的VDAC相互作用。
     我们推测微管相关蛋白4(MAP4)在缺氧引起MPTP开放和细胞凋亡中发挥了重要作用。为验证这一设想,本研究利用体外培养的缺氧心肌细胞模型,通过构建MAP4野生型和磷酸化位点突变型重组腺病毒载体和MAP4 RNA干扰重组腺病毒载体,探讨MAP4在缺氧引起心肌细胞MPTP开放和凋亡中的作用和机制。
     一、研究目的:
     探讨微管相关蛋白4在缺氧心肌细胞线粒体通透性转换孔开放和凋亡中的作用和可能的机制。
     二、材料方法:
     1.将分离培养的乳鼠心肌细胞在94% N2,5% CO_2,1% O_2的混合气体中培养,制作缺氧模型。
     2.提取大鼠心肌组织和心肌细胞线粒体蛋白,Western-blot检测缺氧前后MAP4表达变化。
     3.免疫共沉淀和免疫荧光共定位检测MAP4和VDAC相互作用。
     4.构建MAP4磷酸化位点突变(MAP4(Glu))和MAP4 SiRNA重组腺病毒载体,包装产生重组腺病毒。
     5.提取心肌细胞胞质溶胶蛋白,Western-blot检测细胞色素C含量变化,用四甲基罗丹明乙酯(TMRE)检测线粒体膜电位,使用TUNEL染色检测心肌细胞凋亡情况。
     三、主要结果
     1.正常培养的大鼠乳鼠心肌细胞和成年大鼠心肌组织线粒体中均存在MAP4蛋白表达,而且在缺氧处理后MAP4蛋白表达显著增加。
     2. MAP4可以和VDAC结合,同时MAP4和VDAC在心肌细胞的分布存在良好的共定位,而且在缺氧30min处理后二者结合明显增加。
     3.常氧培养心肌细胞线粒体膜电位较高,其线粒体荧光强度较强。缺氧30min时线粒体膜电位显著降低,表现为线粒体荧光强度减弱。并且随着缺氧时间延长,线粒体膜电位进一步降低,线粒体荧光强度逐渐减弱。MAP4高表达可以减轻缺氧引起的心肌细胞线粒体膜电位降低,而MAP4 RNA干扰或高表达MAP4(Glu)均可引起心肌细胞线粒体膜电位降低。
     4.常氧培养心肌细胞胞质溶胶蛋白细胞色素C含量较低,缺氧30min时细胞色素
     C含量即较对照组显著增高,并且随着缺氧时间延长,细胞色素C含量进一步增高。MAP4高表达可以减轻缺氧引起的心肌细胞胞质溶胶细胞色素C含量增高,而MAP4 RNA干扰或高表达MAP4(Glu)均可引起心肌细胞胞质溶胶细胞色素C含量增高。
     5.常氧培养心肌细胞只有极少数心肌细胞出现凋亡,缺氧处理后,心肌细胞凋亡比例显著升高,缺氧3小时后,心肌细胞凋亡比例较正常组显著升高,随着缺氧时间延长,心肌细胞凋亡比例逐渐升高。MAP4高表达可以减轻缺氧引起的心肌细胞凋亡,而MAP4 RNA干扰或高表达MAP4(Glu)可以引起心肌细胞凋亡增加。
     四、讨论与结论
     1.本研究首次发现心肌细胞线粒体存在MAP4蛋白的表达,缺氧处理后线粒体MAP4蛋白表达增加。
     2. MAP4与心肌细胞线粒体外膜蛋白VDAC存在相互作用,缺氧时二者相互作用增强。
     3.缺氧早期心肌细胞MAP4磷酸化增加,线粒体膜电位下降,胞质溶胶细胞色素C含量显著增加,心肌细胞凋亡显著增加。
     4.高表达MAP4蛋白能够减轻缺氧引起的心肌细胞MPTP开放和心肌细胞凋亡,而抑制MAP4蛋白表达和高表达磷酸化位点突变MAP4蛋白(MAP4(Glu))均可以引起MPTP开放、心肌细胞凋亡增加。MAP4在缺氧所致的心肌细胞MPTP开放和凋亡中发挥了重要作用,而缺氧导致MAP4磷酸化增加是其重要机制。
     5. MAP4在缺氧心肌细胞凋亡调控中发挥了重要作用,其机制可能是缺氧时MAP4磷酸化增加,MAP4和VDAC相互作用增强,引起MPTP开放,从而导致了心肌细胞凋亡增加。
Cellular hypoxia is one of the most common pathologic phenomenon in severe burns. Cardiac damage exists in the early stage of severe burns. Mitochondria dysfunction in hypoxia plays an important role in the cardiac damage. Mitochondrial permeability transition pore (MPTP) openning is the key process of apoptosis, but its mechanism is still unclear. Voltage-dependent anion channel(VDAC) is a component protein of MPTP in mitochondrial outer membrane, which can modulate MPTP. Studies showed that MAP2 and Tau, which are the member of microtubule associated protein,can interact with VDAC.
     We presumed that MAP4 has an important role in modulating hypoxia-induced MPTP opening and apoptosis .. In this study, neonatal rat cadiocytes cultured in the hypoxic gas were employed as the hypoxic model. We construced wild-type and phosphorylation sites mutation as well as MAP4 RNA interference recombination adaenovirus to investigate the effects and mechanisms of MAP4 in hypoxia-induced MPTP openning and cardiocyte apoptosis.
     Objectives
     To investigate the mechanism of microtubule-associated protein 4 on the opening of mitochondrial permeability transition pore and apoptosis in hypoxic cardiomyocytes.
     Methods
     1. Neonatal rat cadiocytes were isolated, then, cultured in the mixed gas (94%N_2,5%CO_2,1% O_2) to employ the hypoxic model.
     2. Rat myocard tissues and cadiocytes mitochondrial proteins were obtained after hypoxia treatment, and the expression of MAP4 protein was assayed using western- blot, normal myocard tissues and cadiocytes were used as control.
     3. Interactions between MAP4 and VDAC were evaluated by co-immunoprecipitation and immunofluorence co-localization.
     4. We construced recombination plasmids of MAP4(Glu) and MAP4 SiRNA, and packaged recombinant adenovirus.
     5. Cadiocytes cytosol protein were obtained and cytochrome C content was evaluated by western-blot. The mitochondrial membrane potential was tested by TMRE and the apoptosis of cadiocytes were detected by TUNEL.
     Results
     1. MAP4 protein expresses in the mitochondria of both the neonatal rat cadiocytes and the adult rat myocardial tissues, and it increased after hypoxia treatement.
     2. MAP4 can bind to VDAC and they have well co-localization in cardiocyte, the binding of MAP4 to VDAC enhanced after 30-min hypoxia.
     3. Mitochondrial inner membrane potential loss was observed after 30-min hypoxia, and showed a dramatic reduction in TMRE fluorescence intensity. As the hypoxia time prolong, the decrease became more and more significant. MAP4 overexpression was founded to be effectively protective for mitochondrial membrane potential loss induced by hypoxia. However, knock down of MAP4 or overexpression of MAP4(Glu) both induced mitochondrial inner membrane potential loss.
     4. Normal cadiocytes cytosol cytochrome C content was very low. However, cytosol cytochrome C was increased significant after 30-min hypoxia. With the hypoxia time prolong,the increase became more and more significant. MAP4 Overexpressed cadiocytes were protected from hypoxia-induced cytochrome C release from mitochondria. However, knock down of MAP4 or overexpression of MAP4(Glu) both induced cytochrome c release from mitochondria of cadiocytes.
     5. Very little cadiocytes aptosis were observed under normal condition. After 3 h hypoxia treatment, cell death was increased significantly. As the hypoxia time prolong, the increase became more and more significant. MAP4 overexpressed cadiocytes were protected from hypoxia-induced cell death. However, knock down of MAP4 or overexpression of MAP4(Glu) both induced incease of cadiocyte apoptosis.
     Discussion and Conclusions
     1. We first found that MAP4 protein expresses in the mitochondria of cadiocytes,and the expression of MAP4 increased after hypoxia.
     2. MAP4 can bind to VDAC, furthermore 30-min hypoxia enhances the binding between them.
     3. MAP4 phosphorylation, mitochondrial membrane potential lost, cytochrome C in cytosol increased and cardiocyte apoptosis were abserved in the early stage of hypoxia.
     4. MAP4 overexpression cadiocytes were protected from hypoxia-induced MPTP opening and cadiocyte apoptosis. However, knock down of MAP4 or overexpression of MAP4(Glu) both induced MPTP opening and cadiocyte apoptosis. These results demonstrate that MAP4 has an important role in modulating hypoxia-induced MPTP opening and apoptosis, and MAP4 phosphorylation is the key mechanism of this signal pathway.
     5. The data presented in this study are consistent with a model in which MAP4 interacts with VDAC proteins to induce MPTP openning and ultimately, cardiocyte apoptosis. Hypoxia induced MAP4 phosphorylation which enhances interact between MAP4 and VDAC. These results demonstrate that MAP4 has an important role in modulating hypoxia-induced cardiocyte apoptosis.
引文
1. Ayala A, Perl M, Venet F, et al. Apoptosis in sepsis: mechanisms, clinical impact and potential therapeutic targets. 2008 Curr Pharm Des; 14:1853-9.
    2. Yuesheng Huang, Zhiqing Li, Zongcheng Yang. Roles of ischemia and hypoxia and the molecular pathogenesis of post-burn cardiac shock. 2003 Burns; 29: 828-833.
    3. Yuesheng Huang , Baigang Yan, Zongcheng Yang. Clinical study of a formula for delayed rapid fluid resuscitation for patients with burn shock. 2005; Burns 31: 617–622.
    4.黄跃生.烧伤后“休克心”与早期损害.中国医师杂志,2002,4(2):120-121.
    5.梁晚益,唐卫新,杨宗城,等.严重烧伤早期心肌线粒体F0F1-ATPase活性变化及其对能量代谢的影响.第三军医大学学报,2001,23(7):780-782.
    6. Liang W Y, Tang L X, Yang Z , et al . Calcium induced the damage of myocardial mitochondrial respiratory function in the early stage after severe burns.Burns,2002, 28(2):134-136.
    7. Liang Wanyi, Yang Zongcheng , Huang Yuesheng. Changes of myocardial mitochondrial Ca2+ transport and mechanism in the early stage after severe burns . Burns, 2002,28(5):431-434.
    8.黄跃生.重视缺血缺氧与细胞因子在“休克心”发生机制中的作用.中华烧伤杂志2002,18(5):261-262.
    9. Yang J, Wang JH, Zhu SS, et al. C-reactive protein augments hypoxia-induced apoptosis through mitochondrion-dependent pathway in cardiac myocytes. 2008 Mol Cell Biochem; 310: 215-226.
    10.梁晚益,黄跃生,杨宗城.大鼠严重烧伤早期心肌线粒体通透性转换孔状态改变及其机制.第三军医大学学报,2003,25(18):1606-1608.
    11. Paillard M, Gomez L, Augeul L, et al. Postconditioning inhibits MPTP opening independent of oxidative phosphorylation and membrane potential. J Mol Cell Cardiol. 2009,46(6):902-909.
    12. Hossini AM, Eberle J. Apoptosis induction by Bcl-2 proteins independent of the BH3 domain. Biochemical pharmacology, 2008,76: 1612-1619.
    13. Mandelkow E, Mandelkow EM. Microtubules and microtubule-associated proteins.Curr Opin Cell Biol. 1995,7(1):72-81.
    14. Linden M, Karlsson G. Identification of porin as a binding site for MAP2. 1996 Biochem Biophys Res Commun; 218: 833-836.
    15. Jung D, Filliol D, Miehe M, et al. Interaction of brain mitochondria with microtubules reconstituted from brain tubulin and MAP2 of tau. 1993 Cell Motility and the Cytoskeleton; 24: 245-255.
    16. Linden M, Nelson BD, Leterrier JF. The specific binding of the microtubule-associated protein 2 (MAP2) to the outer membrane of rat brain mitochondria. 1989 Biochem J; 261:167-173.
    17. Kim N, Lee Y, Kim H, et al. Potential biomarkers for ischemic heart damage identified in mitochondrial proteins by comparative proteomics. Proteomics, 2006, 6: 1237–1249.
    18. Jiang X S, Dai J, Sheng Q H, et al. A Comparative Proteomic Strategy for Subcellular Proteome Research. Mol. Cell. Proteomics., 2005, 4: 12-34.
    19. ?árka Chlop?íková, Jitka Psotová, Petra Miketová.Neonatal rat cardiomyocytes- a model for the study of morphological, biochemical and electrophysiological characteristics of the heart.Biomed Papers,2001,145(2):49-55.
    20. Shen L, Black ED, Witkowski ED, et al. Myosin light chain phosphorylation regulates barrier function by remodeling tight junction structure. J Cell Sci. 2006; 119(10): 2095-2106.
    21. Zolotarevsky Y, Hecht G, Koutsouris A, et al. A membrane-permeant peptide that inhibits MLC kinase restores barrier function in in vitro models of intestinal disease. Gastroenterology. 2002; 123(1): 163-172.
    22.黄培堂等译.分子克隆实验指南.第三版,北京:科学出版社, 2003. 96-105.
    23. Katsuki M, Tokuraku K, Murofushi H, et al. Functional analysis of microtubule-binding domain of bovine MAP4. Cell Struct Funct. 1999, 24:337-344.
    24. Linden M, Karlsson G. Identification of porin as a binding site for MAP2. 1996 Biochem Biophys Res Commun; 218: 833-836.
    25. Jung D, Filliol D, Miehe M, et al. Interaction of brain mitochondria with microtubules reconstituted from brain tubulin and MAP2 of tau. 1993 Cell Motil Cytoskel; 24: 245-255.
    26. Linden M, Nelson BD, Leterrier JF. The specific binding of the microtubule-associated protein 2 (MAP2) to the outer membrane of rat brain mitochondria. 1989 Biochem J; 261:167-173.
    27. Rostovtseva TK,Tan W, Colombini M. On the role of VDAC in apoptosis: fact and fiction. J Bioenerg Biomembr. 2005, 37:129–142.
    28. Blachly-Dyson E, Forte M. VDAC channels. IUBMB Life. 2001, 52:113–118.
    29. Catherine M. O’Reilly, Kevin E. Fogarty,y Robert M. Drummond,et al.Quantitative Analysis of Spontaneous Mitochondrial Depolarizations. Biophysical Journal, 2003, 85: 3350–3357.
    30. Dillon CP, Sandy P, Nencioni A, et al.. Rnai as an experimental and therapeutic tool to study and regulate physiological and disease processes. Annu Rev Physiol 2005;67: 147-173.
    31. Bemstein E, Caudy AA, Hammond SM, et al. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001;409(6818):295-296.
    32. Alba R, Bosch A, Chillon M. Gutless adenovirus: last-generation adenovirus for gene therapy. Gene Ther 2005;12 Suppl 1:S18-S27.
    33. Ng P, Parks RJ, Cummungs DT, et al. A high-efficiency Cre/loxP-based system for construction of adenoviral vectors. Hum Gene Ther 1999; 10(16):2667-2672.
    34.黄跃生,李志清,吴庆云,杨宗城.缺血缺氧在烧伤后休克心中的作用及其机理探讨.中华创伤杂志,2002,18(4):205-209.
    35. Yang J, Wang JH, Zhu SS, et al. C-reactive protein augments hypoxia-induced apoptosis through mitochondrion-dependent pathway in cardiac myocytes. 2008 Mol Cell Biochem; 310: 215-226.
    36. Yoshida H. Apaf - 1 is required for mitochondrial pat hways of apoptosis and brain development. Cell ,2002 ,94 :739-750.
    37. Li Jia ,Srinivasa M. Srinivasula ,Feng - Ting Liu ,et al . Apaf– 1 protein deficiency confers resistance to cytochrome c - depend2 ent apoptosis in human leukemia cells. Blood , 2001 , 98 :414-421.
    38. Miho K, Kiyotaka T, Hiromu M, et al. Functional analysis of microtubule-binding domain of bovine MAP4. 1999 Cell Stru Func; 24: 337-344.
    39. Chang W,Gruber D, Chari S, et al. Phosphorylation of MAP4 affects microtubule properties and cell cycle progression. J Cell Sci. 2001, 114:2879-2887.
    40. Kitazawa H, Iida J, Uchida A, et al. Ser787 in the proline-rich region of human MAP4 is a critical phosphorylation site that reduces its activity to promote tubulin polymerization. Cell Struct Funct. 2000, 25:33-39.
    41. Egelhoff TT, Lee RJ, Spudich JA. Dictyostelium myosin heavy chain phosphorylation sites regulate myosin filament assembly and localization in vivo. Cell. 1993, 75:363-371.
    42. Fischer D, Mukrasch MD, Biernat J, et al. Conformational changes specific for pseudophosphorylation at serine 262 selectively impair binding of tau to microtubules. Biochemistry. 2009, 48:10047-10055.
    43. Léger J, Kempf M, Lee G, et al. Conversion of serine to aspartate imitates phosphorylation-induced changes in the structure and function of microtubule-associated protein tau. J Biol Chem. 1997, 272:8441-8446.
    1. Newmeyer DD, Farschon DM, Reed JC.Cell-free apoptosis in Xenopus egg extracts: inhibition by Bcl-2 and requirement for an organelle fraction enriched in mitochondria. Cell. 1994,21;79(2):353-364.
    2. Green DR , Reed JC. Mitochondria and apoptosis . Science, 1998, 281: 1309- 1312.
    3. Desagher S, Martinou JC. Mitochondria as the central control point of apoptosis. Trends Cell Biol . 2000, 10:369–377.
    4. Tsujimoto Y. Cell death regulation by the Bcl-2 protein family in the mitochondria. J Cell Physiol. 2003, 195:158–167.
    5. Kroemer G, Petit P, Zamzami N, et al. The biochemistry of programmed cell death. FASEB J. 1995, 9:1277–1287.
    6. Yang J, Wang JH, Zhu SS, et al. C-reactive protein augments hypoxia-induced apoptosis through mitochondrion-dependent pathway in cardiac myocytes. Mol Cell Biochem. 2008, 310: 215-226.
    7. Di Lisa F, Canton M, MenabòR, et al. Mitochondria and cardioprotection. Heart Fail Rev. 2007, 12:249–260.
    8. Halestrap AP, Clarke SJ, Javadov SA. Mitochondrial permeability transition pore opening during myocardial reperfusion—a target for cardioprotection. Cardiovasc Res. 2004, 61:372–385.
    9. Kroemer G. The mitochondrial permeability transition pore complex as a pharmacological target. An introduction. Curr Med Chem. 2003, 10:1469–1472.
    10. Kroemer G, Galluzzi L, Brenner C. Mitochondrial permeabilization in cell death. PhysiolRev. 2007, 87:99–163.
    11. Leung AW, Halestrap AP. Recent progress in elucidating the molecular mechanism of the mitochondrial permeability transition pore. Biochim Biophys Acta. 2008, 1777:946–952.
    12. Weiss JN, Korge P, Honda HM, et al. Role of the mitochondrial permeability transition in myocardial disease. Circ Res. 2003, 93:292–301.
    13. Crompton M, Costi A. A heart mitochondrial Ca2+-dependent pore of possible relevance to re-perfusion-induced injury—evidence that ADP facilitates pore interconversion between the closed and open states. Biochem J. 1990, 266:33-39.
    14. Haworth RA, Hunter DR. The Ca2+-induced membrane transition in mitochondria. II. Nature of the Ca2+ trigger site. Arch Biochem Biophys. 1979, 195:460-467.
    15. Rostovtseva TK,Tan W, Colombini M. On the role of VDAC in apoptosis: fact and fiction. J Bioenerg Biomembr. 2005, 37:129–142.
    16. Blachly-Dyson E, Forte M. VDAC channels. IUBMB Life. 2001, 52:113–118.
    17. Szabo I, Zoratti M. The mitochondrial permeability transition pore may comprise VDAC molecules. I. Binary structure and voltage dependence of the pore. FEBS Lett. 1993, 330:201–205.
    18. Szabo I, De Pinto V, Zoratti M. The mitochondrial permeability transition pore may comprise VDAC molecules. II. The electrophysiological properties of VDAC are compatible with those of the mitochondrial megachannel. FEBS Lett. 1993, 330: 206–210.
    19. Zizi M, Forte M, Blachly-Dyson E, et al. NADH regulates the gating of VDAC, the mitochondrial outer membrane channel. J Biol Chem. 1994, 269:1614–1616.
    20. Gincel D, Zaid H, Shoshan-Barmatz V. Calcium binding and translocation by the voltage-dependent anion channel: a possible regulatory mechanism in mitochondrial function. Biochem J. 2001, 358:147–155.
    21. Gincel D, Shoshan-Barmatz V. Glutamate interacts with VDAC and modulates opening of the mitochondrial permeability transition pore. J Bioenerg Biomembr. 2004, 36:179–186.
    22. Pastorino JG, Shulga N, Hoek JB. Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis. J Biol Chem. 2002, 277: 7610– 7618.
    23. Pastorino JG, Hoek JB, Shulga N. Activation of glycogen synthase kinase 3beta disrupts the binding of hexokinase II to mitochondria by phosphorylating voltage-dependent anion channel and potentiates chemotherapy-induced cytotoxicity. Cancer Res. 2005, 65:10545–10554.
    24. Costantini P, Chernyak BV, Petronilli V, et al. Modulation of the mitochondrial permeability transition pore by pyridine nucleotides and dithiol oxidation at two separate sites. J Biol Chem. 1996, 271:6746–6751.
    25. Fontaine E, Eriksson O, Ichas F, et al. Regulation of the permeability transition pore in skeletal muscle mitochondria. ModulationBy electron flowthrough the respiratory chain complex i. J Biol Chem. 1998, 273:12662–12668.
    26. Pastorino JG, Hoek JB. Hexokinase II: the integration of energy metabolism and control of apoptosis. Curr Med Chem. 2003, 10:1535–1551.
    27. Shimizu S, Narita M , Tsujimoto Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channelVDAC. Nature. 1999, 399: 483-487.
    28. Crompton M, Virji S, Ward JM. Cyclophilin-D binds strongly to complexes of the voltage-dependent anion channel and the adenine nucleotide translocase to form the permeability transition pore. Eur J Biochem. 1998, 258:729–735.
    29. Cesura AM, Pinard E, Schubenel R, et al. The voltage-dependent anion channel is the target for a new class of inhibitors of the mitochondrial permeability transition pore. J Biol Chem. 2003, 278:49812–49818.
    30. Zheng Y, Shi Y, Tian C, et al. Essential role of the voltage-dependent anion channel (VDAC) in mitochondrial permeability transition pore opening and cytochrome c release induced by arsenic trioxide. Oncogene. 2004, 23:1239–1247.
    31. Krauskopf A, Eriksson O, Craigen WJ, et al. Properties of the permeability transition in VDAC1?/? mitochondria. Biochim Biophys Acta. 2006, 1757: 590– 595.
    32. Baines CP, Kaiser RA, Sheiko T, et al. Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat Cell Biol. 2007, 9: 550– 555.
    33. 24. Fiore C, Trézéguet V, Le Saux A, et al. The mitochondrial ADP/ATP carrier: structural, physiological and pathological aspects. Biochimie. 1998, 80:137–150.
    34. Klingenberg M. Molecular aspects of the adenine nucleotide carrier from mitochondria. Arch Biochem Biophys. 1989, 270:1-14.
    35. A.P. Halestrap, A.M. Davidson, Inhibition of Ca2+-induced large amplitude swelling of liver and heart mitochondria by cyclosporin A is probably caused by the inhibitor binding to mitochondrial matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase, Biochem. J. 1990, 268:153-160.
    36. S.A. Novgorodov, T.I. Gudz, D.W. Jung, et al. The non-specific inner membrane pore of liver mitochondria—modulation of cyclosporin sensitivity by ADP at carboxyatractyloside-sensitive and insensitive sites, Biochem. Biophys. Res. Commun. 1991, 180 33–38.
    37. Woodfield K, Ruck A, Brdiczka D, et al. Direct demonstration of a specific interaction between cyclophilin-D and the adenine nucleotide translocase confirms their role in the mitochondrial permeability transition. Biochem J. 1998, 336:287– 290.
    38. Bauer MK, Schubert A, Rocks O, et al. Adenine nucleotide translocase-1, a component of the permeability transition pore, can dominantly induce apoptosis. J Cell Biol. 1999, 147:1493–1502.
    39. Zamora M, Granell M, Mampel T, et al. Adenine nucleotide translocase 3 (ANT3) overexpression induces apoptosis in cultured cells. FEBS Lett. 2004, 563:155–160.
    40. Kokoszka JE, Waymire KG, Levy SE, et al. The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature. 2004, 427: 461–465.
    41. C.P. Connern, A.P. Halestrap. Purification and N-terminal sequencing of peptidylprolylcis–trans-isomerase from rat liver mitochondrial matrix reveals the existence of a distinct mitochondrial cyclophilin. Biochem. J. 1992, 284:381-385.
    42. N. Johnson, A. Khan, S. Virji, et al. Crompton, Import and processing of heart mitochondrial cyclophilin D, Eur. J. Biochem. 1999, 263:353-359.
    43. M. Crompton, H. Ellinger, A. Costi. Inhibition by cyclosporin A of a Ca2+- dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress. Biochem. J. 1988, 255:357-360.
    44. A. Tanveer, S. Virji, L. Andreeva, et al. Involvement of cyclophilin D in the activation of a mitochondrial pore by Ca2+ and oxidant stress. Eur. J. Biochem. 1996, 238:166-172.
    45. Griffiths EJ, Halestrap AP. Further evidence that cyclosporin-A protects mitochondria from calcium overload by inhibiting a matrix peptidyl-prolyl cis-trans isomerase—implications for the immunosuppressive and toxic effects of cyclosporin. Biochem J. 1991, 274:611-614.
    46. Baines CP, Kaiser RA, Purcell NH, et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature. 2005, 434: 658– 662.
    47. Clarke SJ, McStay GP, Halestrap AP. Sanglifehrin A acts as a potent inhibitor of the mitochondrial permeability transition and reperfusion injury of the heart by binding to cyclophilin-D at a different site from cyclosporin A. J Biol Chem. 2002, 277:34793–34799.
    48. Di Lisa F, MenabòR, Canton M, et al. Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD+ and is a causative event in the death of myocytes in postischemic reperfusion of the heart. J Biol Chem. 2001, 276:2571–2575.
    49. Hausenloy DJ, Duchen MR, Yellon DM. Inhibiting mitochondrial permeability transition pore opening at reperfusion protects against ischaemia-reperfusion injury. Cardiovasc Res. 2003, 60:617-625.
    50. Nakagawa T, Shimizu S, Watanabe T, et al. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature. 2005, 434:652–658.
    51. E. Basso, L. Fante, J. Fowlkes, et al. Properties of the permeability transition pore in mitochondria devoid of cyclophilin D. J. Biol.Chem. 2005, 280:18558-18561.
    52. A.C. Schinzel, O. Takeuchi, Z.H. Huang, et al. Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc. Natl. Acad. Sci. U. S. A. 2005, 102:12005-12010.
    53. A.P. Halestrap, K.Y. Woodfield, C.P. Connern. Oxidative stress, thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase, J. Biol. Chem. 1997, 272: 3346-3354.
    54. L.H. He, J.J. Lemasters. Regulated and unregulated mitochondrial permeability transitionpores: a new paradigm of pore structure and function? FEBS Lett. 2002, 512:1-7.
    55. A.W.C. Leung, P. Varanyuwatana, A.P. Halestrap. The mitochondrial phosphate carrier interacts with cyclophilin D and may play a key role in the permeability transition. J. Biol. Chem. 2008, 283:26312-26323.
    56. E. Basso, V. Petronilli, M.A. Forte, et al. Phosphate is essential for inhibition of the mitochondrial permeability transition pore by cyclosporin a and by cyclophilin D ablation. J. Biol. Chem. 2008, 283:26307-26311.
    57. S. Alcala, M. Klee, J. Fernandez, et al. A high-throughput screening for mammalian cell death effectors identifies the mitochondrial phosphate carrier as a regulator of cytochrome c release. Oncogene. 2008, 27:44-54.
    58. Mcenery MW, Snowman AM, Trifiletti RR, et al. Isolation of the mitochondrial benzodiazepine receptor—association with the voltage-dependent anion channel and the adenine nucleotide carrier. Proc Natl Acad Sci U. S. A. 1992, 89: 3170- 3174.
    59. Crompton M, Costi A, Hayat L. Evidence for the presence of a reversible Ca2+- dependent pore activated by oxidative stress in heart mitochondria. Biochem J. 1987, 245:915-918.
    60. Crompton M, Costi A. Kinetic evidence for a heart mitochondrial pore activated by Ca2+, inorganic phosphate and oxidative stress. A potential mechanism for mitochondrial dysfunction during cellular Ca2+ overload. Eur J Biochem. 1988, 178: 489-501.
    61. Halestrap AP. Calcium-dependent opening of a non-specific pore in the mitochondrial inner membrane is inhibited at pH values below 7—implications for the protective effect of low pH against chemical and hypoxic cell damage. Biochem J. 1991, 278:715-719.
    62. Szabo I, Bernardi P, Zoratti M. Modulation of the mitochondrial megachannel by divalent cations and protons. J Biol Chem. 1992, 267:2940-2946.
    63. Gunter TE, Pfeiffer DR. Mechanisms by which mitochondria transport calcium. Am J Physiol. 1990, 258:C755-786.
    64. Gunter TE, Buntinas L, Sparagna G, et al. Mitochondrial calcium transport: mechanisms and functions. Cell Calcium. 2000, 28:285-296.
    65. Kim JS, Jin YG, Lemasters JJ. Reactive oxygen species, but not Ca2+ overloading, trigger pH and mitochondrial permeability transition-dependent death of adult rat myocytes after ischemia-reperfusion. Am J Physiol, Heart Circ Physiol. 2006, 290: H2024–2034.
    66. Juhaszova M, Wang S, Zorov DB, et al. The identity and regulation of the mitochondrial permeability transition pore: where the known meets the unknown. Ann NY Acad Sci. 2008, 1123:197-212.
    67. S. Shimizu,Y. Eguchi,W.Kamiike, et al. Bcl-2 prevents apoptotic mitochondrial dysfunction by regulating proton flux, Proc. Natl. Acad. Sci. U. S. A. 1998, 95: 1455-1459.
    68. J.C. Reed, G. Kroemer. The permeability transition pore complex: a target for apoptosis regulation by caspases and Bcl-2-related proteins, J. Exp. Med. 1998, 187: 1261-1271.
    69. I. Marzo, C. Brenner, N. Zamzami, et al. Kroemer, Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science. 1998, 281: 2027-2031.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700