职业有害因素暴露致神经细胞线粒体氧化损伤及防护策略探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
线粒体功能障碍(mitochondrial dysfunction),包括氧化磷酸化异常、能量代谢障碍、线粒体氧化应激及线粒体DNA(mitochondrial DNA, mtDNA)氧化损伤,是导致神经系统诸多疾病发生和发展的重要病因。电磁辐射和含镍材料的广泛运用在给生产生活带来便利的同时,所引发的环境污染和健康危害日益受到人们的关注。中枢神经系统是电磁辐射暴露和镍损伤的主要靶器官。基于线粒体功能障碍在诸多中枢神经系统疾病中的重要作用,本研究以线粒体为靶细胞器,探讨电磁辐射和镍暴露致神经细胞损伤的机制,并寻找相应的生物学防护措施。实验中,我们以原代培养的皮层神经元、人源性的神经母瘤SH-SY5Y细胞和小鼠神经母瘤Neuro2a细胞为研究模型,将其暴露于1800MHz射频段电磁辐射和不同浓度的氯化镍(NiCl_2)中,做了如下两部分的实验:
     一、电磁辐射对神经细胞线粒体的氧化损伤及Tfam的保护作用
     (一)电磁辐射辐照对皮层神经元线粒体的氧化损伤
     电磁辐射辐照后6h、12h、24h和48h,皮层神经元内活性氧ROS水平显著升高,细胞活性显著降低,ATP含量和线粒体膜电位(mitochondrial membrane potential,△Ψm)明显下降。而且线粒体内8-羟基脱氧鸟苷(8-hydroxy-2-deoxy-guanosine,8-OHdG)含量显著升高,而mtDNA拷贝数和mtDNA编码基因(ND1、COX I和ND6)mRNA水平显著下降。提示电磁辐射辐照对皮层神经元线粒体造成明显的氧化损伤。
     (二)电磁辐射辐照对皮层神经元Tfam表达、转运和结合mtDNA活性的影响
     资料显示,导致线粒体功能障碍的原因很多,而mtDNA突变是其中最为重要的因素。Tfam是维持mtDNA完整性和线粒体功能的核心因子。在多种病理生理过程中,氧化应激可以通过影响Tfam的表达或活性导致线粒体功能障碍和细胞的氧化损伤。所以本部分研究从Tfam作用通路的角度,探讨电磁辐射致神经细胞线粒体功能障碍的可能的生物学机制。结果表明,电磁辐射辐照后,皮层神经元内Tfam mRNA和蛋白的表达显著性升高。转运分析(import assay)实验显示皮层神经元线粒体转运体外表达的S~(35)-Tfam蛋白的效率明显降低。凝胶迁移实验(EMSA)也表明线粒体内Tfam与mtDNA轻链启动子结合显著降低。表明电磁辐射辐照抑制了Tfam的转运,对线粒体内Tfam与mtDNA结合有影响。提示电磁辐射可能是通过抑制Tfam转运来造成神经细胞线粒体损伤的。
     (三) Tfam过表达在电磁辐射致SH-SY5Y细胞线粒体损伤中的保护作用
     1.成功构建Tfam表达质粒,转染SH-SY5Y细胞。电磁辐射辐照后24h,Tfam过表达能显著降低细胞内ROS水平,减轻电磁辐射对SH-SY5Y细胞活性的损伤,提高ATP含量,有效缓解电磁辐射辐照引起的SH-SY5Y细胞线粒体内8-OHdG含量的升高,维持mtDNA拷贝数和mtDNA编码基因(ND1、COX I和ND6)mRNA水平。提示Tfam过表达能有效改善电磁辐射辐照所致的神经细胞线粒体氧化损伤。
     2.敲除Tfam蛋白中具有转录活性的C末端,保留其维持mtDNA核样结构和mtDNA拷贝数的功能。电磁辐射辐照后24h,C末端缺失的Tfam(△C-Tfam)同野生型Tfam一样,能显著降低细胞内ROS水平,减轻电磁辐射对SH-SY5Y细胞细胞活性的损伤,提高ATP含量,有效缓解电磁辐射辐照引起的SH-SY5Y细胞mtDNA的氧化损伤。提示Tfam拮抗电磁辐射致线粒体氧化损伤的机制与Tfam维持mtDNA核样结构和mtDNA拷贝数的功能紧密有关。
     (四)β淀粉肽对神经细胞线粒体的氧化损伤及Tfam的保护作用
     β淀粉肽(Aβ)沉积是阿尔茨海默病发生和发展中的重要病理特征。体内外研究均证实,Aβ进入线粒体后,直接作用于线粒体蛋白,能明显引起线粒体功能障碍和氧化应激。为了进一步探讨线粒体功能障碍在电磁辐射致神经细胞损伤中的作用及Tfam的保护机制,我们选择用Aβ处理SH-SY5Y细胞造成线粒体功能障碍模型作为阳性参照。结果发现,电磁辐射辐照致神经细胞线粒体氧化损伤的效应与β淀粉肽十分相似,能明显引起神经细胞线粒体氧化损伤。野生型Tfam和缺失型ΔC-Tfam的过表达均能显著减轻β淀粉肽对SH-SY5Y细胞细胞活性的损伤,降低细胞内ROS水平,提高ATP含量,有效缓解β淀粉肽引起的SH-SY5Y细胞线粒体内8-OHdG含量的升高,维持mtDNA拷贝数和mtDNA编码基因(ND1、COX I和ND6)mRNA水平。
     二、镍暴露对神经细胞线粒体的氧化损伤及褪黑素的保护作用
     (一)镍暴露对神经细胞线粒体的氧化损伤将皮层神经元和小鼠神经母瘤Neuro2a细胞暴露于不同浓度的NiCl2 (0.125 mM, 0.25 mM, 0.5 mM和1 mM)12h后或0.5 mM NiCl2不同时间(0 h, 3 h, 6 h, 12 h和24 h)后,神经细胞内ROS含量显著升高,而且呈现剂量依赖效应关系。神经细胞线粒体功能明显受损,表现为线粒体脱氢酶活性,细胞ATP含量,线粒体膜电位和mtDNA含量显著降低。表明一定剂量的镍暴露造成了神经细胞线粒体的氧化损伤。
     (二)褪黑素预处理对镍暴露致神经细胞线粒体氧化损伤的保护作用
     用神经系统抗氧化剂和线粒体功能保护剂-褪黑素(1mM)预处理皮层神经元和Neuro2a细胞2h后,褪黑素能有效降低神经细胞的氧化应激,改善镍暴露引起的线粒体功能障碍和神经细胞活性下降。
     综上所述,电磁辐射辐照能够引起神经细胞氧化应激,造成线粒体功能障碍。并且电磁辐射致线粒体氧化损伤可能与电磁辐射抑制Tfam转运有关。而Tfam过表达能有效改善电磁辐射对mtDNA的氧化损伤,降低神经元的氧化应激,维持线粒体稳态。Tfam这种保护效应主要依赖于Tfam对mtDNA核样结构和mtDNA拷贝数的维护。与此类似,镍暴露能明显造成神经细胞线粒体的氧化损伤,而褪黑素预处理能显著拮抗镍的神经毒性。本研究表明,电磁辐射和镍暴露具有明显的神经毒性。线粒体功能障碍可能是电磁辐射和镍暴露所致神经细胞损伤的主要机制,而通过降低氧化应激和改善线粒体功能障碍能够有效缓解电磁辐射和镍暴露所致的神经毒性。通过研究,不仅能够揭示电磁辐射和镍暴露致中枢神经系统损伤的新机制,而且为电磁辐射和镍暴露致中枢神经系统损伤的防护提供有效线索。
Mitochondrial dysfunction including oxidative phosphorylation efficiency、energy metabolism disturbance、mitochondrial oxidative stress and mitochondrial DNA (mtDNA) oxidative damage, is considered to make great contributions to various diseases in nervous system. The rapidly growing application of electromagnetic radiation (EMR) and nickel in modern technologies has raised considerable concerns about their potential hazardous effects on human health. It is reported that nervous system is one of the most important targets in the toxicity of EMR and nickel. The purpose of this study was to investigate whether the mitochondrial dysfunction was involved in the neurotoxicity of EMR radiation and nickel exposure. In addition, we would like to find some potential molecular or substances that could protect against the neurotoxicity induced by EMR radiation and nickel exposure. In order to address this issue, different kinds of nerve cells, including primary cultured cortical neurons, human neuroblasma SH-SY5Y cells and mouse neuroblasma Neruo2a cells, were exposed to 1800MHz radiofrequency radiation (RF) and various concentration of nickel. The main results and conclusions were as following:
     一、EMR radiation induced oxidative damage to mitochondria in nerve cells: the protective effects of Tfam
     (一) EMR radiation induced oxidative damage to mitochondria in cortical neurons
     At 6h,12h,24h and 48h after EMR radiation,ROS production obviously increased,the cell viability of cortical neurons significantly decreased,the content of ATP and mitochondrial membrane potential (△Ψm) markedly reduced. In addition, the contents of 8-hydroxy-2-deoxy-guanosine(8-OHdG) significantly elevated, while the mtDNA copy number and mtDNA transcripts (ND1、COX I and ND6) levels obviously decreased. It demonstrated that EMR radiation induced oxidative damage to mitochondria in cortical neurons.
     (二) EMR radiation effected the expression and import of Tfam, the ability of Tfam in binding mtDNA in cortical neurons
     Numous studies indicate that mitochondrial dysfunction is largely attributable to mtDNA mutation. Tfam works as the key factor for the maintenance of mtDNA. In some pathophysiology situations, oxidative stress could cause the oxidative damage to mitochondria through disturbing the expression and activity of Tfam. Thus, in this part, we hypothesized that EMR radiation disturbed the expression and activity of Tfam,which might be related with the oxidative damage of mitochondria in radiated-nerve cells. As a result, we found that both the mRNA levels and protein levels of Tfam obviously elevated after EMR radiation. Additionally,import assay showed that EMR radiation decreased the import of S~(35)-Tfam from cytoplasm to mitochondria. Furthermore,electrophoretic mobility shift assay (EMSA) exhibited that the binding of Tfam to the mtDNA promoter significantly decreased after EMR radiation. It indicated that EMR radiation inhibited the import of Tfam and repressed the acticity of Tfam in binding mtDNA in mitochondria, which may lead to the oxidative damage to mitochondria in nerve cells.
     (三) Tfam overexpression protected mitochondria against oxidative damage induced by EMR radiation in SH-SY5Y cells
     1. We successfully constructed the plasmid expressing Tfam and transfected the recominated plasmid into SH-SY5Y cells. At 24h after EMR radiation,overexpression of Tfam could significantly reduce ROS production, reverse the decrease of cell viability, improve ATP content, effectively attenuate the oxidative damage of mtDNA induced by EMR radiaiton in SH-SY5Y cells. It suggested that Tfam overexpression protected mitochondria against oxidative damage induced by EMR radiation in SH-SY5Y cells.
     2. We disrupted the C-terminal tail of Tfam,which had no ability in promoting mtDNA transcripts but could still maintain the nucleoid structure of mtDNA and mtDNA copy number. As the same as the wild-type Tfam, disrupted Tfam also could significantly reduce ROS production, reverse the decrease of cell viability, improve ATP content, effectively attenuate the oxidative damage of mtDNA induced by EMR radiation in SH-SY5Y cells. It suggested that the protective effects of Tfam overexpression against EMR radiation-induced oxidative damage to mitochondria were largely attributed to the ability of Tfam in maintaining the nucleoid structure of mtDNA and mtDNA copy number.
     (四)β-amyloid induced oxidative damage to mitochondria in nerve cells: the protective effects of Tfam
     β-amyloid deposition has been proposed as the major pathogenic event in the development and progression of Alzheimer’s disease (AD). Oxidative stress and mitochondrial dysfunction have been the provital mechanism involved in Aβ-mediated neurotoxicity. Evidence suggests that Aβenters mitochondria and interacts with the mitochondrial proteins, induces mitochondrial dysfunction and causes oxidative stress. In order to further verify the involvment of mitochondrial dysfunction in the neruotoxicity of EMR radiation and the protective effects of Tfam, we established another oxidative damage model of mitochondria by administration of Aβ_(1-42) as a positive control. As expected, Aβ_(1-42) caused oxidative damage to mitochondria in SH-SY5Y cells, which was similar with that in irradiated-cells. Both Tfam with or without C-terminal tail could effectively reduce oxidative stress induced byβ-amyloid, attenuate the oxidative damage of mtDNA and reverse mitochondrial dysfunction.
     二、Nickel exposure induced oxidative damage to mitochondria in nerve cells: the protective effects of melatonin
     (一) Nickel exposure induced oxidative damage to mitochondria in nerve cells
     After primary cultured cortical neurons and mouse neuroblastoma Neuro2a cell lines were exposed to different concentrations of nickel chloride (NiCl_2) (0.125 mM, 0.25 mM, 0.5 mM and 1 mM) for 12 h or 0.5 mM NiCl_2 for various periods (0 h, 3 h, 6 h, 12 h and 24 h),we found that nickel significantly increased ROS production and caused the loss of cell viability both in cortical neurons and Neuro2a cells. In addition, nickel exposure obviously inhibited the mitochondrial function, disrupted the mitochondrial membrane potential, reduced ATP production and decreased mtDNA content. It indicated that nickel caused oxidative damage to mitochondria in nerve cells.
     (二) Melatonin pretreatment protected mitochondria against oxidative damage induced by nickel exposure in nerve cells
     The pretreatment of melatonin, a kind of efficient neuroprotective agents famous for its activity in reducing oxidative stress and maintaining mitochondrial function, efficiently attenuated the oxidative damages to mitochondria in nickel-treated nerve cells.
     In conclusion, our results demonstrated that EMR radiation induced oxidative stress and caused oxidative damage to mitochondria. It may be related to the inhibitory effects of EMR radiation on the import of Tfam in cortical neurons. In addition, Tfam overexpression effectively reduced oxidative stress and protected mitochondria against oxidative damage induced by EMR radiation in nerve cells. These protective effects were largely attributed to the ability of Tfam in maintaining the nucleoid structure of mtDNA and mtDNA copy number. Similarly, nickel exposure obviously induced oxidative damage to mitochondria, which were efficiently attenuated by melatonin pretreatment. All of our study indicated that EMR radiation and nickel exposure had deleterious effects on nerve cells through causing mitochondrial dysfunction. Importantly, it was potential to protect against the neurotoxicity of EMR radiation and nickel by reducing oxidative stress and maintaining mitochondrial function. It not only revealed the mechanism of neurotoxicity induced by EMR radiation and nickel exposure,but also provided the clues for protecting agaisnt EMR radiation and nickel exposure.
引文
1. Wallace, D.C. Mitochondrial diseases in man and mouse. Science 283, 1482-1488 (1999).
    2.高欣,唐希灿.神经退行性疾病的早期信号:线粒体功能障碍. Chinese Bulletin of LifeSciences 18 (2), 138-144 (2006).
    3. Lin, M.T. & Beal, M.F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443, 787-795 (2006).
    4. Reddy, P.H. & Beal, M.F. Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer's disease. Trends in Molecular Medicine 14, 45-53 (2008).
    5. Armstrong, J.S. Mitochondrial medicine: Pharmacological targeting of mitochondria in disease. British Journal of Pharmacology 151 (8), 1154-1165 (2007).
    6. Taylor, R.W. & Turnbull, D.M. Mitochondrial DNA mutations in human disease.Nature Reviews Genetics 6, 389-402 (2005).
    7. Hollenbeck, P.J. & Saxton, W.M. The axonal transport of mitochondria. Journal of Cell Science 118 (23), 5411-5419 (2005).
    8. Mattson, M.P, et al. Mitochondria in Neuroplasticity and Neurological Disorders. Neuron 60 (5), 748-766 (2008).
    9. Keating, D.J. Mitochondrial dysfunction, oxidative stress, regulation of exocytosis and their relevance to neurodegenerative diseases. J Neurochem 104, 298-305 (2008).
    10. Trushina, E. & McMurray, C.T. Oxidative stress and mitochondrial dysfunction in neurodegenerative diseases. Neuroscience 145, 1233-1248 (2007).
    11. De la Monte, et al. Mitochondrial DNA damage as a mechanism of cell loss in Alzheimer's disease. Laboratory Investigation 80 (8), 1323-1335 (2000).
    12. Ide, T., et al. Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circ Res 88, 529-535 (2001).
    13.余争平,等.高功率微波武器损伤医学防护研究进展.第三军医大学HPM生物医学论文汇集.第五卷: 1-16 (2001).
    14. Hossmann, K.A. & Hermann, D.M. Effects of electromagnetic radiation of mobile phones on the central nervous system. Bioelectromagnetics 24, 49-62 (2003).
    15. Repacholi, M.H. Low-level exposure to radiofrequency electromagnetic fields: health effects and research needs. Bioelectromagnetics 19, 1-19 (1998).
    16. Valentini, E, et al. Neurophysiological effects of mobile phone electromagnetic fields on humans: a comprehensive review. Bioelectromagnetics 28, 415-432 (2007).
    17. Das K.K, et al. Nickel, its adverse health effects and oxidative stress. Indian J Med Res 128, 412-425 (2008).
    18. Denkhaus E, & Salnikow K. Nickel essentiality, toxicity, and carcinogenicity. Crit Rev Oncol Hematol 42, 35-56 (2002).
    19. Borg K, & Tjalve H. Uptake of 63Ni2+ in the central and peripheral nervous system of mice after oral administration: effects of treatments with halogenated 8-hydroxyquinolines. Toxicology 54,59-68 (1989).
    20. Sunderman FW Jr, et al. Acute nickel toxicity in electroplating workers who accidently ingested a solution of nickel sulfate and nickel chloride. Am J Ind Med 14,257-266 (1988).
    21. Akesson B, Skerfving S. Exposure in welding of high nickel alloy. Int Arch Occup Environ Health 56, 111-117 (1985).
    22. Kang, D., Kim, S.H. & Hamasaki, N. Mitochondrial transcription factor A (TFAM): roles in maintenance of mtDNA and cellular functions. Mitochondrion 7, 39-44 (2007).
    23. Choi, Y.S., Kim, S. & Pak, Y.K. Mitochondrial transcription factor A (mtTFA) and diabetes. Diabetes Res Clin Pract 54 Suppl 2, S3-9 (2001).
    24. Palmeira, C.M., et al. Hyperglycemia decreases mitochondrial function: the regulatory role of mitochondrial biogenesis. Toxicol Appl Pharmacol 225, 214-220 (2007).
    25. Kanazawa, A., et al. Reduced activity of mtTFA decreases the transcription in mitochondria isolated from diabetic rat heart. Am J Physiol Endocrinol Metab 282, E778-785 (2002).
    26. Garstka, H.L., et al. Import of mitochondrial transcription factor A (TFAM) into rat liver mitochondria stimulates transcription of mitochondrial DNA. Nucleic Acids Res 31, 5039-5047 (2003).
    27. Coskun P.E., et al. Alzheimer’s brains harbor somatic mtDNA control-region mutations that suppress mitochondrial transcription and replication. Proc Natl Acad Sci USA 101, 10726-10731 (2004).
    28.张彦文,等. HPM辐照后大鼠海马脑区氨基酸神经递质和MDA含量的变化.第三军医大学HPM生物医学论文汇集.第一卷: 56-63 (1997).
    29.龚茜芬,等. HPM急慢性辐照致大鼠海马过氧化损伤及营养干预保护的实验研究.第三军医大学HPM生物医学论文汇集.第十卷:50-60 (2007).
    30.谢燕,等.微波辐照对大鼠脑海马和皮层神经细胞线粒体超微结构及mtTFA mRNA表达的影响.中华劳动卫生职业病杂志.第22卷(2): 104-107 (2004).
    31. Ekstrand, M.I., et al. Progressive parkinsonism in mice with respiratory-chain- eficient dopamine neurons. Proceedings of the National Academy of Sciences of the United States of America 104, 1325-1330 (2007).
    32. Sorensen, L., et al. Late-onset corticohippocampal neurodepletion attributable to catastrophic failure of oxidative phosphorylation in MILON mice. Journal of Neuroscience 21, 8082-8090 (2001).
    33. Hayashi, Y., et al. Reverse of age-dependent memory impairment and mitochondrial DNA damage in microglia by an overexpression of human mitochondrial transcription factor A in mice. Journal of Neuroscience 28, 8624-8634 (2008).
    34. Lambert, M.P., et al. Diffusible, nonfibrillar ligands derived from A beta(1-42) are potent central nervous system neurotoxins. Proceedings of the National Academy of Sciences of the United States of America 95, 6448-6453 (1998).
    35. Kukidome, D., et al. Activation of AMP-activated protein kinase reduces hyperglycemia-induced mitochondrial reactive oxygen species production and promotes mitochondrial biogenesis in human umbilical vein endothelial cells. Diabetes 55, 120-127 (2006).
    36. Garstka, H.L., et al. Import of mitochondrial transcription factor A (TFAM) into rat liver mitochondria stimulates transcription of mitochondrial DNA. Nucleic Acids Res 31, 5039-5047 (2003).
    37. Gordon, J.W., Rungi, A.A., Inagaki, H. & Hood, D.A. Effects of contractile activity on mitochondrial transcription factor A expression in skeletal muscle. J Appl Physiol 90, 389-396 (2001).
    38. Frezza, C., Cipolat, S. & Scorrano, L. Organelle isolation: functional mitochondria from mouse liver, muscle and cultured fibroblasts. Nat Protoc 2, 287-295 (2007).
    39. Suliman, H.B., Carraway, M.S. & Piantadosi, C.A. Postlipopolysaccharide oxidativedamage of mitochondrial DNA. Am J Respir Crit Care Med 167, 570-579 (2003).
    40. Ikeuchi, M., et al. Overexpression of mitochondrial transcription factor A ameliorates mitochondrial deficiencies and cardiac failure after myocardial infarction. Circulation 112, 683-690 (2005).
    41. Hardy, J.A. & Higgins, G.A. ALZHEIMERS-DISEASE - THE AMYLOID CASCADE HYPOTHESIS. Science 256, 184-185 (1992).
    42. Wang, XL, et al. Insights into amyloid-beta-induced mitochondrial dysfunction in Alzheimer disease. Free Radical Biology and Medicine 43(12): 1569-1573 (2007).
    43. Bozner, P., et al. The amyloid beta protein induces oxidative damage of mitochondrial DNA. Journal of Neuropathology and Experimental Neurology 56, 1356-1362 (1997).
    44. Hook, G.J., et al. Evaluation of parameters of oxidative stress after in vitro exposure to FMCW- and CDMA-modulated radiofrequency radiation fields. Radiat Res 162, 497-504 (2004).
    45. Simko, M. Cell type specific redox status is responsible for diverse electromagnetic field effects. Curr Med Chem 14, 1141-1152 (2007).
    46. Lee, H.C. & Wei, Y.H. Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress. Int J Biochem Cell Biol 37, 822-834 (2005).
    47. MacKenzie, J.A. & Payne, R.M. Mitochondrial protein import and human health and disease. Biochim Biophys Acta 1772, 509-523 (2007).
    48. Stojanovski, D., Pfanner, N. & Wiedemann, N. Import of proteins into mitochondria. Methods Cell Biol 80, 783-806 (2007).
    49. Kanki, T., et al. Architectural role of mitochondrial transcription factor A in maintenance of human mitochondrial DNA. Mol Cell Biol 24, 9823-9834 (2004).
    50. Yoshida, Y., et al. p53 physically interacts with mitochondrial transcription factor A and differentially regulates binding to damaged DNA. Cancer Research 63, 3729-3734 (2003).
    51. Jeng, J.Y., et al. Maintenance of mitochondrial DNA copy number and expression are essential for preservation of mitochondrial function and cell growth. Journal of Cellular Biochemistry 103, 347-357 (2008).
    52. Acuna C.D., et al. Melatonin, mitochondrial homeostasis and mitochondrial- related diseases. Curr Top Med Chem 2, 133-151(2002).
    53. Leon J., et al. Melatonin mitigates mitochondrial malfunction. J Pineal Res 38,1-9. (2005).
    54. Turcotte M.L., et al. Variation in mitochondrial function in hypoxia-sensitive and hypoxia-tolerant human glioma cells. Br J Cancer 86, 619-624 (2002).
    55. Zamponi G.W., et al. Nickel block of a family of neuronal calcium channels: subtype- and subunit-dependent action at multiple sites. J Membr Biol 151,77-90 (1996).
    56. Issa Y., et al. Cytotoxicity of metal ions to human oligodendroglial cells and human gingival fibroblasts assessed by mitochondrial dehydrogenase activity. Dent Mater 24,281-287 (2008).
    57. Repetto G., et al. In vitro effects of lithium and nickel at different levels on Neuro-2a mouse neuroblastoma cells. Toxicol In Vitro 15,363-368 (2001).
    58. Slotkin T.A. & Seidler F.J. Protein kinase C is a target for diverse developmental neurotoxicants: transcriptional responses to chlorpyrifos, diazinon, dieldrin and divalent nickel in PC12 cells. Brain Res 1263,23-32 (2009).
    59. Slotkin T.A. & Seidler F.J. Oxidative and excitatory mechanisms ofdevelopmental neurotoxicity: transcriptional profiles for chlorpyrifos, diazinon, dieldrin, and divalent nickel in PC12 cells. Environ Health Perspect 117,587-596 (2009).
    60. Prasad L., et al. Chemo-modulatory effects of Terminalia chebula against nickelchloride induced oxidative stress and tumor promotion response in male Wistar rats. J Trace Elem Med Biol 20,233-239 (2006).
    61. Tan D.X., et al. One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res 42,28-42 (2007).
    62. Olivieri G., et al. Melatonin protects SH-SY5Y neuroblastoma cells from cobalt-induced oxidative stress, neurotoxicity and increased beta-amyloid secretion. J Pineal Res 31,320-325 (2001).
    63. Zatta P., et al. Melatonin prevents free radical formation due to the interaction between beta-amyloid peptides and metal ions [Al(III), Zn(II), Cu(II), Mn(II), Fe(II)]. J Pineal Res 35, 98-103 (2003).
    64. Albendea C.D., et al. Melatonin reduces lipid and protein oxidative damage in synaptosomes due to aluminium. J Trace Elem Med Biol 21,261-268 (2007).
    65. Poliandri A.H., et al. In vivo protective effect of melatonin on cadmium-inducedchanges in redox balance and gene expression in rat hypothalamus and anterior pituitary. J Pineal Res 41, 238-246 (2006).
    66. Foos, T.M. & Wu, J.Y. The role of taurine in the central nervous system and the modulation of intracellular calcium homeostasis. Neurochemical Research 27, 21-26 (2002).
    67. Wang, C., et al. L-carnitine protects neurons from 1-methyl-4-phenyl pyridinium-induced neuronal apoptosis in rat forebrain culture.Neuroscience 144, 46-55 (2007).
    68. Lagouge, M., et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1 alpha. Cell 127, 1109-1122 (2006).
    1. Kelly, D.P. & Scarpulla, R.C. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes & Development 18, 357-368 (2004).
    2. Coskun, P.E., Beal, M.F. & Wallace, D.C. Alzheimer's brains harbor somatic mtDNA control-region mutations that suppress mitochondrial transcription and replication. Proc Natl Acad Sci U S A 101, 10726-10731 (2004).
    3. Taylor, R.W. & Turnbull, D.M. Mitochondrial DNA mutations in human disease. Nature Reviews Genetics 6, 389-402 (2005).
    4. Evans, M.D., Dizdaroglu, M. & Cooke, M.S. Oxidative DNA damage and disease: induction, repair and significance. Mutat Res 567, 1-61 (2004).
    5. Xu, S., et al. Exposure to 1800 MHz radiofrequency radiation induces oxidative damage to mitochondrial DNA in primary cultured neurons. Brain Res 1311, 189-196 (2010).
    6. MacKenzie, J.A. & Payne, R.M. Mitochondrial protein import and human health and disease. Biochim Biophys Acta 1772, 509-523 (2007).
    7. Parisi, M.A. & Clayton, D.A. SIMILARITY OF HUMAN MITOCHONDRIAL TRANSCRIPTION FACTOR-I TO HIGH MOBILITY GROUP PROTEINS. Science 252, 965-969 (1991).
    8. Kang, D., Kim, S.H. & Hamasaki, N. Mitochondrial transcription factor A (TFAM): roles in maintenance of mtDNA and cellular functions. Mitochondrion 7, 39-44 (2007).
    9. Sorensen, L., et al. Late-onset corticohippocampal neurodepletion attributable to catastrophic failure of oxidative phosphorylation in MILON mice. Journal of Neuroscience 21, 8082-8090 (2001).
    10. Ekstrand, M.I., et al. Progressive parkinsonism in mice with respiratory-chain-deficient dopamine neurons. Proceedings of the National Academy of Sciences of the United States of America 104, 1325-1330 (2007).
    11. Reyes, A., Mezzina, M. & Gadaleta, G. Human mitochondrial transcription factor A (mtTFA): gene structure and characterization of related pseudogenes. Gene 291, 223-232 (2002).
    12. Tominaga, K., Hayashi, J., Kagawa, Y. & Ohta, S. SMALLER ISOFORM OF HUMAN MITOCHONDRIAL TRANSCRIPTION FACTOR-I - ITS WIDE DISTRIBUTIONAND PRODUCTION BY ALTERNATIVE SPLICING. Biochemical and Biophysical Research Communications 194, 544-551 (1993).
    13. Larsson, N.G., Oldfors, A., Garman, J.D., Barsh, G.S. & Clayton, D.A. Down-regulation of mitochondrial transcription factor A during spermatogenesis in humans. Human Molecular Genetics 6, 185-191 (1997).
    14. Alam, T.I., et al. Human mitochondrial DNA is packaged with TFAM. Nucleic Acids Research 31, 1640-1645 (2003).
    15. Kanki, T., et al. Mitochondrial nucleoid and transcription factor A. Mitochondrial Pathogenesis: from Genes and Apoptosis to Aging and Disease 1011, 61-68 (2004).
    16. Kaufman, B.A., et al. The mitochondrial transcription factor TFAM coordinates the assembly of multiple DNA molecules into nucleoid-like structures. Molecular Biology of the Cell 18, 3225-3236 (2007).
    17. Kienhofer, J., et al. Protection of the mitochondrial DNA from oxidative damages by integration of an antioxidant system within the nucleoid structure. Naunyn-Schmiedebergs Archives of Pharmacology 372, 126-126 (2006).
    18. Garesse, R. & Vallejo, C.G. Animal mitochondrial biogenesis and function: a regulatory cross-talk between two genomes. Gene 263, 1-16 (2001).
    19. Miyako, K., et al. 1-methyl-4-phenylpyridinium ion (MPP+) selectively inhibits the replication of mitochondrial DNA. European Journal of Biochemistry 259, 412-418 (1999).
    20. Holt, I.J., Lorimer, H.E. & Jacobs, H.T. Coupled leading- and lagging-strand synthesis of mammalian mitochondrial DNA. Cell 100, 515-524 (2000).
    21. Garstka, H.L., et al. Import of mitochondrial transcription factor A (TFAM) into rat liver mitochondria stimulates transcription of mitochondrial DNA. Nucleic Acids Res 31, 5039-5047 (2003).
    22. Larsson, N.G., et al. Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nature Genetics 18, 231-236 (1998).
    23. Matsushima, Y., Garesse, R. & Kaguni, L.S. Drosophila mitochondrial transcription factor B2 regulates mitochondrial DNA copy number and transcription in Schneider cells. Journal of Biological Chemistry 279, 26900-26905 (2004).
    24. Kanki, T., et al. Architectural role of mitochondrial transcription factor A inmaintenance of human mitochondrial DNA. Mol Cell Biol 24, 9823-9834 (2004).
    25. Gaspari, M., Larsson, N.G. & Gustafsson, C.M. The transcription machinery in mammalian mitochondria. Biochimica Et Biophysica Acta-Bioenergetics 1659, 148-152 (2004).
    26. Yoshida, Y., et al. Human mitochondrial transcription factor A binds preferentially to oxidatively damaged DNA. Biochemical and Biophysical Research Communications 295, 945-951 (2002).
    27. Yoshida, Y., et al. p53 physically interacts with mitochondrial transcription factor A and differentially regulates binding to damaged DNA. Cancer Research 63, 3729-3734 (2003).
    28. Lee, H.C. & Wei, Y.H. Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress. Int J Biochem Cell Biol 37, 822-834 (2005).
    29. Hayashi, Y., et al. Reverse of age-dependent memory impairment and mitochondrial DNA damage in microglia by an overexpression of human mitochondrial transcription factor A in mice. Journal of Neuroscience 28, 8624-8634 (2008).
    30. Ikeuchi, M., et al. Overexpression of mitochondrial transcription factor A ameliorates mitochondrial deficiencies and cardiac failure after myocardial infarction. Circulation 112, 683-690 (2005).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700