驱动蛋白Oocyte-G1基因的克隆与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
哺乳动物发育过程中生殖系统分泌的多种细胞因子相互作用,形成一个复杂的信号网络,对其发育起着调控作用。近年来,大量与生殖系统发育相关的细胞因子相继被发现。我们在研究与小鼠卵巢发育相关基因的过程中,通过差异显示PCR技术(DDRT-PCR),筛选到一个新的小鼠Kinesin超家族成员,命名为Oocyte-G1。该基因在不同年龄小鼠卵巢中具有差异表达,其开放阅读框为2997bp,编码一个含有997个氨基酸、分子量约110kD的蛋白质,其mRNA长度约3.6kb,广泛存在于小鼠卵巢、肺、肾脏、睾丸和大脑组织中。Oocyte-G1在小鼠卵巢中,主要分布于卵母细胞及其周围的一些颗粒细胞中,在15、40日龄时表达量达到峰值,在5、10、20以及120日龄时低水平表达。
     为进一步研究Oocyte-G1的功能,我们分别在体外和体内进行了相关实验。TUNEL与流式细胞凋亡检测实验结果均显示:在细胞内过量表达Oocyte-G1,能引起细胞凋亡率显著增高。随后以含有Oocyte-G1外源表达片段的逆转录病毒颗粒为载体,构建了Oocyte-G1过表达小鼠模型,通过PCR与Southern blot技术筛选得到Oocyte-G1过表达小鼠。动物实验表明:雄性Oocyte-G1过表达模型小鼠生精小管内的生殖细胞凋亡率也显著增高。同时还发现Ooyte-G1的过量表达还能延缓小鼠发育,表现为体型及内部器官发育迟缓、生殖器官成熟时期推迟。导致雄性小鼠生殖腺发育迟缓,影响生精过程;雌性小鼠卵泡发育也受到影响,使6周龄小鼠不能形成成熟卵泡。这种发育迟缓现象,在随后的发育过程中能逐渐恢复。
     为探索Oocyte-G1功能的产生机制,我们使用免疫共沉淀方法对多个参与细胞增殖、凋亡或分化的细胞因子进行了筛选,结果显示Oocyte-G1能与Caspase-3相互结合。免疫荧光定位结果显示,这种相互作用发生在细胞核的周围区域。在体外培养的细胞中过量表达Oocyte-G1,能引起Caspase-3的表达量显著增加,而Oocyte-G1沉默会引起Caspase-3表达量显著降低。另外在Oocyte-G1过表达转基因小鼠中,Caspase-3的表达量也显著增高。
     综上所述,我们筛选并克隆了一个小鼠Kinesin超家族的新成员基因,Oocyte-G1,并对其功能进行了研究。上述结果均提示Oocyte-G1能通过作用于一些细胞凋亡因子而对凋亡过程具有一定促进作用,并进而影响了动物发育过程。深入研究Oocyte-G1在细胞凋亡以及生殖发育过程中的作用,能加深我们对哺乳动物生殖发育过程机制的理解,同时还为人类不孕不育症的治疗以及避孕药物的研发提供了理论依据。
Reproductive system is recognized as a source of regulatory molecules that influence animal development. A complicated signal network is formed by these molecules; through an array of complex interaction, the development process is under control. Recently, more and more hormones and signal molecules were identified; however, function of the majority of members of the network and the detailed mechanism are still unclear. During efforts to clone the follicular developmental related genes, we screened and identified a new kinesin superfamily gene, Oocyte-G1 by DDRT-PCR and cDNA library screening. This gene shows different expression levels in mouse ovaries during development. Oocyte-G1 belongs to Kinesin N-8 subfamily. The open reading frame of Oocyte-G1 is 2,994 bp long, which encodes a 997-residue predicted protein. Northern blot analysis revealed the presence of`~3.6 kb Oocyte-G1 mRNA in ovary, lung, kidney, testis and brain. Oocyte-G1 was weakly expressed on day 5 and was expressed at moderate level on day 10. Thereafter, on day 15 or day 40, there was an increase in expression, followed by a decline on day 20 or day 120. Furthermore, we studied the Ooctye-G1 protein by using the antiserum against a peptide sequence unique to this gene in Western blot analysis and immunolocalization. The antiserum recognized a prominent band of ~110 kD in immunoblots, Oocyte-G1 were dispersed in oocytes and some surrounding granulose cells in mouse ovaries.
     To study the function of Oocyte-G1, a series of experiments in vitro and in vivo was performed. By using TUNEL and flow cytometry methods, increased apoptosis caused by over-expression of Oocyte-G1 was observed in cultured cells. Oocyte-G1 transgenic mouse model was then constructed to verify this result, an increased apoptosis rate of the germ cells was observed in the Oocyte-G1 transgenic mice. In addition, the majority of the Oocyte-G1 transgenic mice experienced developmental retardation releated aspects, such as the body weight or the organ significantly smaller than wild type ones; in adult mouse testis, seminiferous tubules were underdevelopment hence the spermatogenesis was impaired, in female transgenic mice, most follicles are in early developmental stage of folliculogenesis and no mature follicles were detected in 6-week-old age.
     Immunoprecipitation were then used to screen potential candidates, which can interact with Oocyte-G1. The results revealed a potential interaction exist between Oocyte-G1 and Caspase-3. The results of co-localization show that this interaction was located at the surrounding area of the nucleus. Increased expression level of Caspase-3 was observed in Oocyte-G1 transgenic mice. By using over-expression and RNAi strategy in vitro, we found that expression level of Caspase-3 was up-regulated by Oocyte-G1.
     In summary, this dissertation describes the cloning, identification, characterization and functional analysis of a new mouse Kinesin N-8 member gene, Oocyte-G1. All results suggest the potential roles of Oocyte-G1 in apoptosis: it may promote apoptosis through act on some members of the apoptotic signaling pathways. These data may provide several clues to further understanding of the animal reproductive system development and the mechanism or physiological roles of Oocye-G1 in apoptosis.
引文
[1] Hirshfield AN. Development of follicles in the mammalian ovary. Int Rev Cytol 1991; 124: 43-101.
    [2] Gougeon A. Regulation of ovarian follicular development in primates: facts and hypotheses. Endocr Rev 1996; 17: 121-155.
    [3] McGee EA, Hsueh AJ. Initial and cyclic recruitment of ovarian follicles. Endocr Rev 2000; 21: 200-214.
    [4] Fauser BC, Van Heusden AM. Manipulation of human ovarian function: physiological concepts and clinical consequences. Endocr Rev 1997; 18: 71-106.
    [5] Cecconi S, Rossi G, Palmerini MG. Mouse oocyte differentiation during antral follicle development. Microsc Res Tech 2006; 69: 408-414.
    [6] Gosden RG BM. Cellular and molecular aspects of oocyte development. In: Grudzinskas JG YJ (ed.) Gametes - The Oocyte. Cambridge: Cambridge University Press; 1995.
    [7] Shores EM, Picton HM, Hunter MG. Differential regulation of pig theca cell steroidogenesis by LH, insulin-like growth factor I and granulosa cells in serum-free culture. J Reprod Fertil 2000; 118: 211-219.
    [8] Onagbesan OM, Peddie MJ, Williams J. Regulation of cell proliferation and estrogen synthesis by ovine LH, IGF-I, and EGF in theca interstitial cells of the domestic hen cultured in defined media. Gen Comp Endocrinol 1994; 94: 261-272.
    [9] Tilly JL, Rueda BR. Minireview: stem cell contribution to ovarian development, function, and disease. Endocrinology 2008; 149: 4307-4311.
    [10] Findlay JK, Drummond AE, Dyson ML, Baillie AJ, Robertson DM, Ethier JF. Recruitment and development of the follicle; the roles of the transforming growth factor-beta superfamily. Mol Cell Endocrinol 2002; 191: 35-43.
    [11] Hirshfield AN. Granulosa cell proliferation in very small follicles of cycling rats studied by long-term continuous tritiated-thymidine infusion. Biol Reprod 1989; 41: 309-316.
    [12] Hirshfield AN. Comparison of granulosa cell proliferation in small follicles of hypophysectomized, prepubertal, and mature rats. Biol Reprod 1985; 32: 979-987.
    [13] Lee WS, Otsuka F, Moore RK, Shimasaki S. Effect of bone morphogenetic protein-7 onfolliculogenesis and ovulation in the rat. Biol Reprod 2001; 65: 994-999.
    [14] Nilsson E, Parrott JA, Skinner MK. Basic fibroblast growth factor induces primordial follicle development and initiates folliculogenesis. Mol Cell Endocrinol 2001; 175: 123-130.
    [15] Packer AI, Hsu YC, Besmer P, Bachvarova RF. The ligand of the c-kit receptor promotes oocyte growth. Dev Biol 1994; 161: 194-205.
    [16] Parrott JA, Skinner MK. Kit-ligand/stem cell factor induces primordial follicle development and initiates folliculogenesis. Endocrinology 1999; 140: 4262-4271.
    [17] Pakarainen T, Zhang FP, Nurmi L, Poutanen M, Huhtaniemi I. Knockout of luteinizing hormone receptor abolishes the effects of follicle-stimulating hormone on preovulatory maturation and ovulation of mouse graafian follicles. Mol Endocrinol 2005; 19: 2591-2602.
    [18] Kezele P, Skinner MK. Regulation of ovarian primordial follicle assembly and development by estrogen and progesterone: endocrine model of follicle assembly. Endocrinology 2003; 144: 3329-3337.
    [19] Parrott JA, Skinner MK. Kit ligand actions on ovarian stromal cells: effects on theca cell recruitment and steroid production. Mol Reprod Dev 2000; 55: 55-64.
    [20] Lawson KA, Dunn NR, Roelen BA, Zeinstra LM, Davis AM, Wright CV, Korving JP, Hogan BL. Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev 1999; 13: 424-436.
    [21] Nilsson EE, Skinner MK. Bone morphogenetic protein-4 acts as an ovarian follicle survival factor and promotes primordial follicle development. Biol Reprod 2003; 69: 1265-1272.
    [22] van Wezel IL, Umapathysivam K, Tilley WD, Rodgers RJ. Immunohistochemical localization of basic fibroblast growth factor in bovine ovarian follicles. Mol Cell Endocrinol 1995; 115: 133-140.
    [23] Yamamoto S, Konishi I, Nanbu K, Komatsu T, Mandai M, Kuroda H, Matsushita K, Mori T. Immunohistochemical localization of basic fibroblast growth factor (bFGF) during folliculogenesis in the human ovary. Gynecol Endocrinol 1997; 11: 223-230.
    [24] Anderson E, Lee GY. The participation of growth factors in simulating the quiescent, proliferative, and differentiative stages of rat granulosa cells grown in a serum-free medium. Tissue Cell 1993; 25: 49-72.
    [25] Lavranos TC, Rodgers HF, Bertoncello I, Rodgers RJ. Anchorage-independent culture of bovine granulosa cells: the effects of basic fibroblast growth factor and dibutyryl cAMP on cell division and differentiation. Exp Cell Res 1994; 211: 245-251.
    [26] Tilly JL, Billig H, Kowalski KI, Hsueh AJ. Epidermal growth factor and basic fibroblast growth factorsuppress the spontaneous onset of apoptosis in cultured rat ovarian granulosa cells and follicles by a tyrosine kinase-dependent mechanism. Mol Endocrinol 1992; 6: 1942-1950.
    [27] Nilsson E, Skinner MK. Cellular interactions that control primordial follicle development and folliculogenesis. J Soc Gynecol Investig 2001; 8: S17-20.
    [28] Gadient RA, Patterson PH. Leukemia inhibitory factor, Interleukin 6, and other cytokines using the GP130 transducing receptor: roles in inflammation and injury. Stem Cells 1999; 17: 127-137.
    [29] Abe T, Ohno M, Sato T, Murakami M, Kajiki M, Kodaira R. "Differentiation induction" culture of human leukemic myeloid cells stimulates high production of macrophage differentiation inducing factor. Cytotechnology 1991; 5 Suppl 2: S75-93.
    [30] Coskun S, Uzumcu M, Jaroudi K, Hollanders JM, Parhar RS, al-Sedairy ST. Presence of leukemia inhibitory factor and interleukin-12 in human follicular fluid during follicular growth. Am J Reprod Immunol 1998; 40: 13-18.
    [31] Ozornek MH, Bielfeld P, Krussel JS, Hirchenhain J, Jeyendran RS, Koldovsky U. Epidermal growth factor and leukemia inhibitory factor levels in follicular fluid. Association with in vitro fertilization outcome. J Reprod Med 1999; 44: 367-369.
    [32] Morita Y, Manganaro TF, Tao XJ, Martimbeau S, Donahoe PK, Tilly JL. Requirement for phosphatidylinositol-3'-kinase in cytokine-mediated germ cell survival during fetal oogenesis in the mouse. Endocrinology 1999; 140: 941-949.
    [33] Kezele P, Nilsson E, Skinner MK. Cell-cell interactions in primordial follicle assembly and development. Front Biosci 2002; 7: d1990-1996.
    [34] Nilsson EE, Kezele P, Skinner MK. Leukemia inhibitory factor (LIF) promotes the primordial to primary follicle transition in rat ovaries. Mol Cell Endocrinol 2002; 188: 65-73.
    [35] Dissen GA, Romero C, Hirshfield AN, Ojeda SR. Nerve growth factor is required for early follicular development in the mammalian ovary. Endocrinology 2001; 142: 2078-2086.
    [36] Kezele P, Nilsson EE, Skinner MK. Keratinocyte growth factor acts as a mesenchymal factor that promotes ovarian primordial to primary follicle transition. Biol Reprod 2005; 73: 967-973.
    [37] Kezele PR, Nilsson EE, Skinner MK. Insulin but not insulin-like growth factor-1 promotes the primordial to primary follicle transition. Mol Cell Endocrinol 2002; 192: 37-43.
    [38] Matos MH, Lima-Verde IB, Bruno JB, Lopes CA, Martins FS, Santos KD, Rocha RM, Silva JR, Bao SN, Figueiredo JR. Follicle stimulating hormone and fibroblast growth factor-2 interact and promote goat primordial follicle development in vitro. Reprod Fertil Dev 2007; 19: 677-684.
    [39] Shimizu T. Promotion of ovarian follicular development by injecting vascular endothelial growthfactor (VEGF) and growth differentiation factor 9 (GDF-9) genes. J Reprod Dev 2006; 52: 23-32.
    [40] Nilsson EE, Detzel C, Skinner MK. Platelet-derived growth factor modulates the primordial to primary follicle transition. Reproduction 2006; 131: 1007-1015.
    [41] Dole G, Nilsson EE, Skinner MK. Glial-derived neurotrophic factor promotes ovarian primordial follicle development and cell-cell interactions during folliculogenesis. Reproduction 2008; 135: 671-682.
    [42] Durlinger AL, Kramer P, Karels B, de Jong FH, Uilenbroek JT, Grootegoed JA, Themmen AP. Control of primordial follicle recruitment by anti-Mullerian hormone in the mouse ovary. Endocrinology 1999; 140: 5789-5796.
    [43] Durlinger AL, Gruijters MJ, Kramer P, Karels B, Ingraham HA, Nachtigal MW, Uilenbroek JT, Grootegoed JA, Themmen AP. Anti-Mullerian hormone inhibits initiation of primordial follicle growth in the mouse ovary. Endocrinology 2002; 143: 1076-1084.
    [44] Visser JA, Themmen AP. Anti-Mullerian hormone and folliculogenesis. Mol Cell Endocrinol 2005; 234: 81-86.
    [45] Nilsson E, Rogers N, Skinner MK. Actions of anti-Mullerian hormone on the ovarian transcriptome to inhibit primordial to primary follicle transition. Reproduction 2007; 134: 209-221.
    [46] Molyneaux KA, Zinszner H, Kunwar PS, Schaible K, Stebler J, Sunshine MJ, O'Brien W, Raz E, Littman D, Wylie C, Lehmann R. The chemokine SDF1/CXCL12 and its receptor CXCR4 regulate mouse germ cell migration and survival. Development 2003; 130: 4279-4286.
    [47] Nagasawa T, Kikutani H, Kishimoto T. Molecular cloning and structure of a pre-B-cell growth-stimulating factor. Proc Natl Acad Sci U S A 1994; 91: 2305-2309.
    [48] Holt JE, Jackson A, Roman SD, Aitken RJ, Koopman P, McLaughlin EA. CXCR4/SDF1 interaction inhibits the primordial to primary follicle transition in the neonatal mouse ovary. Dev Biol 2006; 293: 449-460.
    [49] Schipper I, Hop WC, Fauser BC. The follicle-stimulating hormone (FSH) threshold/window concept examined by different interventions with exogenous FSH during the follicular phase of the normal menstrual cycle: duration, rather than magnitude, of FSH increase affects follicle development. J Clin Endocrinol Metab 1998; 83: 1292-1298.
    [50] Ben-Rafael Z, Levy T, Schoemaker J. Pharmacokinetics of follicle-stimulating hormone: clinical significance. Fertil Steril 1995; 63: 689-700.
    [51] Zeleznik AJ, Hutchinson JS, Schuler HM. Passive immunization with anti-oestradiol antibodies during the luteal phase of the menstrual cycle potentiates the perimenstrual rise in serum gonadotrophinconcentrations and stimulates follicular growth in the cynomolgus monkey (Macaca fascicularis). J Reprod Fertil 1987; 80: 403-410.
    [52] Gerard N, Delpuech T, Oxvig C, Overgaard MT, Monget P. Proteolytic degradation of IGF-binding protein (IGFBP)-2 in equine ovarian follicles: involvement of pregnancy-associated plasma protein-A (PAPP-A) and association with dominant but not subordinated follicles. J Endocrinol 2004; 182: 457-466.
    [53] Mazerbourg S, Bondy CA, Zhou J, Monget P. The insulin-like growth factor system: a key determinant role in the growth and selection of ovarian follicles? a comparative species study. Reprod Domest Anim 2003; 38: 247-258.
    [54] Trounson A, Anderiesz C, Jones GM, Kausche A, Lolatgis N, Wood C. Oocyte maturation. Hum Reprod 1998; 13 Suppl 3: 52-62; discussion 71-55.
    [55] Groome NP, Illingworth PJ, O'Brien M, Pai R, Rodger FE, Mather JP, McNeilly AS. Measurement of dimeric inhibin B throughout the human menstrual cycle. J Clin Endocrinol Metab 1996; 81: 1401-1405.
    [56] Hall JE, Bhatta N, Adams JM, Rivier JE, Vale WW, Crowley WF, Jr. Variable tolerance of the developing follicle and corpus luteum to gonadotropin-releasing hormone antagonist-induced gonadotropin withdrawal in the human. J Clin Endocrinol Metab 1991; 72: 993-1000.
    [57] Montgomery GW, McNatty KP, Davis GH. Physiology and molecular genetics of mutations that increase ovulation rate in sheep. Endocr Rev 1992; 13: 309-328.
    [58] Driancourt MA, Hermier D, Hanrahan JP. Alterations in follicular function associated with selection on ovulation rate in Finn ewes. J Anim Sci 1996; 74: 199-210.
    [59] Hunter MG, Robinson RS, Mann GE, Webb R. Endocrine and paracrine control of follicular development and ovulation rate in farm species. Anim Reprod Sci 2004; 82-83: 461-477.
    [60] Baird DT, Campbell BK. Follicle selection in sheep with breed differences in ovulation rate. Mol Cell Endocrinol 1998; 145: 89-95.
    [61] Eddy EM. Male germ cell gene expression. Recent Prog Horm Res 2002; 57: 103-128.
    [62] de Rooij DG, Russell LD. All you wanted to know about spermatogonia but were afraid to ask. J Androl 2000; 21: 776-798.
    [63] Hess RA. Quantitative and qualitative characteristics of the stages and transitions in the cycle of the rat seminiferous epithelium: light microscopic observations of perfusion-fixed and plastic-embedded testes. Biol Reprod 1990; 43: 525-542.
    [64] Huckins C, Oakberg EF. Morphological and quantitative analysis of spermatogonia in mouse testesusing whole mounted seminiferous tubules. II. The irradiated testes. Anat Rec 1978; 192: 529-542.
    [65] de Rooij DG. Proliferation and differentiation of spermatogonial stem cells. Reproduction 2001; 121: 347-354.
    [66] Clermont Y, Leblond CP. Differentiation and renewal of spermatogonia in the monkey, Macacus rhesus. Am J Anat 1959; 104: 237-273.
    [67] de Rooij DG, van Alphen MM, van de Kant HJ. Duration of the cycle of the seminiferous epithelium and its stages in the rhesus monkey (Macaca mulatta). Biol Reprod 1986; 35: 587-591.
    [68] Ehmcke J, Luetjens CM, Schlatt S. Clonal organization of proliferating spermatogonial stem cells in adult males of two species of non-human primates, Macaca mulatta and Callithrix jacchus. Biol Reprod 2005; 72: 293-300.
    [69] Ehmcke J, Simorangkir DR, Schlatt S. Identification of the starting point for spermatogenesis and characterization of the testicular stem cell in adult male rhesus monkeys. Hum Reprod 2005; 20: 1185-1193.
    [70] van Alphen MM, van de Kant HJ, de Rooij DG. Follicle-stimulating hormone stimulates spermatogenesis in the adult monkey. Endocrinology 1988; 123: 1449-1455.
    [71] Simorangkir DR, Marshall GR, Ehmcke J, Schlatt S, Plant TM. Prepubertal expansion of dark and pale type A spermatogonia in the rhesus monkey (Macaca mulatta) results from proliferation during infantile and juvenile development in a relatively gonadotropin independent manner. Biol Reprod 2005; 73: 1109-1115.
    [72] Oatley JM, Brinster RL. Regulation of spermatogonial stem cell self-renewal in mammals. Annu Rev Cell Dev Biol 2008; 24: 263-286.
    [73] van Beek ME, Meistrich ML, de Rooij DG. Probability of self-renewing divisions of spermatogonial stem cells in colonies, formed after fission neutron irradiation. Cell Tissue Kinet 1990; 23: 1-16.
    [74] Airaksinen MS, Saarma M. The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci 2002; 3: 383-394.
    [75] Ebata KT, Zhang X, Nagano MC. Expression patterns of cell-surface molecules on male germ line stem cells during postnatal mouse development. Mol Reprod Dev 2005; 72: 171-181.
    [76] Meng X, Lindahl M, Hyvonen ME, Parvinen M, de Rooij DG, Hess MW, Raatikainen-Ahokas A, Sainio K, Rauvala H, Lakso M, Pichel JG, Westphal H, Saarma M, Sariola H. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 2000; 287: 1489-1493.
    [77] Yomogida K, Yagura Y, Tadokoro Y, Nishimune Y. Dramatic expansion of germinal stem cells by ectopically expressed human glial cell line-derived neurotrophic factor in mouse Sertoli cells. BiolReprod 2003; 69: 1303-1307.
    [78] Meng X, Pata I, Pedrono E, Popsueva A, de Rooij DG, Janne M, Rauvala H, Sariola H. Transient disruption of spermatogenesis by deregulated expression of neurturin in testis. Mol Cell Endocrinol 2001; 184: 33-39.
    [79] Naughton CK, Jain S, Strickland AM, Gupta A, Milbrandt J. Glial cell-line derived neurotrophic factor-mediated RET signaling regulates spermatogonial stem cell fate. Biol Reprod 2006; 74: 314-321.
    [80] Kanatsu-Shinohara M, Miki H, Inoue K, Ogonuki N, Toyokuni S, Ogura A, Shinohara T. Long-term culture of mouse male germline stem cells under serum-or feeder-free conditions. Biol Reprod 2005; 72: 985-991.
    [81] Tadokoro Y, Yomogida K, Ohta H, Tohda A, Nishimune Y. Homeostatic regulation of germinal stem cell proliferation by the GDNF/FSH pathway. Mech Dev 2002; 113: 29-39.
    [82] Krishnamurthy H, Danilovich N, Morales CR, Sairam MR. Qualitative and quantitative decline in spermatogenesis of the follicle-stimulating hormone receptor knockout (FORKO) mouse. Biol Reprod 2000; 62: 1146-1159.
    [83] Oatley JM, Avarbock MR, Telaranta AI, Fearon DT, Brinster RL. Identifying genes important for spermatogonial stem cell self-renewal and survival. Proc Natl Acad Sci U S A 2006; 103: 9524-9529.
    [84] Nagano M, Ryu BY, Brinster CJ, Avarbock MR, Brinster RL. Maintenance of mouse male germ line stem cells in vitro. Biol Reprod 2003; 68: 2207-2214.
    [85] Huckins C. Behavior of stem cell spermatogonia in the adult rat irradiated testis. Biol Reprod 1978; 19: 747-760.
    [86] Russell LD, Chiarini-Garcia H, Korsmeyer SJ, Knudson CM. Bax-dependent spermatogonia apoptosis is required for testicular development and spermatogenesis. Biol Reprod 2002; 66: 950-958.
    [87] Bartke A. Apoptosis of male germ cells, a generalized or a cell type-specific phenomenon? Endocrinology 1995; 136: 3-4.
    [88] Korsmeyer SJ. Bcl-2 initiates a new category of oncogenes: regulators of cell death. Blood 1992; 80: 879-886.
    [89] Furuchi T, Masuko K, Nishimune Y, Obinata M, Matsui Y. Inhibition of testicular germ cell apoptosis and differentiation in mice misexpressing Bcl-2 in spermatogonia. Development 1996; 122: 1703-1709.
    [90] Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 1993; 74: 609-619.
    [91] Knudson CM, Tung KS, Tourtellotte WG, Brown GA, Korsmeyer SJ. Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science 1995; 270: 96-99.
    [92] Rodriguez I, Ody C, Araki K, Garcia I, Vassalli P. An early and massive wave of germinal cell apoptosis is required for the development of functional spermatogenesis. EMBO J 1997; 16: 2262-2270.
    [93] Eisenhauer KM, Chun SY, Billig H, Hsueh AJ. Growth hormone suppression of apoptosis in preovulatory rat follicles and partial neutralization by insulin-like growth factor binding protein. Biol Reprod 1995; 53: 13-20.
    [94] Kangasniemi M, Wilson G, Huhtaniemi I, Meistrich ML. Protection against procarbazine-induced testicular damage by GnRH-agonist and antiandrogen treatment in the rat. Endocrinology 1995; 136: 3677-3680.
    [95] Seog DH, Lee DH, Lee SK. Molecular motor proteins of the kinesin superfamily proteins (KIFs): structure, cargo and disease. J Korean Med Sci 2004; 19: 1-7.
    [96] Vale RD, Fletterick RJ. The design plan of kinesin motors. Annu Rev Cell Dev Biol 1997; 13: 745-777.
    [97] Miki H, Setou M, Kaneshiro K, Hirokawa N. All kinesin superfamily protein, KIF, genes in mouse and human. Proc Natl Acad Sci U S A 2001; 98: 7004-7011.
    [98] Nakagawa T, Setou M, Seog D, Ogasawara K, Dohmae N, Takio K, Hirokawa N. A novel motor, KIF13A, transports mannose-6-phosphate receptor to plasma membrane through direct interaction with AP-1 complex. Cell 2000; 103: 569-581.
    [99] Vale RD, Milligan RA. The way things move: looking under the hood of molecular motor proteins. Science 2000; 288: 88-95.
    [100] Morris RL, Scholey JM. Heterotrimeric kinesin-II is required for the assembly of motile 9+2 ciliary axonemes on sea urchin embryos. J Cell Biol 1997; 138: 1009-1022.
    [101] Hachet O, Ephrussi A. Drosophila Y14 shuttles to the posterior of the oocyte and is required for oskar mRNA transport. Curr Biol 2001; 11: 1666-1674.
    [102] Hachet O, Ephrussi A. Splicing of oskar RNA in the nucleus is coupled to its cytoplasmic localization. Nature 2004; 428: 959-963.
    [103] Zimyanin VL, Belaya K, Pecreaux J, Gilchrist MJ, Clark A, Davis I, St Johnston D. In vivo imaging of oskar mRNA transport reveals the mechanism of posterior localization. Cell 2008; 134: 843-853.
    [104] Melton DA. Translocation of a localized maternal mRNA to the vegetal pole of Xenopus oocytes. Nature 1987; 328: 80-82.
    [105] Weeks DL, Melton DA. A maternal mRNA localized to the vegetal hemisphere in Xenopus eggs codes for a growth factor related to TGF-beta. Cell 1987; 51: 861-867.
    [106] Betley JN, Heinrich B, Vernos I, Sardet C, Prodon F, Deshler JO. Kinesin II mediates Vg1 mRNA transport in Xenopus oocytes. Curr Biol 2004; 14: 219-224.
    [107] Vernos I, Raats J, Hirano T, Heasman J, Karsenti E, Wylie C. Xklp1, a chromosomal Xenopus kinesin-like protein essential for spindle organization and chromosome positioning. Cell 1995; 81: 117-127.
    [108] Goshima G, Wollman R, Stuurman N, Scholey JM, Vale RD. Length control of the metaphase spindle. Curr Biol 2005; 15: 1979-1988.
    [109] Mayr MI, Hummer S, Bormann J, Gruner T, Adio S, Woehlke G, Mayer TU. The human kinesin Kif18A is a motile microtubule depolymerase essential for chromosome congression. Curr Biol 2007; 17: 488-498.
    [110] Duncan JE, Warrior R. The cytoplasmic dynein and kinesin motors have interdependent roles in patterning the Drosophila oocyte. Curr Biol 2002; 12: 1982-1991.
    [111] Zhao C, Takita J, Tanaka Y, Setou M, Nakagawa T, Takeda S, Yang HW, Terada S, Nakata T, Takei Y, Saito M, Tsuji S, Hayashi Y, Hirokawa N. Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta. Cell 2001; 105: 587-597.
    [112] Reid E, Kloos M, Ashley-Koch A, Hughes L, Bevan S, Svenson IK, Graham FL, Gaskell PC, Dearlove A, Pericak-Vance MA, Rubinsztein DC, Marchuk DA. A kinesin heavy chain (KIF5A) mutation in hereditary spastic paraplegia (SPG10). Am J Hum Genet 2002; 71: 1189-1194.
    [113] Blair MA, Ma S, Hedera P. Mutation in KIF5A can also cause adult-onset hereditary spastic paraplegia. Neurogenetics 2006; 7: 47-50.
    [114] Schule R, Kremer BP, Kassubek J, Auer-Grumbach M, Kostic V, Klopstock T, Klimpe S, Otto S, Boesch S, van de Warrenburg BP, Schols L. SPG10 is a rare cause of spastic paraplegia in European families. J Neurol Neurosurg Psychiatry 2008; 79: 584-587.
    [115] Lo Giudice M, Neri M, Falco M, Sturnio M, Calzolari E, Di Benedetto D, Fichera M. A missense mutation in the coiled-coil domain of the KIF5A gene and late-onset hereditary spastic paraplegia. Arch Neurol 2006; 63: 284-287.
    [116] Lin F, Hiesberger T, Cordes K, Sinclair AM, Goldstein LS, Somlo S, Igarashi P. Kidney-specific inactivation of the KIF3A subunit of kinesin-II inhibits renal ciliogenesis and produces polycystic kidney disease. Proc Natl Acad Sci U S A 2003; 100: 5286-5291.
    [117] Pantelidou M, Zographos SE, Lederer CW, Kyriakides T, Pfaffl MW, Santama N. Differentialexpression of molecular motors in the motor cortex of sporadic ALS. Neurobiol Dis 2007; 26: 577-589.
    [118] Dong J, Albertini DF, Nishimori K, Kumar TR, Lu N, Matzuk MM. Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 1996; 383: 531-535.
    [119] Kikkawa M, Ishikawa T, Wakabayashi T, Hirokawa N. Three-dimensional structure of the kinesin head-microtubule complex. Nature 1995; 376: 274-277.
    [120] Hirokawa N. The molecular mechanism of organelle transport along microtubules: the identification and characterization of KIFs (kinesin superfamily proteins). Cell Struct Funct 1996; 21: 357-367.
    [121] Hirokawa N, Takemura R. Molecular motors and mechanisms of directional transport in neurons. Nat Rev Neurosci 2005; 6: 201-214.
    [122] Hirokawa N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 1998; 279: 519-526.
    [123] Lee YM, Lee S, Lee E, Shin H, Hahn H, Choi W, Kim W. Human kinesin superfamily member 4 is dominantly localized in the nuclear matrix and is associated with chromosomes during mitosis. Biochem J 2001; 360: 549-556.
    [124] Wordeman L, Mitchison TJ. Identification and partial characterization of mitotic centromere-associated kinesin, a kinesin-related protein that associates with centromeres during mitosis. J Cell Biol 1995; 128: 95-104.
    [125] Sharp DJ, Rogers GC, Scholey JM. Microtubule motors in mitosis. Nature 2000; 407: 41-47.
    [126] Amaratunga A, Leeman SE, Kosik KS, Fine RE. Inhibition of kinesin synthesis in vivo inhibits the rapid transport of representative proteins for three transport vesicle classes into the axon. J Neurochem 1995; 64: 2374-2376.
    [127] Ebneth A, Godemann R, Stamer K, Illenberger S, Trinczek B, Mandelkow E. Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer's disease. J Cell Biol 1998; 143: 777-794.
    [128] Hirokawa N, Takemura R. Molecular motors in neuronal development, intracellular transport and diseases. Curr Opin Neurobiol 2004; 14: 564-573.
    [129] Zimmermann JW, Schultz RM. Analysis of gene expression in the preimplantation mouse embryo: use of mRNA differential display. Proc Natl Acad Sci U S A 1994; 91: 5456-5460.
    [130] Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Simth JA, Struhl K. Current Protocols in Molecular Biology. New York: John Wiley and Sons; 1987.
    [131] Joseph Sambrook DR, David W. Russell. Molecular Cloning: A Laboratory Manual. Cold SpringHarbor Laboratory Press; 2000.
    [132] Pilder SH, Decker CL, Islam S, Buck C, Cebra-Thomas JA, Silver LM. Concerted evolution of the mouse Tcp-10 gene family: implications for the functional basis of t haplotype transmission ratio distortion. Genomics 1992; 12: 35-41.
    [133] Zhang Y, Wu J. Molecular cloning and characterization of a new gene, Oocyte-G1. J Cell Physiol 2009; 218: 75-83.
    [134] Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC. Measurement of protein using bicinchoninic acid. Anal Biochem 1985; 150: 76-85.
    [135] Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227: 680-685.
    [136] Miki H, Okada Y, Hirokawa N. Analysis of the kinesin superfamily: insights into structure and function. Trends Cell Biol 2005; 15: 467-476.
    [137] Howard J. Molecular motors: structural adaptations to cellular functions. Nature 1997; 389: 561-567.
    [138] Mallik R, Carter BC, Lex SA, King SJ, Gross SP. Cytoplasmic dynein functions as a gear in response to load. Nature 2004; 427: 649-652.
    [139] Zhu C, Zhao J, Bibikova M, Leverson JD, Bossy-Wetzel E, Fan JB, Abraham RT, Jiang W. Functional analysis of human microtubule-based motor proteins, the kinesins and dyneins, in mitosis/cytokinesis using RNA interference. Mol Biol Cell 2005; 16: 3187-3199.
    [140] Garcia MA, Koonrugsa N, Toda T. Spindle-kinetochore attachment requires the combined action of Kin I-like Klp5/6 and Alp14/Dis1-MAPs in fission yeast. EMBO J 2002; 21: 6015-6024.
    [141] West RR, Malmstrom T, McIntosh JR. Kinesins klp5(+) and klp6(+) are required for normal chromosome movement in mitosis. J Cell Sci 2002; 115: 931-940.
    [142] Cottingham FR, Hoyt MA. Mitotic spindle positioning in Saccharomyces cerevisiae is accomplished by antagonistically acting microtubule motor proteins. J Cell Biol 1997; 138: 1041-1053.
    [143] Pereira AJ, Dalby B, Stewart RJ, Doxsey SJ, Goldstein LS. Mitochondrial association of a plus end-directed microtubule motor expressed during mitosis in Drosophila. J Cell Biol 1997; 136: 1081-1090.
    [144] Savoian MS, Gatt MK, Riparbelli MG, Callaini G, Glover DM. Drosophila Klp67A is required for proper chromosome congression and segregation during meiosis I. J Cell Sci 2004; 117: 3669-3677.
    [145] Eppig JJ, Wigglesworth K, Pendola FL. The mammalian oocyte orchestrates the rate of ovarian follicular development. Proc Natl Acad Sci U S A 2002; 99: 2890-2894.
    [146] McGee EA. The regulation of apoptosis in preantral ovarian follicles. Biol Signals Recept 2000; 9: 81-86.
    [147] McGee EA, Hsu SY, Kaipia A, Hsueh AJ. Cell death and survival during ovarian follicle development. Mol Cell Endocrinol 1998; 140: 15-18.
    [148] Dube JL, Wang P, Elvin J, Lyons KM, Celeste AJ, Matzuk MM. The bone morphogenetic protein 15 gene is X-linked and expressed in oocytes. Mol Endocrinol 1998; 12: 1809-1817.
    [149] McGrath SA, Esquela AF, Lee SJ. Oocyte-specific expression of growth/differentiation factor-9. Mol Endocrinol 1995; 9: 131-136.
    [150] Abel MH, Wootton AN, Wilkins V, Huhtaniemi I, Knight PG, Charlton HM. The effect of a null mutation in the follicle-stimulating hormone receptor gene on mouse reproduction. Endocrinology 2000; 141: 1795-1803.
    [151] Oktay K, Briggs D, Gosden RG. Ontogeny of follicle-stimulating hormone receptor gene expression in isolated human ovarian follicles. J Clin Endocrinol Metab 1997; 82: 3748-3751.
    [152] Wu J, Carrell DT, Wilcox AL. Development of in vitro-matured oocytes from porcine preantral follicles following intracytoplasmic sperm injection. Biol Reprod 2001; 65: 1579-1585.
    [153] Wu J, Emery BR, Carrell DT. In vitro growth, maturation, fertilization, and embryonic development of oocytes from porcine preantral follicles. Biol Reprod 2001; 64: 375-381.
    [154] Wu J, Nayudu PL, Kiesel PS, Michelmann HW. Luteinizing hormone has a stage-limited effect on preantral follicle development in vitro. Biol Reprod 2000; 63: 320-327.
    [155] Wu J, Tian Q. Role of follicle stimulating hormone and epidermal growth factor in the development of porcine preantral follicle in vitro. Zygote 2007; 15: 233-240.
    [156] Balla A, Danilovich N, Yang Y, Sairam MR. Dynamics of ovarian development in the FORKO immature mouse: structural and functional implications for ovarian reserve. Biol Reprod 2003; 69: 1281-1293.
    [157] Fortune JE, Cushman RA, Wahl CM, Kito S. The primordial to primary follicle transition. Mol Cell Endocrinol 2000; 163: 53-60.
    [158] McGee E, Spears N, Minami S, Hsu SY, Chun SY, Billig H, Hsueh AJ. Preantral ovarian follicles in serum-free culture: suppression of apoptosis after activation of the cyclic guanosine 3',5'-monophosphate pathway and stimulation of growth and differentiation by follicle-stimulating hormone. Endocrinology 1997; 138: 2417-2424.
    [159] Gosden R, Spears N. Programmed cell death in the reproductive system. Br Med Bull 1997; 53: 644-661.
    [160] Hsu SY, Hsueh AJ. Intracellular mechanisms of ovarian cell apoptosis. Mol Cell Endocrinol 1998; 145: 21-25.
    [161] Wolf BB, Schuler M, Echeverri F, Green DR. Caspase-3 is the primary activator of apoptotic DNA fragmentation via DNA fragmentation factor-45/inhibitor of caspase-activated DNase inactivation. J Biol Chem 1999; 274: 30651-30656.
    [162] Ellis RE, Yuan JY, Horvitz HR. Mechanisms and functions of cell death. Annu Rev Cell Biol 1991; 7: 663-698.
    [163] Fernandes-Alnemri T, Litwack G, Alnemri ES. CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1 beta-converting enzyme. J Biol Chem 1994; 269: 30761-30764.
    [164] Nicholson DW, Thornberry NA. Caspases: killer proteases. Trends Biochem Sci 1997; 22: 299-306.
    [165] Namura S, Zhu J, Fink K, Endres M, Srinivasan A, Tomaselli KJ, Yuan J, Moskowitz MA. Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. J Neurosci 1998; 18: 3659-3668.
    [166] Kuida K, Zheng TS, Na S, Kuan C, Yang D, Karasuyama H, Rakic P, Flavell RA. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 1996; 384: 368-372.
    [167] Raisova M, Hossini AM, Eberle J, Riebeling C, Wieder T, Sturm I, Daniel PT, Orfanos CE, Geilen CC. The Bax/Bcl-2 ratio determines the susceptibility of human melanoma cells to CD95/Fas-mediated apoptosis. J Invest Dermatol 2001; 117: 333-340.
    [168] Zou K, Yuan Z, Yang Z, Luo H, Sun K, Zhou L, Xiang J, Shi L, Yu Q, Zhang Y, Hou R, Wu J. Production of offspring from a germline stem cell line derived from neonatal ovaries. Nat Cell Biol 2009.
    [169] Orth JM, Jester WF, Jr., Qiu J. Gonocytes in testes of neonatal rats express the c-kit gene. Mol Reprod Dev 1996; 45: 123-131.
    [170] Harlow E, Lane D. Antibodies: A laboratory manual. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press; 1999.
    [171] Sebbagh M, Renvoize C, Hamelin J, Riche N, Bertoglio J, Breard J. Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nat Cell Biol 2001; 3: 346-352.
    [172] Krysko DV, Diez-Fraile A, Criel G, Svistunov AA, Vandenabeele P, D'Herde K. Life and death of female gametes during oogenesis and folliculogenesis. Apoptosis 2008; 13: 1065-1087.
    [173] Hughes FM, Jr., Gorospe WC. Biochemical identification of apoptosis (programmed cell death) ingranulosa cells: evidence for a potential mechanism underlying follicular atresia. Endocrinology 1991; 129: 2415-2422.
    [174] Yu YS, Sui HS, Han ZB, Li W, Luo MJ, Tan JH. Apoptosis in granulosa cells during follicular atresia: relationship with steroids and insulin-like growth factors. Cell Res 2004; 14: 341-346.
    [175] Albertini DF, Combelles CM, Benecchi E, Carabatsos MJ. Cellular basis for paracrine regulation of ovarian follicle development. Reproduction 2001; 121: 647-653.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700