重元素原子,离子禁戒跃迁研究及基于EBIT的等离子体分解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
禁戒跃迁广泛地存在于各种天体,实验室等离子体中.禁戒跃迁在等离子体电子温度,电子密度诊断方面有着重要的应用.本工作利用基于MulticonfigurationDirac-Fock(MCDF)方法的grasp VU程序包,系统研究了一系列重元素原子,离子的禁戒跃迁.具体内容包括以下几个方面:
     一.系统研究了类锌等电子系列第一激发态4s4p ~(1,3)P 4条能级的激发能,及它们到基态及它们之间各跃迁的跃迁几率.重点研究了自旋禁戒跃迁4s~2 ~1S_0-4s4p ~3P_1和超精细诱导跃迁4s~2 ~1S_0-4s4p ~3P_0.能级的结果指出了目前存在的实验之一对类锌Zr~(10+),Mo~(12+)及Rh~(15+)的能级~3P_2或者~3P_0的确定有误.首次给出了类锌等电子系的超精细诱导跃迁4s~2-4s4p ~3P_0的跃迁几率.该部分主要内容发表在Journal of Physics B,目前该文已被引用7次.
     二.系统研究了类铑等电子系列基态谱项分裂[Kr]4d~9 ~2D_(3/2,5/2),同时计算了能级~2D_(3/2)的寿命.本工作关于类铑等电子系列基态谱项分裂的结果和实验值的相对差别在0.1%的水平,关于Xe X谱项分裂的结果指出了其它理论计算值和实验值不符合的原因.基于这一理论计算,我们同时测量了类铑钡离子的基态谱项分裂,实验值和本文理论计算值相差约为4(?)(0.1%).理论计算结果目前已经整理成文.
     三.细致研究了锶(Sr)原子第一激发态5s5p ~(1,3)P 4条能级的激发能,及它们到基态及它们之间各跃迁的跃迁几率.研究的重点是能级5s5p ~3P_2的寿命,由于目前存在的理论值(1048 s)和实验值(520_(-140)~(+301) s)差别很大.本工作的结果(1071s)和此前的理论值符合的很好.考虑到长寿命能级测量的困难,目前实验值和理论值的差别可能主要来自于实验.该部分主要内容发表在Physical Review A.
     四.细致研究了锘(No)原子第一激发态7s7p ~(1,3)P 4条能级的激发能,目的是指导即将开展的超重元素能级测量.本工作的计算结果支持目前存在的两组理论值之一,它们之间的差别高达10%.该部分主要内容发表在Physical ReviewA.
     以上是本博士论文的工作重点,本博士论文另外一部分是基于EBIT(Electron Beam Ion Trap)的实验研究.EBIT是一种用于产生高电荷态离子的小型加速器装置,目前使用该装置已经产生了U~(92+).这一装置集离子源和光源于一体,被约束在装置中的高电荷态离子与电子发生着各种过程,例如:激发,退激,电离,复合等.我们可以通过研究各种原子过程辐射出的光子来研究原子结构信息.另外,产生的高电荷态离子也可以被引出与其它粒子束或固体表面相互作用.
     我们利用上海EBIT测量了类氢和裸氪离子的辐射复合过程,通过对辐射复合过程辐射出光子计数率的研究得到了一定条件下上海EBIT中类氢和裸氪离子的数密度.文章发表在Journal of Physics:Conference Series.
     另外,我们还在东京CoBIT(Compact EBIT)上测量了类铑钡离子的基态谱项分裂.
Forbidden lines are very useful in plasma diagnostics,such as the determination of the electron density and temperature.We did some research on forbidden lines of heavy elements,and they are as follows:
     Ⅰ.We presented a systematic calculation along the zinc-like sequence.The excitation energies for the 4s4p ~(1,3)p levels,and the transition probabilities for the transitions within the 4s4p ~(1,3)p levels and between these levels and the ground state,are given.Our focus is on the spin-forbidden line 4s~2 ~1S_0 - 4s4p ~3P_1 and the hyperfine induced transition(HPF) 4s~2 ~1S_0 - 4s4p ~3P_0.Our results for the excitation energies,pointed out the possible misidentification of the ~3P_2 or ~3p_0 levels in Zr~(10+),Mo~(12+) and Rh~(15+).Plus,we presented the transition probability for the HPF transition along the zinc-like ions for the first time.This work was published in Journal of Physics B.
     Ⅱ.A systematic calculation was performed for the ground term splitting [Kr]4d~9 ~2D_(3/2,5/2) and the lifetime of the ~2D_(3/2) level along the rhodium-like sequence. The difference between our calculated results and available experimental values is on the level of 0.1%,and the calculated result for Xe X explained the discrepancy between the previous calculated value and the experimental value.Based on this work,I proposed the experiment on the direct measurement of the ground term splitting for the Rh-like Ba,which has been performed in Tokoyo CoBIT (Compact EBIT) by Professor Zhang Xuemei.The paper about the theoretical work was prepared already.
     Ⅲ.We performed a large scale calculation on the excitation energy of the 5s5p ~(1,3)p levels in Sr I.The transition probabilities for the transitions within the 4s4p ~(1,3)p levels and between these levels and the ground state,are given as well. Our focus is on the lifetime of the ~3P_2 level,of which the lifetime difference between the previous calculated value and experimental one is very huge.Our calculated value supports the theoretical one rather than the experimental one.This work was published in Physical Review A.
     Ⅳ.A large scale calculation on the excitation energy of the 7s7p ~(1,3)p levels in No I was performed,to guide the forthcoming experiment.Our calculated result supports one of the previous two theoretical results,and the different between them is around 10%.This work was published in Physical Review A.
     The above is the main part of this thesis,and the other part is about two experiments performed on EBIT(Electron Beam Ion Trap).EBIT is a combination of the light source and the ion source,in which the produced highly charged ion are trapped.Many atomic processes occur inside EBIT,and one can do spectroscopy research based on the emission photons among the atomic processes.Besides,one can extract the highly charged ions to do kind of surface collision experiment.
     One experiment is on the radiative recombination measurement for bare and hydrogen-like Kr.This experiment was performed on Shanghai EBIT,and the result was used to estimate the ion density inside Shanghai EBIT.This work was published in Journal of Physics:Conference Series.
     The other experiment is on the direct measurement of the ground term splitting for the Rh-like Ba.This experiment was performed on the Tokoyo CoBIT (Compact EBIT).
引文
[1]郑乐民,徐庚武.原子结构与原子光谱.北京:北京大学出版社,1988:244.
    [2]Pryce M.H.L.The origin of coronal emission lines.Astrophys.J.,1964,140:1192-1205.
    [3]Beiersdorfer P,Osterheld A.L,Scofield J,et al.Observaion of magnetic octupole decay in atomic spectra.Phys.Rev.Lett.,1991,67:2272-2275.
    [4]Roberts M,Taylor P,Barwood G.P,et al.Observation of an electric octupole transition in a single ion.Phys.Rev.Lett.,1997,78:1876-1879.
    [5]Kwong V.H.S,Fang Z,Gibbons T.T,et al.Measurement of the transition probability of the C Ⅲ 190.9 nanometer intersystem line.Astrophys.J.,1993,411:431-437.
    [6]MSller G,Trabert E,Lodwig V,et al.Experimental transition probability for the E1 intercombination transition in Be-like Xe~(50+).Z.Phys.D,1989,11:333-334.
    [7]Gabriel A.H,Jordan C.Interpretation of solar helium-like ion line intensities.Mon.Not.R.astr.Soc.,1969,145:241-248.
    [8]Doyle J.G.The interpretation of C Ⅴ and O Ⅶ emission line ratios in the Sun.Astron.Astrophys.,1980,87:183-187.
    [9]Pradhan A.K.On the systematics of line ratios along the helium isoelectronic sequence.Astrophys.J.,1982,263:477-482.
    [10]McKenzie D.L,Landecker P.B.X-ray lines of helium-like oxygen and neon in the solar corona.Astrophys.J.,1982,259:372-380.
    [11]Keenan F.P,McKenzie D.L,McCann S.M,et al.Ne Ⅸ emission-line ratios in solar active regions.Astrophys.J.,1987,318:926-929.
    [12]Porquet D,Mewe R,Dubau J,et al.Line ratios for helium-like ions:Applications to cllision-dominated plasmas.Astron.Astrophys.,2001,376:1113-1122.
    [13]Biedermann C,Radtke R,Fournier K.B.Spectroscopy of heliumlike argon resonance and satellite lines for plasma temperature diagnostics.Phys.Rev.E,2002,66:066404.
    [14] Biedermann C, Radtke R, Fournier K. B. Line ratios and wavelengths of helium-like argon n=2 satellite transitions and resonance lines. Nucl. Instrum. Methodes B, 2003, 205:255-259.
    [15] Dwivedi B. N, Gupta A. K. Emission lines from O IV as a plasma diagnostic. Sol. Phys., 1992, 138:283-290.
    [16] Chen H, Beiersdorfer P, Heeter L. A, et al. Experimental and theoretical evaluation of density-sensitive N VI, Ar XIV and Fe XXII line ratios. Astrophys. J., 2004, 611:598-604.
    [17] Keenan F. P, Feibelman W. A, Berrington K. A. Improved calculations for the C III λλ1907,1909 and Si III λλ1883,1892 electron density sensitive emission-line ratios, and a comparision with IUE observations. Astrophys. J., 1992, 389:443-446.
    [18] Garstang R. H. Hyperfine Structure and Intercombination Line Intensities in the Spectra of Magnesium, Zinc, Cadmium, and Mercury. J. Opt. Soc. Am., 1962, 52:845-851.
    [19] Brage T, Judge P. G, Proffitt C. R. Determination of hyperfine-induced transition rates from observations of a planetary nebula. Phys. Rev. Lett., 2002, 89:281101.
    [20] Brage T, Judge P. G, Aboussaid A, et al. Hyperfine induced transitions as diagnostics of isotopic composition and densities of low-density plasmas. Astrophys. J., 1998, 500:507-521.
    [21] Wiese W. L, Younger S. M. Beam-Foil Spectroscopy Vol. 2 edited by I. A. Sellin and D. J. Pegg. New York: Plenum, 1976:951.
    [22] Chou H. S, Chi H. C, Huang K. N. Relativistiv excitation energies and oscillator strengths for transitions in Zn-like ions including core-polarization effects. Phys. Rev. A, 1994, 49:2394-2398.
    [23] Fleming J, Hibbert A. The 4s~2 ~1S_0 - 4s4p ~3P_1~o intercombination line in the Zinc-like ions: Ga II, Kr VII, Sr IX, Nb XII, Mo XIII, Rh XVI and Ag XVIII. Phys. Scr., 1995, 51:339-345.
    [24] Hibbert A. CIV3-A general program to calculate configuration interaction wave functions and electric-dipole oscillator strengths. Comput. Phys. Commun., 1975, 9:141-172.
    [25] Morgan C. A, Serpa F. G, Takacs E, et al. Observation of visible and uv magnetic dipole transitions in highly charged xenon and barium. Phys. Rev. Lett., 1995, 74:1716-1719.
    [26] Porto J. V, Kink I, Gillaspy J. D. UV light from the ground term of Ti-like ytterbium, tungsten, and bismuth. Phys. Rev. A, 2000, 61:054501.
    [27] Utter S. B, Beiersdorfer P, Trabert E. Wavelength measurement of the prominent Ml transition in the ground state of Ti-like Pt, Au, and Tl ions. Phys. Rev. A, 2003, 67:012508.
    [28] Kleef T. A. M, Joshi Y. N. Analysis of 4d~9 - 4d~85p transitions in Sb VI and Te VIII and the ionization limits of Sb VI and Te VII. J. Opt. Soc. Am. B, 1979, 69:132-140.
    [29] Kleef T. A. M, Barakat M. M, Ryabtsev A. N, et al. Eighth spectrum of antimony: Sb VIII. Revised ~2D interval: Sb VII. J. Opt. Soc. Am. B, 1984, 1:795-805.
    [30] Joshi Y. N, Kleef T. A. M. Ninth spectrum of iodine: I IX. J. Opt. Soc. Am., 1980, 70:1344-1349.
    [31] Churilov S. S, Joshi Y. N, Gayazov R. R. Revised and extended analyses of I IX and I X. J. Opt. Soc. Am. B, 1998, 15:1923-1931.
    [32] Takacs E, Blagojevic B, Makonyi K, et al. Direct observation of the ~2D_(3/2) — ~2D_(5/2) ground-state splitting in Xe~(9+). Phys. Rev. A, 2006, 73:052505.
    [33] Kaufman V, Sugar J, Tech J. L. Analysis of the 4d~9 — 4d~85p transitions in nine-times ionized xenon (Xe x). J. Opt. Soc. Am., 1983, 73:691-693.
    [34] Churilov S. S, Joshi Y. N. Analysis of the 4p~64d~84f and 4p~54d~(10) Configurations of Xe X and Some Highly Excited Levels of Xe VIII and Xe IX Ions. Phys. Scr., 2002, 65:40-45.
    [35] Kleef T. A. M, Joshi Y. N. Eleventh spectrum of cesium: Cs XI. J. Opt. Soc. Am., 1981, 71:55-59.
    [36] Sugar J, Tech J. L, Kaufman V. Analysis of the 4d~9 — 4d~85p transitions in eleven-times ionized barium (Ba XII). J. Opt. Soc. Am., 1983, 73:1077-1079.
    [37] Tech J. L, Kaufman V, Sugar J. Rh I isoelectronic sequence: analysis of the 4d~9 - 4d~85p transition array in La XIII. J. Opt. Soc. Am. B, 1984, 1:41-44.
    [38]Courtillot I,Quessada-Vial A,Brusch A,et al.Accurate spectroscopy of Sr atoms.Eur.Phys.J.D,2005,33:161-171.
    [39]Dinneen T.P,Vogel K.R,Arimondo E,et al.Cold collisions of Sr*-Sr in a magnetooptical trap.Phys.Rev.A,1999,59:1216-1222.
    [40]Katori H,Ido T,Isoya Y,et al.Atomic Physics,Vol.17,edited by E.Arimondo,P.DeNatale,and M.Inguscio.New York:American Institute of Physic,2001.
    [41]Yasuda M,Katori H.Lifetime measurement of the 3P2 metastable state of strontium atoms.Phys.Rev.Lett.,2004,92:153004-1-4.
    [42]Derevianko A.Feasibility of cooling and trapping metastable alkaline-earth atoms.Phys.Rev.Lett.,2001,87:023002.
    [43]Diillmann C,Bruchle W,Dressler R,et al.Chemical investigation of hassium (element 108).Nature,2002,418:859-862.
    [44]Sewtz M,Backe H,Dretzke A,et al.First observation of atomic levels for the element fermium(Z=100).Phys.Rev.Lett.,2003,90:163002.
    [45]Eliav E,Kaldor U,Schwerdtfeger P,et al.Ground state electron configuration of element 111.Phys.Rev.Lett.,1994,73:3203-3206.
    [46]Eliav E,Kaldor U,Ishikawa Y.Ground state electron configuration of rutherfordium:Role of dynamic correlation.Phys.Rev.Lett.,1995,74:1079-1082.
    [47]Eliav E,Kaldor U,Ishikawa Y.Transition energies of mercury and ekamercury (element 112) by the relativistic coupled-cluster method.Phys.Rev.A,1995,52:2765-2769.
    [48]Eliav E,Kaldor U,Ishikawa Y,et al.Calculated energy levels of thallium and eka-thallium(element 113).Phys.Rev.A,1996,53:3926-3933.
    [49]Zou Y,Fischer C.F.Resonance transition energies and oscillator strengths in lutetium and lawrencium.Phys.Rev.Lett.,2002,88:183001.
    [50]Fritzsche S.On the accuracy of valence-shell computations for heavy and superheavy elements.Eur.Phys.J.D,2005,33:15-21.
    [51]Borschevsky A,Eliav E,Vilkas M.J,et al.Predicted spectrum of atomic nobelium.Phys.Rev.A,2007,75:042514.
    [52]Backe H,Kunz P,Lauth W,et al.Towards optical specroscopy of the element nobelium(Z=102) in a buffer gas cell.Eur.Phys.J.D,2007,45:99-106.
    [53]RSentgen W.C.Uber eine neue Art von Strahlen.Wurzburg Physical-Medical Society,1895.
    [54]Becquerel H.Sur les radiations emises par phosphorescence.Comptes Rendus,1896,122:420-421.
    [55]Thomson J.J.Elements of the Mathematical Theory of Electricity and Magnetism.Royal Institution,1897,April 30.
    [56]Planck M.Zur Theorie des Gesetzes der Energieverteilung im Normalspektrum.Verhandlungen der Deutschen Physicalischen Gesellschaft,1900,2:237-245.
    [57]Einstein A.On a Heuristic Point of View about the Creation and Conversion of Light.Ann.Phys.,1905,17:132-148.
    [58]Rutherford E.The scattering of α and β particles by matter and the structure of the atom.Philosophical Magazine,1911,21:669-688.
    [59]Bohr N.On the Constitution of Atoms and Molecules(Part Ⅰ).Philosophical Magazine,1913,26:1-25.
    [60]Heisenberg W.Uber quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen.Z.Phys.,1925,33:879-893.
    [61]Born M.Quantenmechanik der Stoβvorgange.Z.Phys.,1926,38:803-827.
    [62]Schrodinger E.Quantisierung als Eigenwertproblem.Ann.Phys.,1926,79:361-376.
    [63]Schrodinger E.Der stetige Ubergang von der Mikro-zur Makromechanik.Naturwissenschaften,1926,14:664-666.
    [64]Dirac P.A.M.The Quantum Theory of the Electron.Proc.R.Soc.London,1928,117:610-624.
    [65]Dirac P.A.M.The Quantum Theory of the Electron.Part Ⅱ.Proc.R.Soc.London,1928,118:351-361.
    [66]Klein O.Quanten-theorie und 5-dimensionale relativitatstheorie.Z.Phys.,1926,37:895-906.
    [67]Gordon W.Der Comptoneffekt nach der SchrSdingerschen Theorie.Z.Phys.,1926,40:117-133.
    [68]Breit G.The effect of retardation on the interaction of two electrons.Phys.Rev,1929,34:553-573.
    [69]Breit G.The fine structure of He as a test of the spin interactions of two electrons.Phys.Rev.,1930,36:383-397.
    [70]Breit G.Dirac's equation and the spin-spin interactions of two electrons.Phys.Rev.,1932,39:616-624.
    [71]Parpia F.A,Fischer C.F,Grant I.P.A package for large-scale relativistic atomic structure calculations.Comput.Phys.Commun.,1996,94:249-271.
    [72]Lindgren I,Rosen A.Relativistic self-consistent-field calculations.Case.Stud.At.Phys.,1974,4:93-149.
    [73]Fischer C.F.The MCHF atomic-structure package.Comput.Phys.Commun.,1991,64:369-398.
    [74]Andersson M,JSnsson P.HFSZEEMAN-A program for computing weak and intermediate field fine and hyperfine structure Zeeman splittings from MCDHF wave functions.Comput.Phys.Commun.,2008,178:156-170.
    [75]Fischer C.F,Brage T,JSnsson P.Computational atomic structure - An MCHF approach.Institute of Physics Publishing,Bristol and Philadelphia,1997:180.
    [76]郑乐民,徐庚武.原子结构与原子光谱.北京:北京大学出版社,1988:262.
    [77]Babushkin F.A.A relativistic treatment of radiation transitions.Opt.Spectr.,1962,13:77-78.
    [78]Babushkin F.A.Relativistic radiation transitions.Opt.Spectr.,1965,19:1-2.
    [79]Wigner E.Einige Folgerungen aus der SchrSdingerschen Theorie fur die Termstrukturen.Z.Phys.,1927,43:624-652.
    [80]Eckart C.The Application of Group theory to the Quantum Dynamics of Monatomic Systems.Rev.Mod.Phys.,1930,2:305-380.
    [81]Desclaux J.P,Mayers D.F,O'Brien F.Relativistic atomic wave functions.J.Phys.B,1971,4:631-642.
    [82]Desclaux J.P,Moser C.M,Verhaegen G.Relativistic energies of excited states of atoms and ions of the second period.J.Phys.B,1971,4:296-310.
    [83]Fischer C.F,Brage T,Jonsson P.Computational atomic structure - An MCHF approach.Institute of Physics Publishing,Bristol and Philadelphia,1997:71.
    [84]Fischer C.F,Jonsson P.MCHF calculations for atomic properties.Comput.Phys.Commun.,1994,84:37-58.
    [85]Churilov S.S,Ryabtsev A.N,Wyart J.F.Identification of n=4,Δn=0 transitions in the spectra of Nickel-like and Zinc-like ions through Tin.Phys.Scr.,1988,38:326-335.
    [86]Litzen U,Reader J.Spectra and energy levels of ions in the zinc isoelectronic sequence from Rb Ⅷ to Mo ⅩⅢ.Phys.Rev.A,1987,36:5159-5169.
    [87]McElroy T,Hibbert A.Lifetimes of the 4s4p ~(1,3)P_1~o levels in Ga Ⅱ.Phys.Scr.,2005,71:1-5.
    [88]Pinnington E.H,Ansbacher W,Kernahan J.A.Energy-level and lifetime measurements for Kr Ⅶ.J.Opt.Soc.Am.B,1984,1:30-33.
    [89]Trabert E,Pinnington E.H.Beam-foil lifetimes measured for intercombination transitions in Zn-like and Ga-like ions of Mo.Can.J.Phys.,1993,71:128.
    [90]Trabert E.Lifetime of the 4s4p ~3p_~o level in foil-excited Zn-like Mo~(12+) and Ag~(17+)ions.Phys.Scr.,1989,39:592-594.
    [91]Trabert E,Heckmann P.H,Doerfert J,et al.Beam-foil lifetimes measured for intercombination transitions in Zn-like ions of Rh and Ag and Ga-like ions of Rh.Phys.Scr.,1993,47:780-783.
    [92]Karlsson H,Litzen U.Wavelengths and hyperfine constants in Ga Ⅰ and Ga Ⅱderived by fourier transform spectroscopy.J.Phys.B,2000,33:2929-2938.
    [93]Byron F.W,McDermott M.N,Novick R,et al.Spin and nuclear moments of 245-day Zn~(65);Redetermination of the hfs of Zn~(67) and Υ(~3P_1) of zinc.Phys.Rev.,1964,134:A47-A55.
    [94]Ivanova E.P.Energy levels of ions of silver and rhodium isoelectronic sequences with Z <86.Opt.Spectrosc.,2007,103:733-740.
    [95]Serpa F.G,Morgan C.A,Meyer E.S,et al.Measurement of a magnetic-dipole transition probability in Xe~(32+) using an electron-beam ion trap.Phys.Rev.A,1997,55:4196-4200.
    [96]Trabert E,Beiersdorfer P,Gwinner G,et al.M1 transition rate in Cl~(12+) from an electron-beam ion trap and heavy-ion storage ring.Phys.Rev.A,2002,66:052507.
    [97]Trabert E,Beiersdorfer P,Brwon G.V,et al.Improved electron-beam ion-trap lifetime measurement of the Ne~(8+) 1s2s ~3S_1 level.Phys.Rev.A,1999,60:2034-2038.
    [98]Parkinson W.H,Reeves E.M,Tomkins F.S.Neutral calcium,strontium and barium:determination of f values of the principal series by the hook method.J.Phys.B,1976,9:157-165.
    [99]Lurio A,DeZafra R.L,Goshen R.J.Lifetime of the first ~1P_1 state of zinc,aalcium,and strontium.Phys.Rev.,1964,134:A1198-A1203.
    [100]Hulpke E,Paul E,Paul W.Bestimmung von Oszillatorenstarken durch Lebensdauermessungen der ersten angeregten Niveaus fur die Elemente Ba,Sr,Ca,In und Na.Z.Phys.A,1964,177:257-268.
    [101]Yasuda M,Kishimoto T,Takamoto M,et al.Photoassociation spectroscopy of ~(88)Sr:Reconstruction of the wave function near the last node.Phys.Rev.A,2006,73:011403(a).
    [102]Martin W.C,Zalubas R,Hagan L.Atomic Energy Levels-The Rare-Earth Elements,U.S.Natl.Bur.Stand.Ref.Data Ser.,U.S.Natl.Bur.stand.Circ.No.NBS 60,U.S.GPO,Washington,DC,1978.
    [103]Kotochigova S.A,Tupizin I.I.Theoretical investigation of rare-earth and barium spectra by the Hartree-Fock-Dirac method.J.Phys.B,1987,20:4759-4772.
    [104]Eliav E,Kaldor U,Ishikawa Y.Transition energies of ytterbium,lutetium,and lawrencium by the relativistic coupled-cluster method.Phys.Rev.A,1995,52:291-296.
    [105]Nayak M.K,Chaudhuri R.K.Relativistic coupled cluster method.Eur.Phys.J.D,2006,37:171-176.
    [106]Sugar J.Revised ionization energies of the neutral actinides.J.Chem.Phys.,1974,60:4103-4103.
    [107]邹亚明.电子束离子阱及高电荷态离子相关物理.物理,2003,32(2):98-103.
    [108]Levine M.A,Marrs R.E,Hendersona J.R,et al.The electron beam ion trap:A new instrument for atomic physics measurements.Phys.Scr.,1988,T22:157-163.
    [109]Marrs R.E,Elliott S.R,Knapp D.A.Production and trapping of hydrogenlike and bare uranium ions in an electron beam ion trap.Phys.Rev.Lett,1994,72:4082-4085.
    [110]Gillaspy J.D,Roberts J.R,Brown C.M,et al.The NIST EBIT.AIP Conf.Proc.274 edited by P.Richard,M.Stockli and C.D.Lin.New York:AIP press,1993:682.
    [111]Silver J.D,Varney A.J,Margolis H.S,et al.The Oxford electron-beam ion trap:A device for spectroscopy of highly charged ions.Rev.Sci.Instrum.,1994,65:1072-1074.
    [112]http://www.ipp.mpg.de/de/for/bereiche/diagnostik/ebit/index.html.
    [113]Currell F.J,Asada J,Ishii K,et al.A new versatile electron-beam ion trap.J.Phys.Soc.Jpn.,1996,65:3186-3192.
    [114]Lopez-Urrutia J.R.C,Bapat B,Feuerstein B,et al.First results from the Freiburg electron beam ion trap FreEBIT.Hyperfine Interactions,2000,127:497-501.
    [115]Watanabe H,Currell F.The Belfast EBIT.J.Phys.:Conference Series,2004,2:182-189.
    [116]Bohm S,Enulescu A,Fritioff T,et al.First results from the Stockholm Electron Beam Ion Trap.J.Phys.:Conference Series,2007,58:303-306.
    [117]McDonald J.W,Schneider D.H.G.The next generation refrigerated(cryogenic)electron beam ion trap-source(REBIT-S).Nucl.Instrum.Methods B,2005,241:870-873.
    [118]Ovsyannikov V.P,Zschornack G.First investigations of a warm electron beam ion trap for the production of highly charged ions.Rev.Sci.Instrum.,1999,70:2646-2651.
    [119]Levine M.A,Marts R.E,Bardsley J.N,et al.The use of an electron beam ion trap in the study of highly charged ions.Nucl.Instrum.Methods B,1989,43:431-440.
    [120]Gillaspy J.D.First Results form the EBIT at NIST.Phys.Scr.,1997,T71:99-103.
    [121]Margolis H.S,Varney A.J,Jarjis R.A,et al.Determination of the number of ions in the Oxford electron beam ion trap.Nucl.Instrum.Methods B,1995,98:562-565.
    [122]Biedermann C,FSrster A,Fuβmann G,et al.First results from the Berlin EBIT.Phys.Scr.,1997,T73:360-361.
    [123]Asada J,Currell F.J,Fukami T,et al.X-ray spectroscopy at the Tokyo electron beam ion trap.Phys.Scr.,1997,T73:90-92.
    [124]He M,Liu Y,Yang Y,et al.Progress at the Shanghai EBIT.J.Phys.:Conference Series,2007,58:419-422.
    [125]http://physics.nist.gov/MajResFac/EBIT/oppa.html.
    [126]Nakamura N,Nagata K,Ohtani S,et al.Activities at the Tokyo-EBIT 2006.J.Phys.:Conference Series,2007,72:012005.
    [127]Lopez-Urrutia J.R.C,Braun J,Brenner G,et al.Progress at the Heidelberg EBIT.J.Phys.:Conference Series,2004,2:42-51.
    [128]Froese M.W.The TITAN Electron Beam Ion Trap:Assembly,Characterization,and First Tests.Master thesis,2006.
    [129]Yerokhin V.A,Artemyev A.N,Shabaev V.M.Two-electron self-energy contribution to the ground-state energy of helium-like ions.Phys.Lett.A,1997,234:361-366.
    [130]Currell F.J,Asada J,Back T.V,et al.Application to argon ions of a new technique to measure the two-electron contribution to the ground state energy of helium-like ions.J.Phys.B,2000,33:727-734.
    [131]Marrs R.E,Elliott S.R,Stohlker T.Measurement of two-electron contributions to the ground-state energy of heliumlike ions.Phys.Rev.A,1995,52:3577-3585.
    [132]Nakamura N,Nakahara T,Ohtani S.The ls Lamb shift in hydrogenlike rhodium measured with an electron beam ion trap.J.Phys.Soc.Jap.,2003,72:1650-1654.
    [133]Mokler P.H,Lopez-Urrutia J.R.C,Currell F.J,et al.Two-electron QED contributions to the ground-state binding energy in He-like Kr~(34+) ions.Phys.Rev.A,2008,77:012506.
    [134]Gumberidze A,StShlker T,Banas D,et al.Electron-Electron interaction in strong electromagnetic fields:The two-electron contribution to the ground-state energy in he-like uranium.Phys.Rev.Lett.,2004,92:203004.
    [135]Lamb W.E,Retherford R.C.Fine structure of hydrogen atom by a microwave method.Phys.Rev.,1947,72:241-243.
    [136]Bethe H.A.The electromagnetic shift of energy levels.Phys.Rev.,1947,72:339-341.
    [137]HSlzer G,FSrster E,K15pfel D,et al.Absolute wavelength measurement of the Lyman-α transitions of hydrogenic Mg~(11+).Phys.Rev.A,1998,57:945-948.
    [138]Richard P,Stochli M,Deslattes R.D,et al.Measurement of the ls Lamb shift in hydrogenlike chlorine.Phys.Rev.A,1984,29:2939-2942.
    [139]Kallne E,Kallne J,Richard P,et al.Precision measurement of the H-like x-ray spectrum of Cl and the ls Lamb shift.J.Phys.B,1984,17:Ll15-L120.
    [140]Beyer H.F,Deslattes R.D,Folkmann F,et al.Determination of the ls Lamb shift in one-electron argon recoil ions.J.Phys.B,1985,18:207-215.
    [141]Tarbutt M.R,Silver J.D.Measurement of the ground-state Lamb shift of hydrogen-like Ti~(21+).J.Phys.B,2002,35:1467-1478.
    [142]Briand J.P,Tavernier M,Indelicato P,et al.High-precision spectroscopic studies of Lyman α lines of hydrogenlike Iron:A measurement of the ls Lamb shift.Phys.Rev.Lett.,1983,50:832-835.
    [143]Beyer H.F,Indelicato P,Finlayson K.D,et al.Measurement of the ls Lamb shift in hydrogenlike nickel.Phys.Rev.A,1991,43:223-227.
    [144]Tavernier M,Briand J.P,Indelicto P,et al.Measurement of the ls Lamb shift of hydrogen-like krypton.J.Phys.B,1985,18:L327-L330.
    [145]Briand J.P,Indelicato P,Simionovici A,et al.Spectroscopic study of hydrogenlike and heliumlike xenon ions.Euro.Phys.Lett.,1989,9:225-230.
    [146]Beyer H.F,Liesen D,Bosch F,et al.X rays from radiative electron capture of free cooling electrons for precise Lamb-shift measurements at high Z:Au~(78+).Phys.Lett.A,1994,184:435-439.
    [147]Beyer H.F,Menzel G,Liesen D,et al.Measurement of the ground-state Lamb shift of hydrogenlike uranium at the electron cooler of the ESR.Z.Phys.D,1995,35:169-175.
    [148]StShlker T,Mokler P.H,Geissel H,et al.Ground state transitions in one- and two-electron Bi projectiles.Phys.Lett.A,1992,168:285-290.
    [149]StShlker T,Mokler P.H,Beckert K,et al.Ground-state Lamb shift for hydrogenlike uranium measured at the ESR storage ring.Phys.Rev.Lett,1993,71:2184-2187.
    [150]StShlker T,Mokler P.H,Bosch F,et al.ls Lamb shift in hydrogenlike uranium measured on cooled,decelerated ion beams.Phys.Rev.Lett.,2000,85:3109-3112.
    [151]Gumberidze A,StShlker T,Banas D,et al.Quantum electrodynamics in strong electric fields:The gound-state Lamb shift in hydrogenlike uranium.Phys.Rev.Lett.,2005,94:223001.
    [152]Johnson W.R,Soft G.The Lamb shift in hydrogen-like atoms,1≤Z≤110.At.Data Nucl.Data Tables,1985,33:405-446.
    [153]Ichihara A.Cross sections for radiative recombination and the photoelectric effect in the K,L,and M shells of one-electron systems with 1<Z<112 calculated within an exact relativistic description.At.Data Nucl.Data Tables,2000,74:1-121.
    [154]Mclaughlin D.J,Hahn Y.Scaling behavior of radiative recombination cross sections and rate coefficients.Phys.Rev.A,1991,43:1313-1323.
    [155]Nakamura N,Nakai Y,Kanai Y,et al.Compact electron beam ion source with high-T_C bulk superconductors.Rev.Sci.Instrum.,2004,75:3034-3038.
    [156]复旦大学,清华大学,北京大学.原子核物理实验方法.北京:原子能出版社,1985:11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700