电化学阻抗谱在复合材料结构和性能研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电化学阻抗谱是一种准稳态的测试方法,与其他常规的电化学方法相比它能够得到更多的动力学信息及界面结构的信息,因而被广泛应用在材料研究方面。
     复合材料是由经过选择的、含有一定数量比的两种或两种以上的组分,通过人工复合组成多相、三维结合且各相之间有明显界面的、具有特殊性能的材料。复合材料的结构与性能之间密切相关。
     Cu/LDPE复合材料和ZnO/WO3纳米复合材料都属于复合材料。其中Cu/LDPE复合材料属于金属/聚合物复合材料,它是一种新型载铜IUD材料,能够克服传统Cu-IUD的一些缺点。ZnO/WO3纳米复合材料属于纳米功能复合材料,在光催化材料中应用较广
     为了研究Cu/LDPE复合材料中的界面性能与复合材料中铜离子的释放性能之间的关系,对Cu/LDPE复合材料进行了电化学阻抗谱测试和释放性能的测试,并提出了纯LDPE材料的微结构特征模型和Cu/LDPE复合材料在不同阶段的微结构特征模型及相应的等效电路模型。
     对Cu/LDPE复合材料的电化学阻抗谱和铜离子释放性能的研究结果表明,随着铜含量的增加,复合材料中聚乙烯与溶液之间的界面增加,界面电阻Rint随之增大,界面电容Cint随之减小,铜离子的释放速率也增大。相同铜含量的微米复合材料和纳米复合材料相比,微米复合材料中溶液与聚乙烯之间的界面电阻Rint较大,界面电容而Cint较小。当复合材料中铜含量较高时,微米复合材料的铜离子的释放速率大于纳米复合材料的铜离子的释放速率
     铜含量为25wt.%的纳米复合材料浸泡在溶液A(纯水)、溶液B(含氯正盐)、溶液C(溶液B基础上添加NaHCO3)、溶液D(溶液C基础上添加NaH2PO4)、溶液E (溶液D基础上添加葡萄糖葡萄糖)中,LDPE和溶液之间的界面电阻的变化为Rint(A)[Rint(B)、Rint(C)、Rint(D)]Cint(E),扩散阻抗的变化为Zw(B)     铜含量为25wt.%的纳米复合材料在含蛋白质的溶液中的扩散阻抗(Zw)首先随着蛋白质浓度的增加而降低直至蛋白质浓度达到2g/L,然后扩散阻抗随着蛋白质浓度的增加而增加。随着蛋白质浓度的增加,复合材料中铜颗粒的表面覆盖的蛋白质增多。当蛋白质浓度较低时,铜离子的释放速率比不含蛋白质的模拟宫腔液的大。当蛋白质浓度增加时,蛋白质在铜颗粒表面的覆盖率增加,铜离子的释放速率降低。
     对铜含量为25wt.%的纳米复合材料浸泡不同时间的电化学阻抗谱进行拟合得到扩散阻抗与时间的关系。结果表明扩散阻抗随着时间的增加而降低直至达到稳定。复合材料在NaCl溶液中的铜离子的释放速率在浸泡初期较大,然后下降至平稳。
     为了研究ZnO/WO3复合材料中的界面性能与ZnO/WO3复合材料光催化性能之间的关系,对ZnO/WO3复合材料进行了光电催化测试和电化学阻抗谱测试,并对复合材料进行了XRD、SEM、HR-TEM和UV-vis表征。实验结果表明ZnO/WO3复合材料在WO3含量为40-50wt.%时的光电催化性能最好,对光的响应最小。XRD和高分辨透射电镜的结果表明ZnO/WO3复合材料中生成了ZnWO4,形成了ZnO/ZnWO4/WO3双异质结。双异质结的存在影响着材料的光电催化性能和对光的响应。
     结合ZnO/ZnWO4/WO3复合材料的结构,给出了纯ZnO、ZnO/ZnWO4/WO3复合材料和纯WO3的等效电路图。由电化学阻抗谱拟合得到的数据可知,复合材料中颗粒与溶液之间的界面电阻(Rint-1)和界面电容(Cint-1)以及颗粒和颗粒之间的界面电阻(Rint-2)和界面电容(Cint-2)与复合材料中颗粒的含量、异质结的多少有关。
     利用电化学阻抗谱和紫外可见漫反射吸收光谱获得了ZnO/ZnWO4/WO3复合材料的能带结构。结果表明WO3含量为50wt.%时的ZnO/WO3复合材料的价带位置最正,这使WO3含量为50wt.%时的ZnO/WO3复合材料中有较多的具有强氧化能力的空穴和羟基自由基产生,使目标物质甲基橙能最大程度地有效降解,WO3含量为50wt.%时的ZnO/WO3复合材料具有较高的催化能力。
The electrochemical impedance spectroscopy is a quasi-steady-state method. It can give more dynamic informations and interface structure informations that other conventional electrochemical methods can not give. Therefore, it is widely used in the materials researches.
     The composites are the materials that composed of more than two components with a certin amount which are selected. The composites are the artificial compounds with multiphases, three-dimensional integration, clear interface between each phase, and the special properties. The relationship between the structures and properties of composites is close.
     Cu/LDPE composites and ZnO/WO3 nanocomposites both belong to the composites. Cu/LDPE composites are metal/polymer composites. It is a novel Cu-IUD material that can overcome the shortcomings of traditional Cu-IUDs. ZnO/WO3 nanocomposites belong to the nano functional composites.They are widely used as photocatalytic materials.
     In order to investigate the relationship between the interface property and the Cu2+ release property of Cu/LDPE composite, the electrochemical impedance spectroscopy was used to obtain the interface property. The microstructure characteristics and the equivalent circuit of pure LDPE and Cu/LDPE composites that immersed in the solutions for different periods were presented.
     The electrochemical impedance spectroscopy and Cu2+release results showed that with the increasing of the content of copper particles in the composites the interface between polyethylene and the solution increased. That resulted in the interface resistance {Rint) increasing and the interface capacitance (Cint) decreasing. The release rate of cupric ions increased with the increasing of the interface. The interface between polyethylene and the solution in the microcomposites was more than that in the nanocomposites with the same copper content. The interface resistance in the microcomposites was larger and the interface capacitance in the microcomposites was smaller than that in the nanocompsoites. When the concentration of copper particles in the composite was high, the release rate of cupric ions in the microcomposite was larger than that in the nanocomposite.
     When the nanocomposite with 25 wt.% copper nanoparticles immsered in Solution A (pure water), Solution B (containing normal salts with CI-), Solution C(containing B and NaHCO3), Solution D (containing C and NaH2PO4), and Solution E (containing D and glucose), the change of the interface resistance (Rint) and the interface capacitance (Cint) between LDPE and the solution in the solutions were that Rint(A)[Rint(B)、Rint(C)、Rint(D)]Cint(E). The order of the diffusion impedance in the solutions was that Zw(B)     When the nanocomposite with 25 wt.% copper nanoparticles immersed in the simulated uterine solutions with 0.5 g/L,1 g/L,2 g/L,4 g/L,6 g/L and 8 g/L, respectively, the diffusion impedance first reduced with the increasing of the concentration of protein until the concentration of protein reached 2 g/L. Then the diffusion impedance increased with the increasing of the concentration of protein. Along with the increasing of the concentration of protein, the protein that covering the copper particles increased. When the concentration of protein was low, the protein accelerated the Cu2+release rate. When the protein concentration increased, the rate of coverage of protein increased that preventing the release of cupric ions.
     Based on the fitting results of the electrochemical impedance spectroscopy of the nanocomposite with 25 wt.% copper nanoparticles that immersed in the solution for different days, the diffusion impedance decreased with the increasing time until the diffusion impedance reached a platform. The release rates of cupric ions was very large in the early period, then the release rates of cupric ions became small and the change of the release rates of cupric ions was steady.
     In order to investigate the relationship between the interface property and the photocatalytic property of ZnO/WO3 nanocomposite, the photoelectrocatalytic efficiency and the electrochemical impedance spectroscopy of ZnO/WO3 nanocomposite were obtained. The results showed that the composites with 40-50 wt.% WO3 had the higher photoelectrocatalytic efficiency. With the results of XRD and HR-TEM, it was found that ZnWO4 phase was formed in the composites.The existence of ZnWO4 introduced a type of ZnO/ZnWO4/WO3 double heteroj unctions into the composites, which gave the contribution to the photocatalytic property and the response to the light.
     The equivalent circuit of pure ZnO, ZnO/WO3 nanocomposite and pure WO3 were presented. The results of the electrochemical impedance spectroscopy showed that the interface resistance (Rint) and the interface capacitance (Cint) were related to the amount of the grains and the heteroj unctions in the composites.
     The energy band structures of ZnO/WO3 composites were obtained using the electrochemical impedance spectroscopy and UV-vis diffuse reflection absorption spectroscopy. When the amount of WO3 was 50 wt.%, the valence band was the most positive.That resulted in the more holes and hydroxyl radical with strong oxidation ability producing. Therefore, the methyl organge could degrade effectively.
引文
[1]曹楚南,张鉴清.电化学阻抗谱导论.第一版.北京:科学出版社,2002.21-23
    [2]史美伦.交流阻抗谱原理及应用.第一版.北京:国防工业出版社,2001.243-249
    [3]Akbarinezhad E, Rezaei F, Neshati J. Evaluation of a high resistance paint coating with EIS measurements:Effect of high AC perturbations. Progress in Organic Coatings,2008,61(1):45-52
    [4]刘建平,苗永霞,周晓湘.复配咪唑啉类酸洗缓蚀剂的缓蚀性能研究.材料保护,2005,38(8):21-23
    [5]杜海燕,路民旭,吴荫顺,等.脂肪酰胺类缓蚀剂对X65钢抗C02腐蚀的机理研究.金属学报,2006,42(5):533-536
    [6]何晓英,邓海英,李容.CPB和TU对X70钢在含S02酸性溶液中的缓蚀作用.腐蚀科学与防护技术,2005,17(4):240-243
    [7]邓祖宇,李芙蓉,王红云,等.硫脲和溴代十六烷基吡啶对X70钢在30%乳酸溶液中的协同缓蚀.材料保护,2010,43(5):27-29
    [8]Tedim J, Poznyak S K, Kuznetsova A, et al. Enhancement of active corrosion protection via combination of inhibitor-loaded nanocontainers. ACS Applied Mater ials & Interfaces,2010,2(5):1528-1535
    [9]Gao H, Li Q, Dai Y, et al. High efficiency corrosion inhibitor 8-hydroxyquinoline and its synergistic effect with sodium dodecylbenzenesulphonate on AZ91D magnesium alloy. Corrosion Science,2010,52(5):1603-1609
    [10]赵永韬,李海洪,陈光章.铜合金在海水中电化学阻抗谱特征研究.海洋科学,2005,29(7):21-25
    [11]张金涛,胡吉明,张鉴清,等.LY12铝合金/钝化膜/环氧涂层复合电极的腐蚀电化学行为.金属学报,2006,42(5):528-532
    [12]顾宝珊,刘建华.电化学阻抗谱研究pH值对铝合金表面铈盐转化膜形成过程的影响.中国腐蚀与防护学报,2010,30(2):124-128
    [13]Jovic V D, Jovic B M. Properties of ZrO2 passive film formed onto Zr electrode in 1 M NaOH at low voltage. Journal of The Electrochemical Society,2008,155(5): C183-C188
    [14]Jovic V D, Jovic B M. The influence of the conditions of the ZrO2 passive film formation on its properties in 1 M NaOH. Corrosion Science,2008,50(11): 3063-3069
    [15]于辉,董飒英,徐海波,等.不同阳极电位下铝青铜的电化学阻抗谱研究.电化学,2004,10(1):35-40
    [16]安闻迅,邓春龙,杜敏,等.低合金钢实海腐蚀电化学阻抗谱研究.装备环境工程,2009,6(1):17-20
    [17]Shim J J, Kim J G. Copper corrosion in potable water distribution systems: influence of copper products on the corrosion behavior. Materials Letters,2005, 58(14):2002-2006
    [18]Ibris N, Claudia J, Rosca M. EIS study of Ti and its alloys in biological media. Journal of Electroanalytical Chemistry,2002,526(1-2):53-62
    [19]饶思贤,张玉波,朱立群,等.外加应力下的IY12CZ(?)电化学行为.北京航空航天大学学报,2007,33(10):1246-1250
    [20]姜应律,吴荫顺.钛合金TC4塑性变形后在3%NaCl溶液中的交流阻抗谱.北京科技大学学报,2004,26(6):616-620
    [21]Bosch R W. Electrochemical impedance spectroscopy for the detection of stress corrosion cracks in aqueous corrosion systems at ambient and high temperature. Corrosion Science,2005,47(1):125-143
    [22]Bull R A, Fan F R F, Bard A J. Polymer films on electrodes Ⅶ. Electrochemical behavior at polypyrrole-coated platinum and tantalum electrodes. Journal of The Electrochemical Society,1982,129(5):1009-1015
    [23]雷彤,赵孔双.导电高分子膜的电化学阻抗谱研究进展.化学通报,2001,64(1):11-17
    [24]Pickup P G. Alternating current impedance study of a polypyrrole-based anion-exchange polymer. Journal of the Chemical Society, Faraday Transactions, 1990,86(21):3631-3636
    [25]Pickup P G, Ren X M. Coupling of ion and electron transport during impedance measurements on a conducting polymer with similar ionic and electronic conductivities. Journal of the Chemical Society, Faraday Transactions,1993,89(2): 321-326
    [26]Pickup P G, Ren X M. Ionic and Electronic Conductivity of Poly-(3-methylpyrrole-4-carboxylic Acid). Journal of the Electrochemical Society, 1992,139(8):2097-2105
    [27]Vorotyntsev M A, Badiali J P, Vieil E. Multi-component diffusion approach to transport across electroactive-polymer films with two mobile charge carriers. Electrochimica Acta,1996,41(7-8):1375-1381
    [28]Deslouis C, Moustafid T E, Musiani M M, et al. Mixed ionic-electronic conduction of a conducting polymer film. Ac impedance study of polypyrrole. Electrochimica Acta,1996,41(7-8):1343-1349
    [29]Paasch G, Micka K, Gersdorf P. Theory of the electrochemical impedance of macrohomogeneous porous electrodes. Electrochimica Acta,1993,38(18): 2653-2662
    [30]文风,乐国敏,谢长生.分散型金属/聚合物复合材料腐蚀性能研究.材料导报,2007,21(6):63-65
    [31]Chaudhari S, Patil P P. Corrosion protective poly(o-ethoxyaniline) coatings on copper. Electrochimica Acta,2007,53(2):927-933
    [32]Sarmento V H V, Schiavetto M G, Hammer P, et al. Corrosion protection of stainless steel by polysiloxane hybrid coatings prepared using the sol-gel process. Surface and Coatings Technology,2010,204(16-17):2689-2701
    [33]Zhao Q, Liu Y, Abel E W. Effect of Cu content in electroless Ni-Cu-P-PTFE composite coatings on their anti-corrosion properties. Materials Chemistry and Physics,2004,87(2-3):332-335
    [34]Liu Y, Zhao Q. Study of PTFE content & anti-corrosion properties of electroless Ni-P-PTFE coatings. Plating and Surface Finishing,2004,91(4):48-51
    [35]Jadhav R S, Hundiwale D G, Mahulikar P P. Synthesis of nano polyaniline and poly-o-anisidine and applications in alkyd paint formulation to enhance the corrosion resistivity of mild steel. Journal of Coatings Technology and Research, 2010,7(4):449-454
    [36]Ozyilmaz A T, Ozyilmaz G, Yigitoglu O. Synthesis and characterization of poly(aniline) and poly(o-anisidine) films in sulphamic acid solution and their anticorrosion properties. Progress in Organic Coatings,2010,67(1):28-37
    [37]Kalendova A, Vesely D, Stejskal J. Organic coatings containing polyaniline and inorganic pigments as corrosion inhibitors. Progress in Organic Coatings,2008, 62(1):105-116
    [38]胡吉明,张鉴清,曹楚南.铝合金表面环氧涂层中水传输行为的电化学阻抗谱研究.金属学报,2003,39(5):544-549
    [39]Nematollahi M, Heidarian M, Peikari M, et al. Comparison between the effect of nanoglass flake and montmorillonite organoclay on corrosion performance of epoxy coating. Corrosion Science,2010,52(5):1809-1817
    [40]Dong C F, Sheng H, An Y H, et al. Corrosion of 7A04 aluminum alloy under defected epoxy coating studied by localized electrochemical impedance spectroscopy. Progress in Organic Coatings,2010,67(3):269-273
    [41]张鉴清,曹楚南.电化学阻抗谱方法研究评价有机涂层.腐蚀与防护,1998,19(3):99-104
    [42]Hu J M, Zhang J Q, Cao C N. Determination of water uptake and diffusion of Cl-ion in epoxy primer on aluminum alloys in NaCl solution by electrochemical impedance spectroscopy. Progress in Organic Coatings,2003,46(4):273-279
    [43]Hinderliter B R, Allahar K N, Bierwagen G P, et al. Water sorption and diffusional properties of a cured epoxy resin measured using alternating ionic liquids/aqueous electrolytes in electrochemical impedance spectroscopy. Journal of Coatings Technology and Research,2008,5(4):431-438
    [44]Zuo Y, Pang R, Li W, et al. The evaluation of coating performance by the variations of phase angles in middle and high frequency domains of EIS. Corrosion Science,2008,50(12):3322-3328
    [45]Deflorian F, Rossi S. An EIS study of ion diffusion through organic coatings. ElectrochimicaActa,2006,51(8-9):1736-1744
    [46]Yin K M, Wu H Z. Electrochemical impedance study of the degradation of organic-coated copper. Surface and Coatings Technology,1998,106(2-3):167-173
    [47]谢德明,胡吉明,童少平,等.富锌漆研究进展.中国腐蚀与防护学报,2004,24(5):314-320
    [48]Marchebois H, Keddam M, Savall C, et al. Zinc-rich powder coatings characterisation in artificial sea water-EIS analysis of the galvanic action. Electrochimica Acta,2004,49(11):1719-1729
    [49]张鉴清.富锌涂层的电化学阻抗谱特性.腐蚀与防护学报,1996,16(3):175-180
    [50]张会丽,王芸,蔡水洲,等.利用电化学阻抗谱研究通颗粒尺寸对铜/低密度聚乙烯复合材料在模拟宫腔液中腐蚀的影响.中国腐蚀与防护学报,2009,29(5):339-343
    [51]Wen F, Xie C S, Cai S Z, et al. Electrochemical behavior of copper/LDPE composites in the simulated uterine solution. Electrochimica Acta,2006,51(26): 5606-5611
    [52]Zhang Q X, Zhang Y D, Huang S Q, et al. Application of carbon counterelectrode on CdS quantum dot-sensitized solar cells (QDSSCs). Electrochemistry Communications,2010,12(2):327-330
    [53]Gomes W P, Vanmaekelbergh D. Impedance spectroscopy at semiconductor electrodes:review and recent developments. Electrochimica Acta,1996,41(7-8): 967-973
    [54]Hens Z. The electrochemical impedance of one-equivalent electrode processes at dark semiconductor vertical bar redox electrodes involving charge transfer through surface states.1. Theory. The Journal of Physical Chemistry B,1999,103(1): 122-129
    [55]Hens Z, Gomes W P. The electrochemical impedance of one-equivalent electrode processes at dark semiconductor/redox electrodes involving charge transfer through surface states.2. The n-GaAs/Fe3+system as an experimental example. The Journal of Physical Chemistry B,1999,103(1):130-138
    [56]Liu H, Li X Z, Leng Y J, et al. An alternative approach to ascertain the rate-determining steps of TiO2 photoelectrocatalytic reaction by electrochemical impedance spectroscopy. The Journal of Physical Chemistry B,2003,107(34): 8988-8996
    [57]Liu H, Cheng S A, Wu M, et al. Photoelectrocatalytic degradation of sulfosalicylic acid and its electrochemical impedance spectroscopy investigation. The Journal of Physical Chemistry A,2000,104(30):7016-7020
    [58]Leng W H, Zhang Z, Zhang J Q, et al. Investigation of the kinetics of a TiO2 photoelectrocatalytic reaction involving charge transfer and recombination through surface states by electrochemical impedance spectroscopy. The Journal of Physical Chemistry B,2005,109(31):15008-15023
    [59]Yun H J, Lee H, Joo J B, et al. Tuning the band-gap energy of TiO2-xCx nanoparticle for high performance photo-catalyst. Electrochemistry Communications,2010, 12(6):769-772
    [60]Baram N, Ein-Eli Y. Electrochemical impedance spectroscopy of porous TiO2 for photocatalytic applications. The Journal of Physical Chemistry C,2010,114(21): 9781-9790
    [61]原鲜霞,徐乃欣.金属氢化物电极中氢扩散系数的电化学测试方法.大学化学,2002,1 7(3):27-34
    [62]原鲜霞,徐乃欣.电化学阻抗法测定金属氢化物电极中氢的扩散系数.电化学,2001,7(3):321-325
    [63]Castro E B, Cuscueta D J, Milocco R H, et al. An EIS based study of a Ni-MH battery prototype. Modeling and identification analysis. International Journal of Hydrogen Energy.2010,35(11):Sp.5991-5998
    [64]Liu S Q, Li S C, Huang K L, et al. Kinetic study on Li-2.8(V0.9Ge0.1)(2)(PO4)(3) by EIS measurement. Journal of alloys and compounds,2008,450(1-2):499-504
    [65]Li Z, Du F, Bie X F, et al. Electrochemical kinetics of the Li[Li0.23Co0.3Mn0.47]O-2 cathode material studied by GITT and EIS. Journal of Physical Chemistry C,2010,114(51):22751-22757
    [66]Zhang J J, He P, Xia Y Y. Electrochemical kinetics study of Li-ion in Cu6Sn5 electrode of lithium batteries by PITT and EIS. Journal of electroanalytical chemistry,2008,624(1-2):161-166
    [67]Zhao J S, Wang L, He X M, et al. Kinetic investigation of LiCoO2 by electrochemical impedance spectroscopy (EIS). International Journal of Electrochemical Science,2010,5(4):478-488
    [68]庄全超,徐守冬,邱祥云,等.锂离子电池的电化学阻抗谱分析.化学进展, 2010,22(6):1044-1057
    [69]Kern R, Sastrawan R, Feber J, et al. Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions. Electrochimica Acta,2002,47(26):4213-4225
    [70]Fabregats F, Bisquert J, Garcia G, et al. Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy. Solar Energy Materials and Solar Cells,2005,87(1-4):Sp.117-131
    [71]Cheng H M, Hsieh W F. Electron transfer properties of organic dye-sensitized solar cells based on indoline sensitizers with ZnO nanoparticles. Nanotechnology,2010, 21(48):485202-485209
    [72]Xie Y, Joshi P, Darling S B, et al. Electrolyte effects on electron transport and recombination at ZnO nanorods for dye-sensitized solar cells. The Journal of Physical Chemistry C,2010,114(41):17880-17888
    [73]He C, Zheng Z, Tang H L, et al. Electrochemical impedance spectroscopy characterization of electron transport and recombination in ZnO nanorod dye-sensitized solar cells. The Journal of Physical Chemistry C,2009,113(24): 10322-10325
    [74]Schwarzburg K, Willig F. Diffusion impedance and space charge capacitance in the nanoporous dye-sensitized electrochemical solar cell. Journal of Physical Chemistry B,2003,107(15):3552-3555
    [75]Baoerle J E. Study of solid electrolyte polarization by a complex admittance method. Journal of Physics and Chemistry of Solids,1969,30(12):2657-2670
    [76]Jayaraj B, Desai V H, Lee C K, et al. Electrochemical impedance spectroscopy of porous ZrO2-8 wt.%Y2O3 and thermally grown oxide on nickel aluminide. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2004,372(1-2):278-286
    [77]Powers R W. The separability of inter-and intragranular resistivities in sodium beta-alumina type ceramics. Journal of Materials Science,1984,19(3):753-760
    [78]Yao Z P, Jiang Z H, Wang F P. Study on corrosion resistance and roughness of micro-plasma oxidation ceramic coatings on Ti alloy by EIS technique. Electrochimica Acta,2007,52(13):4539-4546
    [79]Zhuang Q C, Xu S D, Qiu X Y, et al. Diagnosis of electrochemical impedance spectroscopy in lithium ion batteries. Progress in Chemistry,2010,22(6): 1044-1057
    [80]Vert V B, Serra J M. Improvement of the electrochemical performance of Ln(0.58)Sr(0.4)Fe(0.8)Co(0.2)O(3)(-)(delta) IT-SOFC cathodes by ternary lanthanide combinations (La-Pr-Sm). Fuel Cells,2010,10(4):693-702
    [81]刘鹏,余志武,黄星浩,等.磷铝酸盐水泥混凝土表面透气和吸水性能研究.西安建筑科技大学学报(自然科学版),2010,42(2):216-220
    [82]Vedalakshmi R, Saraswathy V, Song H W, et al. Determination of diffusion coefficient of chloride in concrete using Warburg diffusion coefficient. Corrosion Science,2009,51(6):1299-1307
    [83]Vedalakshmi R, Devi R R, Emmanuel B, et al. Determination of diffusion coefficient of chloride in concrete:an electrochemical impedance spectroscopic approach. Material Structure,2008,41(7):1315-1326
    [84]Zavyalov S A, Pivkina A N, Schoonman J. Formation and characterization of metal-polymer nanostructured composites. Solid State Ionics,2002,147(3-4): 415-419
    [85]Balogh L, Valluzzi R, Laverdure K S, et al. Formation of silver and gold dendrimer nanocomposites. Journal of Nanoparticle Research,1999,1(3):353-368
    [86]Shin H S, Choi H C, Jung Y, et al. Chemical and size effects of nanocomposites of silver and polyvinyl pyrrolidone determined by X-ray photoemission spectroscopy. Chemical Physics Letters,2004,383(3-4):418-422
    [87]'Biswas A, Aktas O C, Kanzow J, et al. Polymer-metal optical nanocomposites with tunable particle Plasmon resonance prepared by vapor phase co-deposition. Materials Letters,2004,58(9):1530-1534
    [88]Poblete V H, Alvarez M P, Fuenzalida V M. Conductive copper-PMMA nanocomposites:microstructure, electrical behavior, and percolation threshold as a function of metal filler concentration. Polymer Composites,2009,30(3):328-333
    [89]Alvarez M P, Poblete V H, Rojas P A. Structural, electrical and percolation threshold of Al/polymethylmethacrylate nanocomposites. Polymer Composites, 2010,31(2):279-283
    [90]Novikov V V, Friedrich C, Nezhevenko K A. Effective electrical conductivity of nanocomposites. Influence of image forces on contact conductivity of metal-filled polymer nanocomposites. Polymer Composites,2010,31(9):1541-1553
    [91]Burke N A D, Stover H D H, Dawson F P, et al. Preparation and characterization of polymer-coated magnetic nanoparticles. IEEE Transactions on Magnetics,2001, 37(4):2660-2662
    [92]Krasteva N, Fogel Y, Bauer R E, et al. Vapor sorption and electrical response of Au-nanoparticle-dendrimer composites. Advanced Functional Materials,2007, 17(6):881-888
    [93]Krasnov A P, Sergeev V A, Makina L B, et al. The influence of iron nanometer particals on the properties of superhigh-molecular polyethylene surface. Physics, Chemistry and Mechanics of Surfaces,1995,10(10):1312-1316
    [94]Marchebois H, Keddam M, Savall C, et al. Zinc-rich powder coatings characterisation in artificial sea water-EIS analysis of the galvanic action. Electrochimica Acta,2004,49(11):1719-1729
    [95]Chaudhari S, Patil P P. Corrosion protective poly (o-ethoxyaniline) coatings on copper. Electrochimica Acta,2007,53(2):927-933
    [96]Shinde V, Sainkar S R, Patil P P. Corrosion protective poly(o-toluidine) coatings on copper. Corrosion Science,2005,47(6):1352-1369
    [97]徐乃欣,张承典,薛华实.关于含铜宫内节育器腐蚀的研究.腐蚀与防护,1999,20(5):222-225
    [98]张承典,徐乃欣,杨秉炎.含铜宫内节育器中铜的腐蚀.生殖与避孕,1994,14(3):163-168
    [99]Zhu J J, Xu N X, Zhang C D. Characteristics of copper corrosion in simulated uterine fluid in the presence of protein. Advances in Contraception,1999,15(3): 179-190
    [100]Xue H S, Xu N X, Zhang C D. Corrosion behavior of copper in a copper bearing intrauterine device in the presence of indomethacin. Contraception,1998,57(1): 49-53
    [101]Mora N, Cano E, Mora E M, et al. Influence of pH and oxygen on copper corrosion in simulated uterine'fluid. Biomaterials,2002,23(3):667-671
    [102]Bastidas J M, Cano E, Mora N. Copper Corrosion-Simulated Uterine Solutions. Contraception,2000,61(6):395-399
    [103]杨岭,李红,叶联顺.铜直接与间接接触对家兔子宫内膜形态的影响.生殖与避孕,1992,12(6):63-64
    [104]韩旭,韩燕燕,孙静霞,等.TCu220C宫内节育器放置15年左右金相及表面沉积物分析.中国实用妇科与产科杂志,2001,17(11):676-677
    [105]Patai K, Devenyi L, Zelko R. Comparison of surface morphology and composition of intrauterine devices in relation to patient complaints. Contraception,2004,70(2): 149-152
    [106]Xu T, Cai S Z, Xie C S, et al. The release of cupric ion in simulated uterine:new material nano-Cu/low-density polyethylene used for intrauterine devices. Contraception,2004,70(2):153-157
    [107]Cai S Z, Xia X P, Xie C S. Corrosion behacior of Copper/LDPE nanocomposites in simulated uterine solution. Biomaterials,2005,26(15):2671-2676
    [108]Cai S Z, Xia X P, Xie C S. Research on Cu2+transformations of Cu and its oxides particles with different sizes in the simulated uterine solution. Corrosion Science, 2005,47(4):1039-1047
    [109]Xia X P, Cai S Z, Xie C S. Preparation, structure and thermal stability of Cu/LDPE nanocomposites. Materials Chemistry and Physics,2006,95(1):122-129
    [110]Xia X P, Cai S Z, Xie C S. Water absorption characteristics of novel Cu/LDPE nanocomposite for use in intrauterine devices. Journal of Biomedical Materials Research Part B:Applied Biomaterials,2006,79B(2):345-352
    [111]Xia X P, Xie C S, Wang Y, et al. The forces imposed by the novel T-shape Cu/LDPE nanocomposite intrauterine devices on the simulated uterine cavity. Contraception,2007,76(4):326-330
    [112]Xia, X P, Xie C S, Cai S Z, et al. Corrosion characteristics of copper microparticles and copper nanoparticles in distilled water. Corrosion Science,2006,48(12): 3924-3932
    [113]Xia, X P, Xie C S, Cai S Z, et al. Effect of the loading and size of copper particles on the mechanical properties of novel Cu/LDPE composites for use in intrauterine devices. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2006,429(1-2):329-333
    [114]Xia, X P, Xie C S, Cai S Z, et al. Non-isothermal crystallization behavior of low-density polyethylene/copper nanocomposites." Thermochimica Acta,2005, 427(1-2):129-135
    [115]Xia X P, Wang Y, Cai S Z, et al. Will ethylene oxide sterilization influence the application of novel Cu/LDPE nanocomposite intrauterine devices? Contraception, 2009,79(1):65-70
    [116]Zipper J A, Medal M, Prager R. Suppression of fertility by intrauterine copper and zinc in rabbits:a new approach to intrauterine contraception. American Journal of Obstetrics & Gynecology,1969,105(4):529-534
    [117]Arancibia V, Pena C, Allen H E, et al. Characterization of copper in uterine fluids of patients who use the copper T-380A intrauterine device. Clinica Chimica Acta, 2003,332(1-2):69-78
    [118]Shobokshi A, Shaarawy M. Cervical mucus granulocyte macrophage colony stimulating factor and interleukin-2 soluble receptor in women using copper intrauterine contraceptive devices. Contraception,2002,66(2):129-132
    [119]Savaris R, Zettler C G, Ferrari A N. Expression of alpha 4 beta 1 and alpha v beta 3 integrins in the endometrium of women using the T200 copper intrauterine device. Fertility and Sterility,2000,74(6):1102-1107
    [120]Araya R, Gomez-Mora H, Vera R, et al. Human spermatozoa motility analysis in a Ringer's solution containing cupric ions. Contraception,2003,67(2):161-163
    [121]Wen F, Xie C S, Xia X P, et al. Electrochemical study of the corrosion behaviour of copper/low-density polyethylene microcomposite in the simulated uterine solution. Journal of Electroanalytical Chemistry,2007,603(2):219-226
    [122]Ye J H, Zou Z G. Visible light sensitive photocatalysts In1-xMxTaO4 (M=3d transition-metal) and their activity controlling factors. Journal of Physics and Chemistry of Solids,2005,66(2-4):266-273
    [123]Kaneko M., Okura, I. Photocatalysis:Science and Technology. the First Edition. Verlag Berlin Heidelberg New York:Springer,2002.18-18
    [124]Cheng X F, Long W H, Liu D P, et al. Enhanced photoelectrocatalytic performance of Zn-doped WO3 photocatalysts for nitrite ions degradation under visible light. Chemosphere,2007,68(10):1976-1984
    [125]Pelegrini R, Zamora P P, Andrade de A R, et al. Electrochemically assisted photocatalytic degradation of reactive dyes. Applied Catalysis B: Environmental,1999,22(2):83-90
    [126]Kim S S, Park K H, Hong S C. A study on HCHO oxidation characteristics at room temperature using a Pt/TiO2 catalyst. Applied Catalysis A:General,2011,398(1-2): 96-103
    [127]Miller K L, Lee C W, Falconer L J, et al. Effect of water on formic acid photocatalytic decomposition on TiO2 and Pt/TiO2. Journal of Catalysis,2010, 275(2):294-299
    [128]Fan L, Ichikuni N, Shimazu S, et al. Preparation of Au/TiO2 catalysts by suspension spray reaction method and their catalytic property for CO oxidation. Applied Catalysis A:General,2003,246(1):87-95
    [129]Chen Y L, Zhu B L, Yao M Y, et al. The preparation and characterization of Au@TiO2 nanoparticles and their catalytic activity for CO oxidation. Catalysis Communications,2010,11(12):1003-1007
    [130]Sun L, Li J, Wang C L, et al. Ultrasound aided photochemical synthesis of Ag loaded TiO2 nanotube arrays to enhance photocatalytic activity. Journal of Hazardous Materials,2009,171(1-3):1045-1050
    [131]Litter M I, Nvaio J A. Photocatalytic properties of iron-doped titania semiconductors. Journal of Photochemistry and Photobiology A:Chemistry,1996, 98(3):171-181
    [132]Choi W Y, Temrin A, Hofflnnan M R. The role of metal ion dopants in quantum-sized TiO2:Correlation between photoreactivity and charge carrier recombination dynamics. The Journal of Physical Chemistry,1994,98(51): 13669-13679
    [133]Bessekhouad Y, Robert D, Weber J V. Bi2S3/Ti02 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant. Journal of Photochemistry and Photobiology A:Chemistry,2006,163(3):569-580
    [134]Serpone N, Maruthamuthu P, ichat P P, et al. Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol,2-chlorophenol and pentachlorophenol:chemical evidence for electron and hole transfer between coupled semiconductors. Journal of Photochemistry and Photobiology A: Chemistry,1995,85(3):247-255
    [135]Bessekhouad Y, Robert D, Weber J V. Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions. Catalysis Today,2005,101 (3-4): 315-321
    [136]Tada H, Kokubu A, Iwasaki M, et al. Deactivation of the TiO2 photocatalyst by coupling with WO3 and the electrochemically assisted high photocatalytic activity of WO3. Langmuir,2004,20(11):4665-4670
    [137]Sakthivel S, Geissen S U, Bahnemann D W, et al. Enhancement of photocatalytic activity by semiconductor heterojunctions:a-Fe2O3, WO3 and CdS deposited on ZnO. Journal of Photochemistry and Photobiology A:Chemistry,2002, 148(1-3)283-293
    [138]Wang Z Y, Huang B B, Dai Y, et al. Highly photocatalytic ZnO/In2O3 heteronanostructures synthesized by a coprecipitation method. The Journal of Physical Chemistry C,2009,113(11):4612-4617
    [139]Long M C, Cai W M, Cai J, et al. Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation. The Journal of Physical Chemistry B,2006,110(41):20211-20216
    [140]Lin X P, Xing J C, Wang W D, et al. Photocatalytic activities of heterojunction semiconductors Bi2O3/BaTiO3:A strategy for the design of efficient combined photocatalysts. The Journal of Physical Chemistry C,2007,111(49):18288-18293
    [141]Zheng L R, Zheng Y H, Chen C Q, et al. Network structured SnO2/ZnO heterojunction nanocatalyst with high photocatalytic activity. Inorganic Chemistry, 2009,48(5):1819-1825
    [142]赵为,张宝文,曹怡.方酸菁功能材料修饰纳米晶TiO2薄膜电极的光电转换性能研究.功能材料,1999,30(3):304-306
    [143]Yang X, Wolcottt A, Wang G, et al. Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Letters,2009,9(6):2331-2336
    [144]Tada H, Hattori A, Tokihisa Y, et al. A patterned-Ti02/Sn02 bilayer type photocatalyst. The Journal of Physical Chemistry,2000,104(19):4585-4587
    [145]Ranade M R, Elder S H, Navrotsky A. Energetics of nanoarchitectured TiO2-ZrO2 and TiO2-MoO3 composite materials. Chemistry of Materials,2002,14(3): 1107-1114
    [146]Im J S, Yun S M, Lee Y S. Investigation of multielemental catalysts based on decreasing the band gap of titania for enhanced visible light photocatalysis. Journal of Colloid and Interface Science,2009,336(1):183-188
    [147]Jin Q L, Fujishima M, Tada H. Visible-light-active iron oxide-modified anatase titanium(IV) dioxide. The Journal of Physical Chemistry C,2011,115(14): 6478-6483
    [148]Liu Y T, Zhang X L, Liu R H, et al. Fabrication and photocatalytic activity of high-efficiency visible-light-responsive photocatalyst ZnTe/TiO2 nanotube arrays. Journal of Solid State Chemistry,2011,184(3):684-689
    [149]Zhang Q, Joo J B, Lu Z D, et al. Self-assembly and photocatalysis of mesoporous TiO2 nanocrystal clusters. Nano Research,2011,4(1):103-114
    [150]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用.第一版.北京:化学工业出版社,2002.1-30
    [151]籍宏伟,马万红-可见光诱导TiO2光催化的研究进展.科学通报,2003,48(21):2199-2250
    [152]黄戈辉,张正国,方晓明.二氧化钛光催化剂的掺杂改型.现代化工,2004,24(1):80-83
    [153]倪俊,冷文华,张鉴清,等.光电协同催化降解水杨酸和苯胺.环境科学学报,2005,25(6):756-760
    [154]Shi J Y, Leng W H, Zhang J Q, et al. Electrochemically assisted photocatalytic oxidation of nitrite over Cr-doped TiO2 under visible light. Chemical Engineering & Technology,2006,29(1):146-154
    [155]杨建军李东旭.甲醛光催化氧化的反应机理.物理化学学报,2001,17(3):278-281
    [156]Richard C, Martre A M, Boule P, et al. Photocatalytic transformation of 2,5-furandimethanol in aqueous ZnO suspensions. Journal of Photochemistry and Photobiology A:Chemistry,1992,66(2):225-234
    [157]孔海霞,孙彦平,武爱莲,等.TiO2薄膜光电极能带结构和催化活性的初探.感 光科学与光化学,2004,22(5):327-332
    [158]文华,张昭.光电催化降解苯胺的研究——外加电压的影响.环境科学学报,2001,21(6):710-714
    [159]Nozik A J. Photoelectrochemistry:Applications to Solar Energy Conversion. Annual Review of Physical Chemistry,1978,29(1):189-222
    [160]Halouani F E, Deschavers A. Interfaces semi-conducteur-electrolyte:Correlations entre le potentiel de bande plate et les echelles d'electronegativite. Materials Research Bulletin,1982,17(8):1045-1052
    [161]Butler M A, Ginley D S. Prediction of flatband potentials at semiconductor-electrolyte interfaces from atomic electronegativities. Journal of the Electrochemical Society,1978,125(2):228-232
    [162]Oosawa Y, Gratzel M. Effect of surface hydroxyl density on photocatalytic oxygen generation in aqueous TiO2 suspensions. Journal of the Chemical Society, Faraday Transactions,1988,84(1):197-205
    [163]Shiyanovskaya I, Hepel M. Bicomponent WO3/TiO2 films as photoelectrodes. Journal of the Electrochemical Society,1999,146(1):243-249
    [164]Solarska R, Santato C, Jorand-Sartoretti C, et al. Photoelectrolytic oxidation of organic species at mesoporous tungsten trioxide film electrodes under visible light illumination.). Journal of Applied Electrochemistry,2005,35(7):715-721
    [165]Hepel M, Hazelton S. Photoelectrocatalytic degradation of diazo dyes on nanostructured WO3 electrodes. Electrochimica Acta,2005,50(25-26):5278-5291
    [166]Waldner G, Bruger A, Gaikwad N S, et al. WO3 thin films for photoelectrochemical purification of water. Chemosphere,2007,67(4):779-784
    [167]Sakthivel S, Neppolian B, Shankar M V, et al. Solar photocatalytic degradation of azo dye:comparison of photocatalytic efficiency of ZnO and TiO2. Solar Energy Materials and Solar Cells,2003,77(1):65-82
    [168]Wang H H, Xie C S, Zhang W, et al. Comparison of dye degradation efficiency using ZnO powders with various size scales. Journal of Hazardous Materials,2007, 141(3):645-652
    [169]Li D, Haneda H. Photocatalysis of sprayed nitrogen-containing Fe2O3-ZnO and WO3-ZnO composite powders in gas-phase acetaldehyde decomposition. Journal of Photochemistry and Photobiology A:Chemistry,2003,160(3):203-212
    [170]Gurny R, Doelker E, Peppas N A. Modelling of sustained release of water-soluble drugs from porous, hydrophobic polymers. Biomaterials,1982,3(1):27-32
    [171]Siegel R A, Langer R. Mechanistic studies of macromolecular drug release from macroporous polymers. Ⅱ. Models for the slow kinetics of drug release. Journal of Controlled Release,1990,14(2):153-167
    [172]夏先平.新型宫内节育器材料——纳米金属铜/聚乙烯复合材料的制备与表征:[博士学位论文].华中科技大学:华中科技大学图书馆,2005
    [173]Xie C S, Hu J H, Wu R, et al. Structure transition comparison between the amorphous nanosize particles and coarse-grained polycrystalline of cobalt. Nanostructured Materials,1999,11(8):1061-1066
    [174]Oster G K. Chemical reactions of the copper intrauterine device. Fertility and Sterility,1972,23(1):18-23
    [175]Kar A B, Engineer A D, Goel R, et al. Effect of an intrauterine contraceptive device on biochemical composition of uterine fluid. American Journal of Obstetrics & Gynecology,1968,101(7):966-970
    [176]朱建军,徐乃欣,张承典,等.血清白蛋白对模拟宫腔液中铜腐蚀的影响.中国腐蚀与防护学报,2000,20(2):81-87
    [177]朱建军,徐乃欣,张承典,等.模拟宫腔液中蛋白质对铜腐蚀的影响.生殖与避孕,2000,20(3):161~164
    [178]曹变梅,奚廷斐,郑裕东.含铜宫内节育器在不同模拟官腔液中浸泡后的表面Cu和O的XPS分析.首届生物材料与组织工程产品质量控制国际研讨会论文集.天津.2009.天津:中国药品生物制品检定所,2009.136-138
    [179]文风.金属/聚合物复合材料的腐蚀行为和金属离子扩散动力学研究:[博士学位论文].华中科技大学:华中科技大学图书馆,2007
    [180]蔡水洲.铜/低密度聚乙烯纳米复合材料在模拟宫腔液中的腐蚀行为及其对铜离子的控释:[博士学位论文].华中科技大学:华中科技大学图书馆,2005
    [181]赵春梅,贾梦秋,霍金花.苦咸水中氯离子对铜腐蚀行为的影响.北京化工大学学报,2000,27(2),62-65
    [182]蔡玲WO3/TiO2复合电极光电催化降解甲基橙性能研究:[硕士学位论文].华中科技大学:华中科技大学图书馆,2009
    [183]Teoh W Y, Amal R, Madler L, et al. Flame sprayed visible light-active Fe-TiO2 for photomineralisation of oxalic acid. Catalysis Today,2007,120(2):203-213
    [184]Butler M A, Ginley D S. Prediction of flatband potentials at semiconductor-electrolyte interfaces from atomic electronegativities. Journal of the Electrochemical Society,1978,125(2):228-232
    [185]Zhao X, Yao W Q, Wu Y, et al. Fabrication and photoelectrochemical properties of porous ZnWO4 film. Journal of Solid State Chemistry,2006,179(8):2562-2570
    [186]Zha Q X. Dynamics of Electrode Process.2nd ed. Beijing:Science Press 1987. 385-387
    [187]Leng W H, Zhang Z, Cheng S A, et al. A study of titanium oxide film electrodes prepared by direct thermal oxidation. Chinese Journal of Chemical Physics,2001, 14(6):705-710
    [188]Matsumoto Y. Energy positions of oxide semiconductors and photocatalysis with iron complex oxides. Journal of Solid State Chemistry,1996,126(2):227-234
    [189]Fu H B, Pan C S, Yao W Q, et al. Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6. The Journal of Physical Chemistry B,2005,109(47): 22432-22439

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700