纳米ZnO/SnO_2复合氧化物光催化剂的合成、表征及其光催化降解有机污染物的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境污染问题是当今世界的主要问题之一。在工业和家用废水中常常发现有机污染物。这些有机物在被排放到环境中之前,须先加以破坏或清除。地下水和水源水也常常发现一些有机污染物。要使受到污染的地下水和水源水合乎饮用水标准,也须做必要的处理。公众对环境污染问题与日俱增的关心,推动了环境治理新方法的诞生和发展,光催化就是日益受到关注的新兴环境治理方法之一。
     将受激半导体用于降解水和空气中的有机污染物,不仅在理论上已经做过充分的研究,在实践上也被成功地用来处理过大量的化合物。在实验室和实际应用研究中发现,能够被光催化过程破坏的有机物有:醇、羧酸、胺、除草剂、醛等。光催化能够使有害有机物发生矿化作用生成二氧化碳、水和简单的矿物酸。因此,与现有的技术相比,光催化过程的主要优点之一是不需二次处理。
     光催化过程的另一个优点是,与使用过氧化氢和臭氧等氧化剂的其他高级氧化技术相比,光催化过程不需要使用昂贵的氧化剂,因为空气中的氧就是它要使用的氧化剂。光催化剂还可以再生和循环利用。
     还可以利用太阳光引发的光催化过程来破坏某些有机污染物。这种情况下,光催化过程的运行成本很低。
     理想的光催化剂应当稳定性好,价格低廉,无毒性,高活性且能充分吸收太阳光。
     近年来,很多研究的焦点都放在二元或三元复合氧化物上,希望找到电荷分离效率高,光响应的范围宽,因而光催化效率高且能充分吸收利用太阳光的光催化剂。
     本论文继续沿着这个方向做积极的探索,并发现了一些有趣和有益的成果。
     本论文主要包括4部分:
     1.简要介绍了光催化剂的光催化活性原理。对光催化剂的改性,包括金属离子掺杂、表面敏化、粘土交联和复合氧化物半导体等的近期进展,做了简要的介绍。对纳米光催化剂的基本原理、基本性质以及近期进展,也做了简要的介绍。
     2.采用共沉淀法合成纳米Zn_2SnO_4。研究了纳米Zn_2SnO_4的合成条件及其烧结过程和机理。用X射线衍射(XRD)、透射电子显微镜(TEM)、差热和热失重分析(TG-DTA)和比表面积(BET)对Zn_2SnO_4做了表征。求出纳米Zn_2SnO_4的晶粒生长活化能为337.9kJ/mol。建立了Zn_2SnO_4的晶粒生长方程为:D~(4.78)=9.12×10~(23)texp(-40.6×10~3/T)
     用纳米Zn_2SnO_4作光催化剂降解水溶液中的毒害有机物苯。研究表明:Zn_2SnO_4对苯有光催化活性,且Zn_2SnO_4的光催化活性与其粒子尺寸有关,这可用比表面积和尺寸量子理论予以解释。
     3.采用共沉淀法合成了摩尔比为2:1(Z_2S_1)和1:1(Z_1S_1)的ZnO/SnO_2复合氧化物。用X射线衍射(XRD)、UV-Vis漫反射光谱和比表面积(BET)对Z_2S_1、Z_1S_1做了表征。用甲基橙(MO)作模型有机物对它们的光催化活性做了评估。研究了MO在Z_2S_1表面上的等温吸附行为。研究了热处理条件对Z_2S_1
    
    的光催化活性的影响。也研究了pH值、反应悬浮液中的电解质如NaCI、KNO。
    和K多O4对ZZ民的光催化活性的影响。通过UV-VS漫反射光谱求得乙S;、ZS;、
    ZnO、SnO。的禁带宽度(带隙能)分别为3.15、3.12、3.17和二.53eV。等温吸
    附线是一个T台阶曲线。ZZS;对 MO的光催化降解速率分别比 Z6和 ZnO快
    40.2%和 66.l%。提出一个电荷分离和光催化活性的原理示意图并用之对 民和
    乙S;的光催化活性做了合理的解释。
     4.采用共沉淀法,通过调节不同的烧结温度,合成了不同Sn含量的纳米
    ZnO/SnO。复合氧化物。用X射线衍射(io\UV-VIS漫反射光谱和比表面积
    (BET)对它们做了表征。发现:高温有利于形成较大晶粒尺寸的 ZnO侣nO。复
    合氧化物,较高的Sn含量有利于得到较大比表面积的ZnO用nO。复合氧化物。
    根据UV-Vis漫反射光谱计算出了不同Sn含量和不同烧结温度下的ZnO侣nO。
    复合氧化物的带隙能。发现带隙能随着Sn含量和烧结温度而变化。此外,用甲
    基橙(MO)作模型有机物,对 ZnO沼nO。复合氧化物的光催化活性做了评估。
    发现:含有33.3%的Sn和在700*下烧结10h的ZnO侣nO。复合氧化物,表现
    出最大的光催化活性。
Environmental pollution is one of the major problems of the modern world. Organic chemicals which may be found as pollutants in waste water effluents from industrial or domestic sources, must be removed or destroyed before discharge to the environment. Such pollutants may also be found in ground and source waters that also require treatment to achieve acceptable drinking water quality. The increased public concern with these environmental pollutants has prompted the need to develop novel treatment methods with photocatalysis gaining a lot of attention in the field of pollutant degradation.
    The application of illuminated semiconductors for degrading undesirable organics dissolved in air or water is well documented and has been successful for a wide variety of compounds. Organic compounds such as alcohols, carboxylic acids, amines, herbicides and aldehydes, have been photocatalytically destroyed hi laboratory and field studies. The photocatalytic process can mineralize the hazardous organic chemicals to carbon dioxide, water and simple mineral acids. Thus, one of the major advantages of the photocatalytic process over existing technologies is that there is no further requirement for secondary disposal methods.
    Another advantage of this process is that when compared to other advanced oxidation technologies, especially those using oxidants such as hydrogen peroxide and ozone, expensive oxidizing chemicals are not required as ambient oxygen is the oxidant. Photocatalysts are also self-regenerated and can be reused or recycled.
    Finally, the solar photocatalytic process can also be applied to destroy some organic compounds which means the process can be operated in a low cost.
    An ideal photocatalyst should be stable, inexpensive, non-toxic, highly photoactive and, of course, good visible light absorptive.
    hi recent years, many researches have focused on the binary or ternary metal oxide to find a more effective photocatalyst by increasing the efficiency of charge separation
    
    
    
    and extending the photo-responsing range.
    In this dissertation, we are motivated to work in this direction and finally find some interesting and useful results.
    This dissertation mainly includes 4 parts as follows:
    1. The photocatalytic principle of semiconductors used in air and water treatment is introduced, and some recent developments in the modification for the photocatalysts, including metal ion doping, surface sensitization, clay cross-linked semiconductors and coupled oxide semiconductors, are also introduced. Additionally, the principle and some recent developments of nano-sized photocatalyst are also introduced.
    2. Nano-sized Zn2SnO4 materials have been synthesized using the coprecipitation method. The synthetic conditions and the calcination behaviors of nano-sized Zn2SnO4 materials have been studied. The nano-sized Zn2SnO4 materials have been characterized with X-ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetry and differential thermal analysis (TG-DTA) and specific surface area. As a result, the kinetic grain growth equation for nano-sized Zn2SnO4 can be
    expressed as: Z)478 =9.12xl023fexp(-40.6xl03 IT), with an activation energy for
    grain growth of Q=337.9 KJ/mol. The nano-sized Zn2SnO4 materials have been used as photocatalysts to decompose benzene in water solution. The results show that Zn2SnO4 can photocatalytically decompose benzene, and the photocatalytic capacity for Zn2SnO4 relates to the grain size, which is discussed in terms of the surface effect and the quantum size effect.
    3. The nano-sized coupled oxides ZnO/SnO2 in a molar ratio of 2:1 (Z2St) and ZnO/SnO2 in a molar ratio of 1:1 (ZjS,) were prepared using the coprecipitation method and characterized with X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy and specific surface area (BET). Their photocatalytic activities were also evaluated using methyl orange (MO) as a model organic compound. The isothermal adsorption behavior of MO on Z2S,, and the factors affecting the photocatalytic activity
引文
1. A. Fujishima, K. Honda, Electroelectrochemical photolysis of water at a semiconductor electrode, Nature 37 (1972) 238.
    2. D.M. Blake, Bibliography of work on the photacatalytic revomal of hazardous compounds from water and air, National renewal energy laboratory, 1994.
    3. D.F. Ollis, h. Al-Ekabi, Photocatalytic purification and treatment of water and air, Elsevier, Amsterdam, 1993.
    4. M. Gratzel, Heterogeneous photochemical electron transfer, CRC press, Boca Raton, FL, 1989.
    5. N. Serpone, E. Pelizzetti, Photacatalysis: fundamentals and fpplications, John & Sons, New York, 1989.
    6. M. Fox, Photainduced electron transfer, Elsevier, Amsterdam, 1988.
    7. M. Schiavello, Photocatalysis and environment: trends and applications, Kluwer Academic Publishers, Dordrecht, 1988.
    8. E. Pellizzett, N. Serpone, Homogeneous and heterogeneous photacatalysis, Riedel Publishing Company, Dordrecht, 1986.
    9. M.R. Hoffmann, S.T. Martin, W.Y. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev. 95 (1995) 69.
    10. A.L. Linsebigler, G.Q. Lu, J.T. Yates, Jr., Photocatalysis on TiO2 surface: principle, mechanisms, and selected results, Chem. Rev. 95 (1995) 735.
    11. A. Hagfeldt, M. Gratzel, Llight-induced redox reactions in nanocrystalline systems, Chem. Rev. 95 (1995) 49.
    12. P. V. Kamat, N. M. Solar Energy, 44 (1990) 83.
    13. 果玉沈编, 半导体物理, 国防工业出版社, 北京,1988,P.19.
    14. L. E. Brus, A simple model for the ionization potentials electron affinity, and aqueous redox potentials of small semiconductor crystallines, J. Chem. Phys. 79 (1983) 5566
    15. L. E. Brus, Electron-electron and electron-hole ihternations in small semiconductorcrystallites: the size depemdence of the lowest excited electronic stale, J. Chem. Phys. 80 (1984) 4403.
    16. D. Avnir, D. Farm, Molecular fractal surfaces, Nature 308 (1984) 261.
    17. D. Farin, D. Avnir, J. Phys. Chem. 91 (1987) 5517.
    18. D. Farin, D. Avnir, J. Am. Chem. Soc. 110 (1988) 2039.
    19. D. Farin, D. Avnir, J. Phys. Chem. 93 (1989) 5851.
    20. A. Henglein, Nanoclusters of semoconductors and metals colloidal nano-particles of semiconductors and metals: electronic structure and process, Berchte der Bunsen-Gesellschaft-Physical chemistry 101 (1997) 1562.
    21. D.W. Bahnemann, Ultrasmall metal oxide particles: preparation, photophysical characterization, and photocatalytic properties, Isreal J. Chem. 33 (1993) 115.
    22. A. Henglein, Mechanism of reactions on colloidal microelecrrodes and size quantization effects. Topics in Current Chem. 143 (1988) 113.
    23. A.henglein, Small particles research: physicochemical properties of extremely
    
    small colloidal metal and semiconductor particles.Chem. Rev. 89 (1989) 1861.
    24. Y. Wang, N. Herron, Nanometer-sized semiconductor clusters: materials synthesis, quantum size effect, and photophysical properties. J. Phys. Chem. 95 (1991) 525.
    25. D.W. Bahnemann, D. Bockelemann, R. Goslich, M. Hilgendorff, D. Weichgrebe, Photocatalytic detoxification: novel catalysis, mechanism, and solar applications. In: D.F. ollis and H. Al-ekabi eds. In: Photocatalytic purification and treatment of water and air. Elsevier Science Publishers, 1997, p.301
    26. W.A. Zelener, M.A. Anderson, The use of nanoparticles in environmental applications. In: E. Pelizetti edFine particles science and technology. Kluwer Academic Publishers, 1996, p. 643.
    27. B. Levy, Photochemistry of nanostructured materials for energy applications, J. Electroceramics, 1 (1997) 239.
    28. H. Weller, A. Eychmuller, Photochemistry and photoelectrochemistry of quantized properties of semiconductor nanoparticles in solution and thin-film electrodes. In: D.C. Neckers, D.H. Volman and G.V. Bunau, eds. Advances in photochemistry, V. 20, 1995, John Wiley and Sons, Inc.
    29. N. Serpone, D. Lawless, E. Pelizzetti, Subnanosecond characteristics and photophysics of nanosized TiO2 particulates from R=10A to 20 A; Meaning for heterogeneous photocatalysis. In: E. Pelizzetti ed. Fine particlea science and technology. Kluwer Academic Publishers, 1996, p. 657.
    30. P.V.Kamat, B. Patrick, Photophysics and photochemistry of quantized ZnO colloids, J. Phys. Chem. 96 (1992) 6829.
    31. A. Henglein, Q-particles: Size quantization effects in coloidal semiconductors. Progrss in Colloid Polymer Sci. 73 (1987) 1.
    32. C. Kormann, D.W. Bahnemann, M. Hoffmann. Preparation and characterisation of quantum-size titanium dioxide, J. Phys. Chem. 92 (1988) 5196.
    33. M. Gratzel, Heterogeneous photochemical electron transfer, CRC Press, Boca Raton, FL., 1989.
    34. M. Anpo, T. Shima, S. Kodama, Y. Kubokawa, Photocatalytic hydrogenation of CH3COOH with H2O on small particle TiO2: size quantization effects and reaction intermediates. J. Phys. Chem. 91 (1987) 4305.
    35. L.T. Kavan, M. Gratzel, D. Fitzmaurice, V. Shkliver, Quantum size effect in nanocrystalline semiconducting TiO2 layers prepared by anodic oxidative hydrolysis of TiCl4, 97 (1993) 9493.
    36. R.F. Howe, Recent developments in photocatalysis. Dev. Chem. Eng. Mineral process. 6(1998) 55.
    37. S. Martin, H. Herrmann, W. Choi, M. Hoffmann, Photochemical destruction of chemical contaminants on quantum-sized semiconductor particles, Solar Engineering V.1, 1995, ASME: 409.
    38. S. Gallardo, M. Gutierrez, A. Henglein, E. Janata, Photochemstry and radiation chemistry of colloidal semiconductros, 34. Properties of Q-PbS, Berichte der Bunsen-Gesellschaft-Physical Chemistry, 93 (1989) 1080.
    39. J.P. Wilcoxon, P.P. Newcomer and G,A. Samara, Synthesis and optical properties of MoS2 and isomorphous nanoclusters in the quantum confinement regine, J.
    
    Appl. Phys. 81 (1997) 7934.
    40. O.I. Micic, M. Meglie, D. Lawless, D.K. Sharma, N. Serpone, Semiconductor photophysics. 5. Charge carrier trapping in ultrasmall siver iodideparticles and kinetics of formation of silver atom clusters, Langmuir, 6 (1990) 487.
    41. B.A. Smith,D.M. Waters, A.E. Faulhaber, M.A.Kreger, T.W.Roberti, J.Z. Zhang, Preparation and ultrafast optical characterization of metal and seconductor colloidal nano-particles, J. Sol-Gel. Sci. Thchnol. 9 (1997) 125.
    42. D.W. Bahnemann, A. Henglein, J. Lillie, L. Spanhel Flash photolysis obzervation of the absorption spectra of trapped positive holes and electrons in colloidal TiO2, J. Phys. Chem. 88 (1984) 709.
    43. D.W. Bahnemann, C. Kormann, M.R. Hoffmann, Preoaration and characterisation of quantum size zinc oxide: A detailed spectropscopic study. I. Phys. Chem. 91 (1987) 3789.
    44. A.J. Hoffinann, G. Mills, H. Yee, M.R. Hoffmann,Q-sized CdS: synthesis, characterisation, and efficiency of photoinitation of polymerisation of several vinylic monomers, J. Phys. Chem. 96 (1992) 5546.
    45. J.M. Nedeljkovic, M.T. Nenodovic, O.I. Micic, A.J. Nozik, Enhanced photoredox chemistry in quantized semiconductor colloids, J. Phys. Chem. 90 (1986) 12.
    46. A.J. Hoffinann, E.R Carraways, M.R. Hoffmann, Photocatalytic production of H2O2 and organic peroxides on quantum-sized semiconductor colloids. Environ. Sci. Technol. 28 (1994) 776.
    47. Y. Nosaka, N.Ohta, H. Miyama, Photochemical kinetics of ultrasmall semiconductor particles in solution: Effect of size on the quantum yield of electron transfer, J. Phys. Chem. 94 (1990) 3752.
    48. G.P.Lepore, C.H. Langford, J. Vichova, A. Vlcek, Photochemistry and picosecond absorption spectra of aqueous suspesions of a polycrystalline titanium dioxide opctically transparent in the visible spectrum, J. Photochem. Photobiol. A: Chem. 75 (1993) 67.
    49. A.J. Hoffinann, H. Yee, G. Mills, M.R. Hoffmann, Photoinitiated polymerisation of methyl methacrylate using Q-sized ZnO colloids. J. Phys. Chem. 96 (1992) 5540.
    50. C.-C. Wang, Z. Zhang, J.Y Ying, Photocatalytic decomposition of halogenated organics over nanocrystalline titania. Nanostruct. Mater. 9 (1997) 583.
    51. Z. Zhang, C. C-. Wang, R. Zakaria and J. Y. Ying, Role of particle size in nanocrystalline TiO2-based photocatalysts. J. Phys. Chem. B 102 (1998) 10871.
    52. A. Henglein, M. Gutierrez, H. Weller, A. Forjtik, J. Jirkovsky, Photochemstry of colloid semiconductors. 30. Reactions and fluorescence of Agl and AgI-Ag2S colloids. Ber.Bunsenges. Phys. Chem. 93 (1989) 593.
    53. D. Beydoun, R. Amal, G. Low, S. McEvoy, Role of nanoparticles in photocatalysis, J. Nanoparticle Res, 1 (1999) 439.
    54. M. Lindner, D. Bahnemann, B. Hirthe and W. Griebler, solar water detoxification: novel TiO2 powdera as highly active photocatalysts. Solar Engineering , ASME: 1995,399.
    55. T. Sato, K.I. Sato, Y. Fujishiro, Photochemical reduction of nitrate to ammonia
    
    using layered hydrous titanate/cadmium sulphidenanocomposites, J. Chem. Technol. And Biothchnol. 67 (1996 ) 345.
    56. T. Sato, K. Masaki, K.-I. Sato, Photocatalytic properties of layeded hydrous titanium oxide/CdS-ZnS nano composites incorporating CdS-ZnS into the interlayer. J. Chem. Technol. And Biotechnol. 67 (1996) 339. .
    57. M.R. Sahyun N. Serpone, Primary events in the photocatalytic deposition of silver on nanoparticulate TiO2. Langmuir, 13 (1997) 5082.
    58. B.-A. Korgel, H.-G. Monbouquete, Quantum comfmement effects enables photocatalyzed nitrate reduction at neutral pH using nanocrystals, J. Phys. Chem. 6,101(1997) 5010.
    59. S. Ogura, M. Kohno, K. Sato, Y. Inoue, Photocatalytic activity for water decomposition of RuO2-combined M2Ti6O13 (M equals Na, K, Rb, Cs), Appl. Surf. Sci. 121-122(1997) 521.
    60. B.C. Faust, M.R. Hoffmann, D.W. Bahnemann, Photocatalytic oxidation of sulfur dioxide in aqueous suspensions of a-Fe2O3. J. Phys. Chem. 93 (1989) 6371.
    61. C. Kormann, D.W. Bahnemann, M.R. Hoffmann, Environmental photochemistry: is iron (hematite) an active photocatalyst? A comparative study: β-Fe2O3, ZnO, TiO2. J. Photochem. Photobiol. A: Chem. 48 (1989) 161.
    62. N.J. Cherepy, D. Listen, J.A. Lovejoy, H. Deng, J.Z. Zhang, Ultrafast studies of photoexcited electron dynamics in γ-and α-Fe2O3 semiconductor nanoparticles. J. Phys. Chem. B, 102 (1998) 770.
    63. J. Rabani, K. Yamashita, K. Ushida, J. Stark, A. Kira, Fundamental reactions in illuminated titanium dioxide nanocrystallite layers studied by pulsed laser, J. Phys. Chem. 102(1998) 1689.
    64. D.P. Jr. Colombo, R.M. Bowman, Does interfacial charge transfer compete with charge carrier recombination? A femtosecone diffuse reflectance investigation of TiO2nanoparticles, J. Phys. Chem. 100 (1996) 18445.
    65. K. Kalyanasundaram, Semiconductor paniculate systems for photosynthesis: An overview, in: Michael Gratzel ed. Energy resources through photochemistry and catalysis, Academic Press, 1983, p.217.
    66. D. Bockelmann, M. Lindner, D. Bahnemann, From nano-sized particles to commercial products: the search for novel photocatalysts. In: E. Pelizzetta ed. Fine particles science and technology, Kluwer Academic Publishers, 1996, p.657.
    67. G. Rothenberger, J. Moser, M. Gratzel, N. Serpone, D.K. Sharma, Charge carrier and recombination dynamics in small semiconductor particles, J. Am.Chem. Soc. 107(1985) 8054.
    68. D.E. Skinner, D.P. Colombo, J.J. Cavaleri, Femtosecond investigation of electron trapping in semiconductor nanoclusters, J. Phys. Chem. 99 (1995) 7853.
    69. J. Schwitzgebel, J.G. Ekerdt, H. Gerischer, A. Heller, Role of the oxygen molecule and of the photogenerated electron in TiO2 photocatalyzed air oxidation reactions, J. Phys. Chem. 99 (1995) 5633.
    70. T. Murakata, R. Yamamoto, Y. Yoshida, T. Ogata, S. Sato, Preparation of urtrafine TiO2 particles dispersible in organic solvents and their photocatalytic properties, J. Chem. Engineering of Japan, 31 (1998) 21.
    
    
    71. A. Towata, Y. Uwamino, M. Sando, K. Iseda, H. Taoda, Synthysis of titania photocatalysts dispered with nickel nanosized particles, Nanostruct. Mater. 10 (1998) 1033.
    72. M. Anpo, H. Yamashita, K. Dceue, Y. Fujii, S.G. Zhang, Y. Ichihashi, D.R. Park, Y. Suzuki, K. Koyano, T. Tatsumi, Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolite catalysts, Catal. Today, 44 (1998) 327.
    73. M.S. Jeon, W.S. Yoon, H. Joo, T.k. Lee, H. Lee, Preparation and characterization of a nano-sized Mo/Ti mixed photocatalyst, Appl. Surf. Sci. 165 (2000) 209.
    74. S.H. Lee, M. Kang, S.M. Cho, G.Y. Han, B.W. Kim, Synthesis of TiO2 photocatalyst thin film by solvothermal method with a small amount of water and its photocatalytic performance, J. Photochem. Photobiol. A: Chem. 146 (2001) 121.
    75. M. Kang, S.Y. Lee, C.H. Chung, S.M. Cho, G.Y. Han, B.W. Kim, K.J. Yoon, Characterization of a TiO2 photocatalyst synthesis by the solvothermal method and catalytic performance for CHCl3 decomposition, J. Photochem. Photobiol. A: Chem. 144(2001) 185.
    76. D.W.Bahnemann, S.N. Kholuiskaya, R. Dillert, A.I. Kulak, A.J.Kokorin, Photodestruction of dichloroacetic acid catalyzed by nano-sized TiO2 particles, Appl. Catal. B: Environ. 36 (2002) 161.
    77. H. Gerischer, A. Heller, J. Phys. Chem. 93 (1989) 5261.
    78. H. Gerischer, A. Heller, J. Electrochem. Soc. 139 (1992) 113.
    79. J. M. Kesselmam, et al. J. Phys. Chem. 98 (1994) 13385.
    80. J. R. Nicole, P. Pierre, J. Phys. Chem. 90 (1986) 2733.
    81. J. C. Escudero, et al. Solar Energy Mater. 17 (1988) 151.
    82. T. T. Masanari, et al. J. Mater. Sci. 24 (1989) 243.
    83. J. Torres, S. C-. March, Chem. Engineer. Sci. 47 (1992) 3857.
    84. K. Takeda, K. Fujiwara, Wat. Res. 30 (1996) 323.
    85. M. A. Aguado, M. A. Anderson, Solar Energy Mater, and Solar Cells, 28 (1993) 345.
    86. B. I. Rufus, et al. Indian J. Technol. 27 (1989) 171.
    87. Ch-M. Wang, et al. J. Am. Chem. Soc. 114 (1992) 5230.
    88. K. Hadjiivanov, et al. Mater. Chem. Phys. 28 (1991) 367.
    89. M. M. Kondo, W. F. Jardim, Wat. Res. 25 (1991) 823.
    90. R. M. Alberci, W. F. Jardim, Wat. Res. 28 (1994) 1845.
    91. L-Ch. Chen, Ts-Ch. Chou, Industrial & Engineering Chem. Res. 33 (1994) 1436.
    92. Y-M. Gao, et al. Mater. Res. Bull. 26 (1991) 1247.
    93. Y-M. Gao, et al. Mater. Res. Bull. 27 (1991) 1023.
    94. B. I. Rufus, et al. Langmuir 6 (1990) 565. .
    95. O. A. Ileperuma, et al. Appl. Catal. 62 (1990) LI.
    96. A. K. Ghosh, H. P. Maruska, J. Electrochem. Soc. 124 (1977) 1516.
    97. Y. Matsumoto, et al. J. Electrochem. Soc. 127 (1980) 2148.
    98. P. Salvador, Solar Energy Mater. 12 (1980) 413.
    99. R. U. E. Lam, et al. Mater. Res. Bull. 16 (1981) 1593.
    
    
    100. W. K. Wong, M. A. Malati, Solar Energy 36 (1986) 163.
    101. T. R. N. Kutty, K. Avudaityai, Chem. Phys. Lett. 163 (1989) 92.
    102. A. Mills, et al. J. Mol. Catal. 87 (1994) 67.
    103. J. A. Navio, et al. J. Photochem. Photobiol. A: Chem. 55 (1991) 319.
    104. W. Choi, et al. J. Phys. Chem. 98 (1994) 13669.
    105. E. C. Butler, A. P. Davis, J. Photochem. Photobiol. A: Chem. 70 (1993) 273.
    106. M. Ashokkumar, P. Maruthamuthu, J. Mater. Sci. 24 (1989) 2135.
    107. M. Gratzel, F. H. Russell, J. Phys. Chem. 94 (1990) 2566.
    108. J. Gautron, et al. Faraday Discuss. Chem. Soc. 70 (1981) 81.
    109. H. Gerisher, F. Willing, Top. Curr. Chem. 61 (1976) 31.
    110. H. Meier, Photochem. Photobiol. 16 (1972) 219.
    111. B. Patrick, P. V. Kamat, J. Phys. Chem. 96 (19920 1473.
    112. M. W. Rophael, et al. Vaccum 41 (1990) 143.
    113. S. A. Majumder, et al. ASME JSES KSME Int. Sol. Energy Conf. Publ. By ASME, New York, NY, USA, p.9.
    114. H. Ross, et al. Solar Energy Mater, and Solar Cells 33 (1994) 475.
    115. P. V. Kamat, M. A. Fox, Chem. Phys.Lett. 102 (1983) 379.
    116. D. Wohrle, et al. J. Mol. Catal. 75 (1992) L39. 88.
    117. E.M. K. Mansour, et al. J. Mol. Catal. 41 (1987) 361.
    118. P. Andrew, et al. J. Phys. Chem. 91 (1987) 6245.
    119. T. Uchihara, et al. J. Phys. Chem. 94 (1990) 415.
    120. E. Vrachnou, A. J. Gratzel, A. J. MeEoy, J. Electroanal. Chem. 258 (1989) 193.
    121. 一一濑升等著,赵修建等译,超微粒子导论,武汉工业大学出版社,武汉, 1991, p.50.
    122. R. M. Baner, D. M. Macleod, Trans. Faraday Soc. 51 (1995) 90.
    123. 梁娟等主编,催化剂新材料,化学工业出版社,北京,1990,p.52.
    124. T. J. Pinnavaia, Intercalated clay catalysts, Science 220 (1983) 365.
    125. O. Ena, A. J. Bard, J. Phys. Chem. 90 (1986) 301.
    126. R. D. Stramel, et al. Chem. Phys. Lett. 130 (1986) 423.
    127. J. Sterte, Clays and Minerals 34 (1986) 658.
    128. S. Yamanaka, et al. Mater. Chem. and Phys. 17 (1987) 87.
    129. H. Yoneyama, et al. J. Phys. Chem. 93 (1989) 4833.
    130. M. Hirokaza, et al. Langmuir 7 (1991) 503.
    131. K. Kazunari, et al. Catal. Today 8 (1990) 77.
    132. K. Tennakone, J. Bandara, Photocatalytic activity of dye-sensitazed tin (Ⅳ) oxide nanocrystalline particles attached to zinc oxide particles: long distance electron transfer via ballistic transport of electrons across nanocrystallites, Appl. Catal. A: Gen. 208(2001) 335.
    133. I. Bedja, P. V. Kamat, Capped semiconductor colloids: synthesis and photoelectronchemical behavior of TiO2-capped SnO2 nanocrystallites and its role in photocatalytic degradation of a textile azo dye, J. Phys. Chem. 99 (1995) 9182.
    134. K. Vinodgopal, I. Bedja, P. V. Kamat, Nanostructured semiconductor films for
    
    photocatalysis, photoelectrochemical behavior of SnO2/TiO2 composite systems, Chem. Mater. 8(1996) 2180.
    135. K. Vinodgopal, P. V. Kamat, Enhanced rates of photocatalytic degradation of an azo dye using coupled SnO2/TiO2 semiconductor thin films, Environ. Sci. Technol. 29(1995) 841.
    136. J. Lin, J. C. Yu, D. Lo, S. K. Lam, Photocatalytic activity of rutile TixSn1-xO2 solid solutions, J. Catal. 183 (1999) 368.
    137. L. Y. Shi, C. Z. Li, H. C. Gu, D. Y. Fang, Morphology and properties of ultrafine SnO2-TiO2 coupled semiconductor particles,Mater. Chem. Phys. 62 (2000) 62.
    138. 施利毅,古宏晨,李春忠,房鼎业,SnO2-TiO2复合光催化剂的制备和性 能,催化学报,3(1991) 338。
    139. Y. A. Cao, X. T. Zhang, W. S. Yang, H. Du, Y. B. Bai, T. J. Li, J. N. Yao, A bicomponent SnO2/TiO2 participate film for photocatalysis, Chem. Mater. 12(2000) 3445.
    140. 李晓红,颜秀茹,张日萍, 霍明亮,郭伟魏,SnO2-TiO2复合光催化剂的 制备及光催化降解敌敌畏,应用化学,1(2001) 32。
    141. K. Y. Song, M. K. Park, Y. T. Kwon, H. W. Lee, W. J. Chung, W. I. Lee, Preparation of transparent participate MoO3/TiO2 and WO3/TiO2 films and their photocatalytic properties, Chem. Mater. 13 (2001) 2349.
    142. T. Ohno, F. Tanigawa, K. Fujihara, S. Izumi, M. Matsumura, Photocatalytic oxidation of water on TiO2 coated WO3 particles by visible light using iron (Ⅲ) ions as electron acceptor, Photochem. Photobiol. A: Chem. 118 (1998) 41.
    143. Y.R.DO, W. Lee, D. Dwight, A. Wold, The effect of WO3on the photocatalytic activity of TiO2, J. Solid State Chem. 108 (1994) 198.
    144. Y. T. Kwon, K. Y. Song, W. I. Lee, G. J. Choi, Y. R. Do, Photocatalytic behavior of WO3-loaded TiO2 in an oxidation reaction, J. Catal. 191 (2000) 192.
    145. X. Z. Li, F. B. Li, C. L. Yang, W. K. Ge, Photocatalytic activity of WOx-TiO2 under visible light irradiation, J. Photochem. Photobiol. A: Chem. 141 (2001) 209.
    146. B. Pal, M. Sharon, G. Nogami, Preparation and characterization of TiO2/Fe2O3 binary mixed oxides and its photocatalytic properties, Mater. Chem. Phys. 59 (1999) 254.
    147. B. Pal, T. Hata, K. Goto, G. Nogami, Photocatalytic degradation of o-cresol sensitized by iron-titana binanry photocatalysts, J. Mol. Catal. A: Chem. 169 (2001) 147.
    148. J. C. Yu, J. Lin, R. W. M. Kwok, Ti1-xZrxO2 solid solutions for the photocatalytic degradation of acetone in air, J. Phys. Chem. B 102 (1998) 5094.
    149. X. Z. Fu, L. A. Clark, Q. Yang, M. A. Anderson, Enhanced photocatalytic performance of titania-based binary metal oxides: TiO2/SiO2 and TiO2/ZrO2. Environ. Sci. Technol. 30 (1996) 647.
    150. Y. Q. Wang, H. M. Cheng, L. Zhang, Y. Z. Hao, J. M. Ma, B. Xu, W. H. Li, The preparation, characterization, photoelectrochemical and photocatalytic properties of lanthanide metal-ion-doped TiO: nanoparticles, J. Mol. Catal. A: Chem. 151(2000) 205.
    
    
    151. J. Lin, J. C. Yu, An investigation on photocatalytic activies of mixed TiO_2-rare earth oxides for the oxidation of acetone in air, J. Photochem. Photobiol. A:Chem. 116 (1998) 63.
    152. W. W. Coffeen, Ceramic and dielectric properties of the stannates, J. Am. Ceram.Soc. 36 (1953) 207.
    153. NBS, Mono. 25, Sec. 10 (1972) 62.
    154. R. Yoshida, Y. Yoshida. Vapor phase growth of Zn_2SnO_4 needle crystals, J. Cryst. Growth 36 (1976) 181.
    155. L. L. Y. Chang, R. C. Kaldon, Phase relation in the systems MgO-ZnO-SnO_2,NiO-ZnO-SnO_2,J. Am. Ceram. Soc. 59 (1976) 275.
    156. D. E. Saife, Oxide semiconductors in photoelectrochemical conversion of solar energy, Solar Energy 25 (1980) 41.
    157. J. C. Guillaumon, L. J. C. Blet, Demande FR2515 (1983) 673.
    158. 张中太,周志刚,Zn_2SnO_4的合成和气敏性质,中日敏感和传感技术学术讨论会,哈尔滨,1986,p.95.
    159. 陈祖耀,贾英,张祖德,钱逸泰,锡和锌复合氧化物的合成机器缺陷结构,中国科学技术大学学报 17(1987)343
    160. 高乃飞,余洪瑞,张秀芳,刘源源,张中太,周志刚,用M(?)ssbauer谱研究Zn_2SnO_4的湿敏机理,无机材料学报 4(1989)125
    161. T. Hashemi, H. M. AL-Allak, J. Illingsworth, A. W. Brinkman, J. Woods, Sintering behavior of zinc stannate, J. Mater. Sci. Lett. 9 (1990) 776.
    162. X. Z. Wu, P. Sheldon, T. J. Coutts, US Appl. 149, 430(8 Sep 1998)p. 32.
    163. J. H. Yu, G. M. Choi, Electrical and CO gas sensing properties of ZnO-SnO_2 composites, Sensors and Actuators B 52 (1998) 251.
    164. J. H. Yu, G. M. Choi, Current-voltage characteristics and selective CO detection of and ZnO/Zn_2SnO_4, SnO_2/Zn_2SnO_4 layered type sensors, Sensors and Actuators B72 (2001) 141.
    165. F. Belliard, P. A. Connor, J. T. S. Irvine, Novel tin oxide-based anodes for li-ion batteries, Solid State Ionics 135 (2000) 163.
    166. H. P. Klug, L. E. Alexander, "X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials" (John Wiley and Sons, New York, 1974) P. 618.
    167. P. Ball, L. Garwin, Science at the atomic scale, Nature 355 (1992) 761.
    168. G. Pfaff, Preparation and characterization of magbesium stannates SrSnO_3 and Sr_2SnO_4, J. Mater. Sci. 35 (2000) 3017.
    169. G. Pfaff, Wet chemical synthesis of BaSnO_3 and Ba_2SnO_4, J. Eur. Ceram. Soc. 12 (1993) 159.
    170. G. Pfaff, Synthesis of magnesium stannates by thermal decomposition of peroxoprecursors, Thermochim. Acta 237 (1994) 83.
    171. G. Pfaff, Chemical synthesis of BaSnO_3 and Ba_2SnO_4, Mater. Sci. Eng. B 33 (1995) 156.
    172. S. Y. Shen, T. S. Zhang, Preparation, structure and gas-sensing properties of ultramicro ZnSnO_3, Sensors and Actuators B 12 (1993) 5.
    
    
    173. 李亚栋,章建辉,朱长飞,刘卫,周移,钱逸泰,复合氧化物Ln0. 67Sr0. 33MnO3 (Ln=La,Pr,Nd,Sm)的制备、结构和电性,12(1997) 734。
    174. Y. D. Li, R. M. Liu, Z. D. Zhang, C. S. Xiong, Synthesis and characterization of nanocrystalline BaFe9. 6Co0. 8Ti0. 8M0. 8O19 particles, Mater. Chem. Phys. 64 (2000) 256.
    175. M. Z.-C. Hu, G. A. Miller, E. A. Payzant, C. J. Rawn, Homogeneous (co) precipitation of inorganic salts for synthesis of monodispersed barium titanate particles, J. Mater. Sci. 35 (2000) 2927.
    176. C. H. Lu, S. Y. Lo, Lead pyroniobate pyrochlore nanoparticles synthesized via hydrothermal processing, Mater. Res. Bull. 32 (1997) 371.
    177. T. Senda, R. C. Brad, Grain growth sintered ZnO and ZnO-Bi2O3 ceramics, J. Am. Ceram. Soc. 73 (1990) 106.
    178. M. A. Gulgun, O. O. Popoola, W. M. Kriven, Chemical synthesis and characterization of calcium aluminate powders, J. Am. Ceram. Soc. 77 (1994) 531.
    179. E. T. Park, Grain growth of BaTiO3, J. Mater. Sci. Lett. 18 (1999) 163.
    180. X. Y. Kang, T. D. Wang, Y. Han, M. D. Tao, M. J. Tu, Sol-gel process doped ZnO nano powders and their grain growth, Mater. Res. Bull. 32 (1997) 1165.
    181. W. M. Keely, X-ray diffraction technique for rapid surface area determination, Anal. Chem. 38 (1966) 147.
    182. M. Fujihira, Y. Satoh, T. Osa, Heterogeneous photocatalytic oxidation of aromatic compounds on TiO2, Nature 293 (1981) 206.
    183. C. S. Turchi, D. F. Ollis, Mixed reactant photocatalysis: intermediates and mutual rate inhibition, J. Catal. 119 (1989) 483.
    184. A. Towata, Y. Uwamino, M. Sando, K. Iseda, H. Taoda, Synthesis of titania photocatalysts dipersed with nickel nanosized particles, NanoStruct. Mater. 10 (1998) 1033.
    185. L. Brus, Electronic wave functions in semiconductors clusters: Experiment and theory, J. Phys. Chem. 90 (1986) 2555.
    186 I. Poulios, I. Aetopoulou, Photocatalytic degradation of the textile dye reactive organge 16 in the presence of TiO2 suspension, Environ. Technol. 20 (1999) 479.
    187. R. M. Alberici, W. F. Jardim, Photocalytic destruction of VOCs in the gas-phase using titanium dioxide, Appl. Catal. B 14 (1997) 55.
    188. J. C. Zhao, T. X. Wu, K. Q. Wu, K. Oikawa, H. Hidaka N. Serpone, Photoassited degradation of dye pollutants. 3. Degradation of the carionic dye rhodamine B in aqueous aninic surfactant/TiO2 dipersions under visible light irradiation: evidence for the need of substrate adsorption on TiO2 particles, Environ. Sci. Technol. 32(1998) 2394.
    189. P. Qu, J. C. Zhao, T. Shen, H. Hidaka, TiO2-assisted photodegradation of dyes: a study of two competivity primary process in the degradation of RB in an aqueous TiO2 colloidal solution, J. Mol. Catal. A: Chem. 129 (1998) 257.
    190. P. Peralta-Zamora, S. G. de Moraes, R. Pelegrini, M. Freire Jr., J. Reyes, H. Mansilla, N. Duran, Evaluation of ZnO, TiO2 and supported ZnO the photoassisted remediation of black liquor, cellulose and textale mill effluents,
    
    Chemosphere 36 (1998) 2119.
    191. T. Torimoto, S. Ito, S. Kuwabata, H. Yoneyama, Effects of adsorbents used as supports for titanium dioxide loading on photocatalytic degradation of propyzamide, Environ. Sci. Technol. 30 (1996) 1275.
    192. N. Daneu, A. Recnik, S. Bemik, D. Kolar, Microstructure development in SnO2-doped ZnO-Bi2O3 ceramic, J. Am. Ceram. Soc. 83 (2000) 3165.
    193. J. H. Yu, G. M. Choi, Electrical and CO gas-sensing properties of ZnO/SnO2 hetero-contact, Sensors and Actuators B 61(1999) 59.
    194. H. Yang, S. D. Han, L. Wang, I. J. Kim, Y. M. Son, Preparation and characterization of indium-doped tin dioxide nanocrystalline powders, Mater. Chem.Phys. 56(1998) 153.
    195. J. H. Yu, G. M. Choi, Selective CO gas detection of CuO-and ZnO-doped SnO2, Sensors & Actuators B 75 (2001) 56.
    196. T. Kimura, S. Inada, T. Yamaguchi, Microstructure development in SnO2 with and without additives, J. Mater. Sci. 24 (1989) 220.
    197. K. Vinodgopal, D. E. Wynkoop, P. V. Kamat, Environmental photochemistry on semiconductor surfaces: photosensitized degradation of textile azodye, acid orange 7 on TiO2 particles using visible light, Environ. Sci. Technol. 30 (1996) 1660.
    198. C. Hu, Y. Z. Wang, H. X. Tang, Influence of adsorption on the photodegradation of various dyes using surface bond-conjugated TiO2/SiO2 photocatalyst, Appl. Catal. B: Environ. 35 (2001) 95.
    199. N. K. V. Leitner, M. Dore, Hydroxyl radical induced decomposition of aliphatic acids in oxygenated and deoxygenated aqueous solutions, J. Photochem. Photobiol. A: Chem. 99 (1996) 137.
    200. C. Galindo, P. Jacques, A. Kalt, Photodegradation of the aminoazobenzene acid orange 52 by three advanced oxidation processes: UV/H2O, UV/TiO2 and VIS/ TiO2comparative mechanistic and kinetic investigations, J. Photochem. Photobiol. A: Chem. 130 (2000) 35.
    201. C. Hu, Y. Z. Wang, Decolorization and biodegradability of photocatalytic treated azo dyes and wool textile waste water, Chemosphere 39 (1999) 2107.
    202. C. Wang, X. M. Wang, J. C. Zhao, B. X. Mai, G. Y. Sheng, P. A. Peng, J. M. Fu, Synthesis, characterization and photocatalytic property of nano-sized Zn2SnO4, J. Mater. Sci. 37(2002) 1.
    203. A. Towata, Y. Uwamino, M. Sando, K. Iseda, H. Taoda, Synthesis of titanium photocatalysts dispered with nickel nanosized particles, NanoStruct. Mater. 10 (1998) 1033.
    204. L. G. Devi, G. M. Krishnaiah, Photocatalytic degradation of p-amino-azo-benzene and p-hydroxy-azo-benzene using various heat treated TiO2 as the photocatalyst, J. Photochem. Photobiol. A: Chem. 121 (1999) 141.
    205. M. S. T. Goncalves, A. M. F. Oliveira-campos, E. M. M. S. Pinto, P. M. S. Plasencia, M. J. R. P. Queiroz, Photochemical treatment of solutions of azo dyes containing TiO2, Chemosphere 39 (1999) 781.
    206. J. Bangun, A. A. Adesina, The photodegradation kinetics of aqueous sodium
    
    oxalate solution using TiO2 catalyst, Appl. Catal. A: gen. 175 (1998) 221.
    207. A. A. Khodja, T. Sehili, J.-F. Pilichowski, P. Boule, Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions, J. Photochem. Photobiol. A: Chem. 141 (2001) 231.
    208. I. Poulios, M. Kositzi, A. Kouras, Photocatalytic decomposition of triclopyr over aqueous semiconductor suspensions, J. Photochem. Photobiol. A: Chem. 115 (1998) 175.
    209. F. Kiriakidou, D. I. Kondarides, X. E. Verykios, The effect of operational parameters and TiO2-doping on the photocatalytic degradation of azo-dyes, Catal. Today 54 (1999) 119.
    210. D. W. Chen, A. K. Ray, Photoddegradation kinetics of 4-nitrophenol in TiO2 suspension, Wat. Res. 32 (1998) 3223.
    211. K. H. Wang, Y. H. Hsieh, M. Y. Chou, C. Y. Chang, Photocatalytic degradation of 2-chloro and 2-nitrophenol by titanium dioxide suapensions in aqueous solution, Appl. Catal. B: Environ. 21 (1999) 1.
    212. W. H. Leng, H. Liu, S. A. Cheng, J. Q. Zhang, C. N. Chao, Kinetics of photocatalytic degradation of aniline in water over TiO2 supported on porous nickel, J. Photochem. Photobiol. A: Chem. 131 (2000) 125.
    213. I. Arslan, I. A. Balcioglu, D. W. Bahnemann, Heterogeneous photocatalytic treatment of simulated dyehouse effluents using novel TiO2-photocatalysts, Appl. Catal. B: Environ. 26 (2000) 193.
    214. A. Piscopo, D. Robert, J. V. Weber, Influence of pH and chloride anion on the photocatalytic degradation of organic compounds part I: effect on the benzamide and para-hydrobenzoic acid in TiO2 aqueous solution, Appl. Catal. B: Environ. 35(2001) 117.
    215. M. Abdullah, G. K.-C. Low, R. W. Matthews, Effects of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminate titanium dioxide, J. Phys. Chem. 94 (1990) 6820.
    216. H. Yamashita, S. Kawasaki, Y. Ichihashi, M. Harada, M. Takeuchi, M. Anpo, G. Stewart, M. A. Fox, C. Louis, M. Che, Characterization of titanium-silicon binary oxide catalysts prepared by the sol-gel method and their photocatalytic reactivity for the liquid-phase oxidation of 1-octanol, J. Phys. Chem. B 102 (1998) 5870.
    217. Q. H. Zhang, L. Gao, J. K. Guo, Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiC14 hydrolysis, Appl. Catal. B: Environ. 26 (2000) 207.
    218. D. Dvoranova, V. Brezova, M. Mazur, M. A. Malati, Investigations of metal-doped titanium dioxide photocatalysts, Appl. Catal. B: Environ. 37 (2002) 91.
    219. P. L. Provenzano, G. R. Jindal, J. R. Sweet, W. B. White, Flame-excited luminescence in the oxides Ta2O5, Nb2O5, TiO2, ZnO and SnO3, J. Luminescence 92 (2001) 297.
    220. J. H. Park, P. M. Woodward, Synthesis, structure and optical properties of two new perovskites: Ba2Bi2/3TeO6 and Ba3Bi2TeO9, Int. J. Inorg. Mater. 2 (2000) 153.
    
    
    221. K. H. Chung, D. C. Park, Photocatalytic decompositon of water over cesium-loaded light-induced redox reactions in nanocrystalline systems, J. Mol. Catal. A: Chem. 129(1998) 53.
    222. J. Klaas, G. S-. Ekloff, N. I. Jeager, UV-Visible diffuse reflectance spectroscopy of zeolite-hosted mononuclear titanium, J. Phys. Chem. 101 (1997) 1305.
    223. S. Lacombe, H. Cardy, N. Soggiu, S. Blanc, J. L. Habib-Jiwan, J. Ph. Soumillion, Diffuse reflectance UV-Visible spectroscopy for the qualitative and quantitative study of chromophores adsorbed or grafted on silica, Microporous and Mecroporous Mater. 46 (2001) 311.
    224. F. Prinetto, G. Ghiotti, S. De. Rossi, G. D. Modica, CrOx/SiO2 catalysts preparaed using chromium recoverd from tanning sewage. Appl. Catal. B: Environ. 14 (1997) 225.
    225. A. Ghanch, C. Turnar, C. Fachinger, J. Rima, A. Charef, J. Suptil, Use of diffuse reflectance spectrometry in spot test reactions for quantatative deternation of cations in water, Chemosphere 40 (2000) 1327.
    226. Y. Yamashita, K. Yoshida, M. Kakihana, S. Uchida, T. Sato, Polymerizable complex synthesis of RuO2/BaTi4O9 photocatalysts at reduced temperatures: factors affecting the photocatalytic activity for decomposition of water, Chem. Mater. 11(1999) 61.
    227. D. Beydoun, R. Amal, G. K.-C. Low, S. McEvoy, Novel photocatalysts: titania-coated magnetite activity and photodissolution, J. Phys. Chem. B 104 (2000) 4387.
    228. C. Wang, J. C. Zhao, X. M. Wang, B. X. Mai, G. Y. Sheng, P. A. Peng, J. M. Fu, Appl. Catal. B: Environ, in press.
    229. Y. Gao, H. B. Zhao, B. Y. Zhao, Monolager dispersion of oxide additives on SnO2 and their promoting effects on thermal stability of SnO2 ultrafine particles, J. Mater. Sci. 35 (2000) 917.
    230. L. X. Cao, F.-J. Spiess, A. M. Huang, S. L. Suib, T. N. Obee, S. O. Hay, J. D. Freihaut, Heterogeneous photocatalytic oxidation of 1-butene on SnO2 and TiO2 films, J. Phys. Chem. B 103 (1999) 2912.
    231. R. Thielsch, T. Bohme, R. Reiche, D. Schlafer, H.-D. Bauer, H. Bottcher, Quantumsize effects of PbS nanocrystallites in evaporated composite films, Nanostruct. Mater. 10 (1998) 131.
    232. H. Kanai, M. Shono, K. Hamada, S. Imamura,Photooxidation of propylene with oxygen over TiO2-SiO2 composite oxides preparaed by rapid hydrolysis,. J. Mol. Catal. A: Chem. 172(2001) 25.
    233. K. Y. Jung, S. B. Park, Enhanced photoactivity of silica-embeded titanua particles preparaed by sol-gel process for the decomposition of trichroethelene, Appl. Catal. B: Environ. 25 (2000) 249 and references therein.
    234. Y. M. Xu, W. Zheng, W. P. Liu, Enhanced photocatalytic activity of supported TiO2: dispersing effect of SiO2, J. Photochem. Photobiol. A: Chem. 122 (1999) 57.
    235. S. Yoda, D. J. Suh, T. Sato, Adsorption and photocatalytic decomposition of benzene using silica-titania and titania aerogels: effece of supercritical drying,
    
    J. Sol-Gel Sci. Technol. 22 (2001) 75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700