聚苯胺静电纺丝工艺及其电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
静电纺丝技术是获得微-纳米纤维的相对简单和直观的方法,对聚苯胺静电纺丝微观形貌和电性能可控性的研究有助于加速导电聚合物纳米纤维在电子和纳米导线以及传感器等领域的应用。
     本文采用掺杂诱导法、乳液聚合-萃取法和乳液聚合法等经典的聚苯胺制备方法合成具有不同分子量和电导率的静电纺丝用聚苯胺。随着聚苯胺纺丝液体系的改变,影响电纺纤维微观形貌的因素是复杂且综合作用的。本文系统地对聚苯胺静电纺丝的溶液参数和过程参数进行讨论。
     影响聚苯胺电纺纤维微观形貌的溶液参数主要有聚苯胺浓度、PEO浓度、聚苯胺的分子量、电导率以及溶剂等。聚苯胺电导率和分子量的增加有利于提高静电纺丝溶液的可纺性;纤维直径随聚苯胺浓度、PEO浓度、聚苯胺分子量的增加而增大,随溶剂体系介电系数的增加而减小。影响电纺纤维微观形貌的过程参数主要有电压、接收距离和流速等。其中,降低流速有利于减小纤维的直径;纤维直径随电压和接收距离的改变呈抛物线状变化,选择合适的电压和接收距离可以获得状态连续、直径最小且分布均匀的纤维。
     通过静电纺丝方法制备的纤维膜具有很高的比表面积,同旋涂膜等低孔隙率的膜材料相比,体系电荷传输的影响因素更为复杂。本文讨论了聚苯胺的含量、PEO的含量、孔隙率和溶剂等因素对电纺纤维电导率的影响,聚苯胺膜材料的电导率随聚苯胺的含量、溶剂体系介电系数的增加而增大,随孔隙率的增加而降低,对于纤维膜而言,孔隙率是影响纤维膜电导率的最主要因素。
     本文通过对聚苯静电纺丝工艺系统的研究,获得了微观形貌可控的高比表面积的膜材料,并通过对纤维膜电性能系统的研究,初步实现了纤维膜电性能的可设计性,具有广泛的参考价值。
Electrospinning was a simple method to prepare micro-nanoscaled fibers. The controllability of PANI electrospun fibers’microcosmic pattern and conductivity redounded to accelerate the speed of the application of conducting polymer in electronic area, nano wire and sensing device.
     In this dissertation, the doping induced method, emulsion polymerization extraction method and emulsion polymerization were adopted to prepare PANI with different molecular weight and conductivity for researching of electrospun process parameters. These influencing factors were complicated and interacted, and the optimum parameters were varied in different polymer solution.
     The concentration of PANI and PEO, molecular weight, conductivity of PANI, and solvents were primarily influencing factors of electrospun fibers’microcosmic pattern. The increase of polyaniline’s molecular weight and conductivity could improve the electrospun property and fibers’diameter increased with the concentration of PANI and PEO, dielectric constant of solvent and the molecular weight of PANI. The fibers’microcosmic pattern was also related to processing parameters such as electric voltage, acception distance and the polymer solution flow rate. Selecting appropriate voltage and acception distance could obtain optimum electrospun fibers with smaller fibers’diameters and better continuous fibers. Furthermore, the fibers’diameter increased with solution flow rate.
     Compared with the cast-film, electrospun fibers had huge specific surface area and the influencing factors of charge transfer were intricate. We discussed the mainly factors effected the conductivity of electrospun fibers such as the concentration of PANI and PEO, the porosity and the solvents. The electrospun fibers’conductivity increased with the concentration of PANI and the solvent dielectric constant, and decreased with the porosity. When these factors took place synchronously, the porosity factor was most important.
     Through our research on process parameters , PANI electrospun fibers with high controllability and specific surface area were preparation. Through the systematic study of electrospun fibers’electrical property, the dream of designable electrospun fibers’conductivity came true and the study possessed extensive reference value.
引文
[1] Chiang C K, Fincher C R, Shirakawa H, et al. Electrical conductivity in doped polyacetylene, Physical review letters, 1977, 39: 1098~1101
    [2]张璐,封伟,树枝状共轭聚合物研究,化学进展,2007,19(2/3):337~349
    [3] Cao Y, Treacy G M, Smith P, et al. Solution-cast films of polyaniline: optical-quality transparent electrodes, Applied physics letters, 1992, 60: 2711~2713
    [4] Chiou N R, Epstein A J. Polyaniline nanofibers prepared by dilute polymerization, Advanced materials, 2005, 17: 1679~1683
    [5] Hong D, Sudhindra D, Verrad N, et al. Sub-micrometer conducting polyaniline tubes prepared from polymer fiber templates, Chemical materials, 2004, 16: 371~373
    [6] Tahhan M, Truong V T, Spinks G M, et al. Carbon nanotube and polyaniline composite actuators, Smart materials and structures, 2003, 12: 626~632
    [7]孟庆杰,张兴祥,高分子科学与工程,2004,20(6):15~19
    [8] Repeker D H, Chun I. Nanometer ciameter fibers of polymer, produced by electrospinning. Nanotechnology, 1996, 7: 216~223
    [9]钟智丽,王训该,纺织学报,2006,27(1):107~110
    [10]黄美荣,李新贵,曾剑峰等,现代化工,2002,22(12):10~22
    [11] Zhang D H. Preparation of core-shell structured alumina-polyaniline particles and their application for corrosion protection, Journal of applied polymer science, 2006, 101: 4372~4377
    [12] Shin Y M, Hohman M M, Brenner M P, et al. Electrospinning: a whipping fluid jet generates submicron polymer fibers, Applied physics letters, 2001, 78: 1149~1151
    [13] Bognitzki M, Czado W, Frese T, et al. Nanostructured fibers via electrospinning, Advanced materials, 2001, 13: 70~72
    [14] Deitzel J M, Kleinmeyer J, Harris D, et al. The effect of processing variables on the morphology of electrospun nanofibers and textiles, Polymer, 2001, 42: 261~272
    [15] Zussman E, Theron A, Yarin A L. Formation of nanofiber crossbars in electrospinning, Applied physics letters, 2003, 82: 973~975
    [16] Wei M, Lee J, Kang B, et al. Preparation of core-sheath nanofibers from conducting polymer blends, Macromolecular rapid communications, 2005, 26: 1127~1132
    [17] Aussawasathien D, Dong J H, Dai L. Electrospun polymer nanofiber sensors, Synthetic metals, 2005, 154: 37~40
    [18] Norris I D, Shaker M M, Ko F K, et al. Electrostatic fabrication of ultrafine conducting fibers: polyaniline/polyethylene oxide blends, Synthetic metals, 2000, 114: 109~114
    [19] Pinto N J, Carrión P, Quiňones J X. Electroless deposition of nickel on electrospun fibers of 2-acrylamido-2-methyl-1-propanesulfonic acid doped polyaniline, Materials science and engineering A, 2005, 366: 1~5
    [20]李永明,万梅香,乳液聚合-萃取法制备掺杂态聚苯胺溶液,功能高分子学报,1998,11(3):337~342
    [21] Kameoka J, Orth R, Yang Y, et al. A scanning tip electrospinning source for deposition of oriented nanofibres, Nanotechnology, 2003, 14: 1124~1129
    [22] Reneker D H, Chun I. Nanometre diameter fibres of polymer, produced by electrospinning, Nanotechnology, 1996, 7: 216~223
    [23] Pinto N J, Carrión P L, Ayla A M, et al. Temperature dependence of the resistance of self-assembled polyaniline nanotubes doped with 2-acrylamido-2-methyl-1-propanesulfonic acid, Synthetic metals, 2005, 148: 271~274
    [24] Kyung H H, Tae J K. Polyaniline-nylon 6 composite nanowires prepared by emulsion polymerization and electrospinning process, Journal of applied polymer science, 2006, 99: 1277~1286
    [25] Hong D, Verrad N, Alan G M, et al. Polyaniline/poly(methyl methacrylate) coaxial fibers: the fabrication and effects of the solution properties on the morphology of electrospun core fibers, Journal of polymer science part B: polymer physics, 2004, 42: 3934~3942
    [26] Lee C K, Kim S I, Kim S J. The influence of added ionic salt on nanofiber uniformity for electrospinning of electrolyte polymer, Synthetic metals, 2005, 154: 209~212
    [27] Tan S H, Inai R, Kotaki M, et al. Systematic parameter study for ultra-fine fiber fabrication via electrospinning process, Polymer, 2005, 46: 6128~6134
    [28] Desai K. Electrospinning nanofibers of PANI/PMMA blends. In: Sunq C, eds. Material researching society symposium proceedings. Boston, 2003, 736: 121~126
    [29] Desai K. Phase characterization and morphology control of electrospun nanofibers of PANI/PMMA blend. In: Sunq C, eds. Material researching society symposium proceedings. Boston, 2004, 788: 209~214
    [30] Jesai K. DOE optimization and phase morphology of electrospun nanofibers of PANI/PMMA blends. In: Sunq C, eds. 2004 NSTI Nanotechnology Conference and Trade Show-NSTI Nanotech 2004. Boston, 2004: 429~432
    [31] Zhou Y X, Freitag M, Hone J, et al. Fabrication and electrical characterization of polyaniline-based nanofibers with diameter below 30 nm, Applied physics letters, 2003, 83: 3800~3802
    [32] Ruddy B. Production of conducting polymer nanowires for use as intravascular neural recording electrodes. In: Watanabe H, Hunter I, Llinas R, eds. 2006 NSTI Nanotechnology Conference and Trade Show-NSTI Nanotech 2006 Technical Proceedings, Boston, 2006: 808~811
    [33] Kyung H H, Kyung W O, Tae J K. Preparation of conducting nylon-6 electrospun fiber webs by the in situ polymerization of polyaniline, Journal of applied polymer science, 2005, 96: 983~991
    [34]朱英,张敬畅,郑咏梅等,浸润性可调的导电聚苯胺/聚丙烯腈同轴纳米纤维,高等学校化学学报,2006, 27:196-198
    [35] Jones J R, Wayne E. Conducting molecular wires: nanofibers and nanotubes for electronics applications. In: Dong H, Nyame V, Ochanda F, eds. Annual Technical Conference-ANTEC, Conference Proceedings, Nashville, 2003, 2: 1948~1950
    [36] Wang F X, Wang F C, Gao F M, et al. Synthesis and characterization of high conducting PANI doped with H3PMo12O40, Journal of northeast normal unversity, 2005, 37: 41~44
    [37] Zhang X, Goux W J, Manohar S K. Synthesis of polyaniline nanofibers by“nanofiber seeding”, Journal of the American chemical society, 2004, 126: 4502~4503
    [38] Zhu Y, Zhang JC, Zheng YM, et al. Stable, superhydrophobic, and conductive polyaniline/polystyrene film for corrosive environments. Advanced functional materials, 2006, 16: 568~574
    [39] Ugarte D, Chatelain A , Heer W A. Nanocapillarity and chemistry in carbon nanotubes, Science, 1996, 274: 1897~1899
    [40] Iijima S. Helical Microtubules of graphtic carbon, Nature, 1991, 354: 56~58
    [41] Pinto N J, González R, Johnson A T, et al. Electrospun hybrid organic/inorganic semiconductor schottky nanodiode, applied physics letters, 2006, 89: 033505(1~3)
    [42] Liu H, Kameoka J, Czaplewski D A, et al. Polymeric nanowire chemical sensor, Nano letters, 2004, 4: 671~675
    [43] Wu T M, Lin Y W. Doped polyaniline/multi-walled carbon nanotube composites: Preparation, characterization and properties, Polymer, 2006, 47: 3576~3582
    [44] Abidian M R, Kim D H, Martin D C. Conducting-polymer nanotubes for controlled drug release, Advanced materials, 2006, 18, 405~409
    [45] Wei Z, Zhang Z, Wan M. Formation mechanism of self-assembled polyaniline micro/nanotubes, Langmuir, 2002, 18: 917~921
    [46] Wang Y, Liu Z, Han B, et al. Facile synthesis of polyaniline nanofibers using chloroaurate acid as the oxidant, Langmuir, 2005, 21: 833~836
    [47] Huang J, Virji S, Weiller B H, et al. Polyaniline nanofibers: facile synthesis and chemical sensors, Journal of the American chemical society, 2003, 125: 314~315
    [48] Numata M, Hasegawa T, Fujisawa T, et al.β-1,3-glucan (schizophyllan) can act as a one-dimensional host for creation of novel poly(aniline) nanofiber structures, Organic letters, 2004, 6: 4447~4450
    [49] Hopkins A R, Sawall D d, Villahermosa R M, et al. Interfacial synthesis of electrically conducting polyaniline nanofiber composites, Thin solid films, 2004, 469~470: 304~308
    [50] Pinto N J, Johnson A T, MacDiarmid A G,et al. Electrospun polyaniline/polyethylene oxide nanofiber field-effect transistor, Applied physics letters, 2003, 83: 4244~4246
    [51] Kahol P K, Pinto N J. An EPR investigation of electrospun polyaniline-polyethylene oxide blends, Synthetic metals, 2004, 140: 269~272
    [52] Li M ,Guo Y ,Wei Y ,et al. Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications, Biomaterials, 2006, 27: 2705~2715
    [53]温靖邦,电化学方法制备纳米纤维聚苯胺,硕士学位论文,湖南大学,2005
    [54]于黄中,有机导电聚苯胺的合成改性及基本性质的研究,硕士学位论文,华南师范大学,2002
    [55] Jarodav S ,Andrea R. The effect of polymerization temperature on molecular weight, crystallinity and electrical conductivity of polyaniline. Synthetic metals, 1998, 96: 58~59
    [56] Kim S G, Kim J W, Choi H J, et al. Synthesis and electrorheological characterization of emulsion-polymerized dodecylbenzenesulfonic acid doped polyaniline-based suspensions, Colloid and polymer science, 2000, 278: 894~898
    [57]潘春跃,胡惠萍,马承银等,苯胺乳液聚合条件的研究,应用化学, 2000,17:491~493
    [58]潘春跃,曾燕,乳液聚合条件对聚苯胺性能的影响,高分子材料科学与工程,2001,17:163~165
    [59]朱新生,王新波,孙东豪,徽乳液法制备导电豪苯胶的研究,合成技术及应用,2002,17:5~7
    [60]郑海林,新R4导电高分子材料案苯胺的合成及应用,广西化工,1998,27:37~38
    [61] Neves S D, Córdoba D T S, Zoppi R A. Template synthesis of polyaniline: aroute to achieve nanocomposites, Synthetic metals, 1999, 101: 754~755
    [62]王佛松,聚苯胺的掺杂反应,武汉大学学报,1993,6:65~73
    [63]薛涛,高电导率聚苯胺膜和可溶性聚苯胺涂料的制备及功能PCB板的探索,硕士学位论文,天津大学,2005
    [64] Mattoso L H C, MacDiarmid A G, et al. Controlled synthesis of high molecular weight polyaniline and poly(o-methoxyaniline). Synthetic Metals, 1994, 68: 1~11
    [65] Mo X M, Xu C Y, Kotaki M, et al. Electrospun P(LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation, Biomaterials, 2004, 25: 1883~1890
    [66] Demir M M, Yilgor I, Yilgor E, et al. Electrospinning of polyurethane fibers, Polymer, 2002, 43: 3303~3309
    [67] Fennessey S F, Farris R J. Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns, Polymer, 2004, 45: 4217~4225

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700