AC/Li_4Ti_5O_(12)电化学混合电容器性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电化学混合电容器(EHC)是一种介于超级电容器和电池之间的新型贮能元件,它具有比超级电容器更高的比容量和比能量及比电池更高的功率密度,是混合动力车、动力电源的最佳选择之一。其材料和体系的构筑是研究的重点。本课题以活性炭为正极,锂离子嵌入材料Li_4Ti_5O_(12)为负极组成AC/Li_4Ti_5O_(12)电化学混合电容器体系,对其电化学性能进行了研究,恒流充/放电、循环伏安以及交流阻抗等测试显示出该混合电容器体系具有良好的电化学性能。
     用高温固相法和熔盐法制备出具有尖晶石结构的Li_4Ti_5O_(12),XRD和SEM测试表明两种合成产物都具有较高的相纯度和优良的晶型。其中用高温固相法制备出的Li_4Ti_5O_(12)电极具有很宽的充放电平台,循环性能稳定,以30mA·g-1的电流密度恒流充/放电,比容量达到128.8mAh·g-1,效率达到98.2%。
     以高比表面积活性炭为正极,高温固相法合成的Li_4Ti_5O_(12)为负极,电解液为1M LiClO4/PC组装成的AC/Li_4Ti_5O_(12)混合电容器电化学性能最佳,正负极活性物质质量比为3:1时混合电容器的总质量比容量达到29.2mAh·g-1(电流密度为50mA·g-1),且得到最优效率98.6%,其最佳工作电压区间为1.5~2.8V,循环性能和大电流充放电性能良好。AC/Li_4Ti_5O_(12)混合电容器工作电压约为2.25V,比能量可达到67.5Wh·kg-1。循环伏安扫描测试表明AC/Li_4Ti_5O_(12)混合电容器电化学性能是由AC正极的非法拉第过程和Li_4Ti_5O_(12)负极的法拉第过程的电化学特性共同决定的。交流阻抗测试发现,AC/Li_4Ti_5O_(12)电容器在不同嵌锂程度下阻抗有极大差别,这与不同状态时Li_4Ti_5O_(12)的电导率有一定关系。
     对以活性炭为正极,锂离子电池炭负极材料中间相炭微球(MCMB)为负极的电化学混合电容器进行了初步的电化学性能的研究,50mA·g-1电流密度下放电比容量达到30.4mAh·g-1,充/放电效率为91.6%。
The electrochemical hybrid capacitors(EHC) is a novel storage device between supercapacitor and battery, with more specific capacitance and energy density compared with supercapacitor and more power density compared with battery, it’s one of the optimum choices for hybrid electrochemical vehicles and power sources. The focus is the electrode materials and the system construction. AC/Li_4Ti_5O_(12) electrochemical hybrid capacitor was assembled using an activated carbon cathode and an intercalation compound Li_4Ti_5O_(12) anode, and it was investigated by means of constant charge/discharge, cyclic voltammetry and electrochemical impedance spectroscopy measurements.
     The spinal phase Li_4Ti_5O_(12) was prepared with high-temperature solid-state method and molten salt method, and the XRD and SEM measurements showed that the both productions exhibited high phase purity and good crystallite. The Li_4Ti_5O_(12) synthesize by high-temperature solid-state method has wide charge/discharge plateau and stable cyclic performance, with a specific capacitance of 128.8mAh·g-1 at 30mA·g-1 current, and the cycle efficiency reached to 98.2%.
     The AC/Li_4Ti_5O_(12) hybrid capacitor, consisted of a high specific surfance area AC cathode and a Li_4Ti_5O_(12) anode synthesize by high-temperature solid-state method in 1M LiClO4/PC, exhibits a good electrochemical performance. The capacitor (mAC/mLi_4Ti_5O_(12)=3:1) delivers a specific capacitance of 29.2mAh·g-1(based on the total weight of the electrod materials) at 50mA·g-1 current, and the cycle efficiency reached to 98.6%. The capacitor also has a sloping profile from 2.8 to 1.5V, and it exhibits a good cycling profile and desirable high rate capability. The hybrid capacitor delivers a specific energy of 67.5Wh·kg-1 based on the total active materials, the working volage is 2.25V. The CV curves showed that simultaneous with nonfaradic reaction in AC cathode, a faradic reaction occurred on Li_4Ti_5O_(12) anode. AC impedance spectra of the capacitor at charge/discharge potentials shows that electrochemical impedance was possibly infltenced by the corresponding conductivity at Li+ insertion extend.
     The hybrid capacitor using AC as cathode and MCMB as anode was developed, and the electrochemical performace was studied primarily. The AC/MCMB capacitor delivers a specific capacitance of 30.4mAh·g-1 at 50mA·g-1 current, and the cycle efficiency is 91.6%.
引文
[1] 张治安, 邓梅根, 汪斌华, 等,电化学混合电容器,电池, 2004, 34(4): 295-297
    [2] Carl Zweben. Advances in composite materials for thermal management in electronic packaging. JOM, 1998, 50(6):47–51
    [3] 南俊民,杨勇,林祖赓,电化学电容器及其研究进展,电源技术,1996, 20(4):152-156
    [4] Holland C E, Weidner J W, Dougal R A, et al. Experimental c haracterization of hybrid power systems under pulse current loads. Power Sources, 2002, 109:32-37
    [5] Jarvis L P, Atwater T B, Cygan P J. Fuel cell/electrochemical capacitor hybrid for intennittent high power applications. Power Sources, 1999, 79:60-63
    [6] Zheng J P, Huang J, Jow T R. The limitations of energy density of electrochemical capacitors. J Electrochem Soc, 1997, 144(6):2026-2031
    [7] Faggioli Eugenio, Rena Piergeorgio, Danel Veronique, et al. Supercapacitors for the energy management of electric vericles. Journal of Power Sourses, 1999, 84:261-269
    [8] Evans, David A. High energy density electrolytic capacitor. NASA Conference Publication, 1996, 3337: 189-193
    [9] 刘兴江,陈梅,胡树清,等,电化学混合电容器研究的进展,电源技术,2005,29(12): 787-790
    [10] Amatucci G G, Badway F, Du Pasquier A, Zheng T. An Asymmetric Hybrid Nonaqueous Energy Storage Cell. Journal of the Electrochemical Society, 2001, 148 (8): A930-A939
    [11] 张治安,邓梅根,汪斌华,电化学混合电容器,电池,2004,34(4): 295-297
    [12] Miller J R, Butler S M. Development of battery and electrochemical capacitor eqrivalent circuit models for power system optimization, Proceedings- Electrochemical Society, 2005, 2002(30): 132-145
    [13] Zheng J P. The limitations of energy density of battery/double-layer capacitor asymmetric cells, Joutnal of the Electrochemical Society, 2003, 150(4):A484-A492
    [14] 苏岳锋,吴锋,新型非对称电化学电容器的电极匹配研究,电化学,2004, 10(2):190-196
    [15] 王晓峰,王大志,氧化镍/碳纳米管复合型超级电容器的研制,无机化学学报,2003, 19(2): 137-141
    [16] Laforgue A, Simon P, Fauvarque J F, et al. Activated carbon/conducting polymerhybrid supercapacitors, Journal of the Electrochemical Society, 2003, 150(5): A645-A651
    [17] Jow T R, Zheng J P. Electrochemical capacitor using hydrous ruthenium oxide and hydrogen inserted ruthenium oxide, Journal of the Electrochemical Society, 1998, 145(1): 49-52
    [18] Takenouchi H, Hiraki R, Naoi K. Nanostructured cyclic indole derivatives/ nanocarbon composites for supercapacitors and proton batteries, the 201 Meeting of the Electrochemical Society in Philadelphia, 2004, 2002(18):654 st
    [19] Naoi K, Suematsu S, Hanada M, et al. Enhanced cyclability of π-π stacked supramolecular(1,5-diaminoanthraquinone) oligomer as an electrochemical capacitor material, Journal of the Electrochemical Society, 2002, 149(4): A472-A477
    [20] Hashmi S A, Suematsu S, Naoi K. All solid-state redox supercapacitors based on supramolecular 1,5-diaminoanthraquinone oligomeric electrode and polymeric electrolytes, Journal of the Electrochemical Society, 2004, 137(1):145-151
    [21] Chang J K, lin C T, Tsai W T. Manganese oxide/carbon composite electrodes for electrochemical capacitors, Electrochemistry Communications, 2004, 6(7): 666-671
    [22] Chang J K, Tsai W T. Effect of heat treatment on material characteristics and pseudo-capacitive properties of the nanostructured manganese oxide prepared by anodic deposition, Meeting Abstracts, 2004
    [23] Wu N L, Wang S Y. Insight into pseedocapacitance mechanism for Fe3O4/sulfite supercapacitor, Meeting Abstracts, 2004:660
    [24] Amatucci G G, Badway F, Du Pasquier A, Zheng T. An Asymmetric Hybrid Nonaqueous Energy Storage Cell. Journal of the Electrochemical Society, 2001, 148 (8): A930-A939
    [25] Pasquier A D, Plitz I, Gural J, et al. Characterictics and performance of 500F asymmetric hygrid advanced supercapacitor prototypes, Journal of Power Sourses, 2003, 113(1): 62-71
    [26] 梁海潮,陈方,李仁贵,等,纳米TiO2掺杂活性炭极化电极的电化学特性研究,电源技术,2005,29(1): 24-26
    [27] Morimoto T, Tsushima M, Che Y. Hybrid capacitors using organic electrolytes, Electrochemical Society Proceedings, 2002,7: 161-171
    [28] Sekido S, Yoshino Y, Electrochemical double layer capacitor. Electrochemistry, 2003, 71(7): 584
    [29] Okamura M, Hasuike H, Yamagishi M, et al. Astatus report on the power storage system of capacitor-electronics, Electrochemistry, 2001, 69(6): 414-421
    [30] Hibino M, Zhou H, Honma I. Electrode properties of manganese oxide synthesized by sonochemical method in non-aqueous system, Journal of Power Sourses, 2005, 146(1-2):304-309
    [31] Kudo T, Ikeda Y, Watanabe T, et al. Amorphous V2O5/carbon composites as electrochemical supercapacitor electrodes, Solid State Ionics, 2002, 152-153:833-841
    [32] Watanabe T, Ikeda Y, Ono T, et al. Characterization of vanadium oxide sol as a starting material for high rate intercalation cathodes, Solid State Ionics, 2002, 151(1-4): 313-320
    [33] Mastragostino M, Arbizzani C, Soavi F. Conducting polymers as electrode materials in supercapacitors, Solid State Ionics, 2002, 148(3-4): 493-498
    [34] Li H Q, Zou Y, Xia Y Y. A study of nitroxide polyradical/activated carbon composite as the positive electrode material for electrochemical hybrid capacitor, Electrochimica Acta, 2007, 52(5): 2153-2157
    [35] Pasquier A D, Plitz I, Gural J, et al. Characterictics and performance of 500F asymmetric hygrid advanced supercapacitor prototypes, Journal of Power Sourses, 2003, 113(1): 62-71
    [36] Conway B E. Transition from "supercapacitor" to "battery" behavior in electrochemical energy storage, Journal of the Electrochemical Society, 1991, 138(6):1539-1548
    [37] Gamby J, Taberna P L, Simon P, et al. Studies and characterizations of various activated carbons used for carbonlcarbon supercapacitors, Journal of Power Sources, 2001, 101:109-116
    [38] Sarangapani S, Tilak B V, Chen C P. Materials for electrochemical capacitors, Journal of the Electrochemical Society, 1996, 143(11):3791-3799
    [39] Kobe K A, Osaka T K, Suita Y I. Double layer capacitor with high capacitance carbonaceous material electrodes. U. S. Patent: 5430606,1995
    [40] Chen W C,Wen T C, Teng H S. Polyaniline-deposited porous carbon electrode for supercapacitor. Electrochimica Acta, 2003, 48(6): 641-649
    [41] Nian Y R, Teng H. Nitric acid modification of activated carbon electrodes for improvement of electrochemical capacitance. Journal of the Electrochemical Society, 2002, 149(8): A1008-A1014
    [42] 刘洪波,常俊玲,双电层电容器高比表面积活性炭的研究,电子元件与材料,2002, 21(2):19-21
    [43] 张琳,李步广,刘洪波,等,酚醛树脂为原料制备双电层电容器用电极材料的工艺研究,炭素技术,2004,23(4): 1-6
    [44] 黄小文,史鹏飞,新型双电层电容器的制备及电化学性能研究,东北师大学报:自然科学版,2005, 37(3): 61-63
    [45] 张玲,常俊玲,基于竹节的双电层电容器用高比表面积活性炭的研究,炭素,2002, 1: 11-15
    [46] Rightmire R A. Electrical energy storage apparatus, U. S. Patent 3288641, 1966
    [47] Nishino T, Yoshida A. Tanahashi I. Electric double layer capacitor. US: 4562511, 1985
    [48] Trasatti S, Buzzanca P. Ruthenium oxide: a new interesting electrode material, solid state structure and electrochemical behavior. Electroanal. Chem., 1971, 29(1):App.1-5.
    [49] Miura K, Nakagawa H, Okamoto H. Production of high density activated carbon fiber by a hot briquetting method. Carbon, 2000, 38: 119
    [50] Hadzi J S, Angerstem K H, Conway B E. Surface oxidation and deposition at ruthenium electrodes: resolution of component processes in the potential-sweep experience, Electroanal. Chem., 1975, 60:359-372
    [51] Conway B E, Briss V, Wojtowicz J. The role and utilization of pseudocapacitance for energy storage by supercapacitors. Journal of Power Sources, 1997, 66: 1-14
    [52] Pekala R W, Farmer J C, Tran T D. Carbon aerogels for electrochemical applications . Journal of Non-Crystalline Solide, 1998, 225(1): 74-80
    [53] Sarangaponi S, Lessner P M, Laconti A B. Proton exchange membrane electrochemical capacitor. U. S. Patent 5136474, 1992
    [54] Pekala R W. Organic aerogels from the polycondensatoin of resorcinol with formaldehyde. Journal of Materials Processing Technology, 1989, 24: 3221
    [55] Mayer S T, Pekala R W, Kaschmitter J L. The aerocapacitor: an electrochemical double-layer enegy storage, Journal of the Electrochemical Society, 1993, 140(2): 446-451
    [56] Tamon H, Ishizaka H, Araki T, et al. Control of mesoporous form polyimide blended with poly(ethylene glycol), 1998, 36(9):1257-1262
    [57] Pr?bstle H, Schmitt C, Fricke J. Button cell supercapacitors with monolithic carbon aerogels. Journal of Power Sources, 2002, 105(2): 189-194
    [58] Frackowiak E, Khomenko V, Juremicz K, Supercapacitors based on conducting polymers/nanotubes composites, Journal of Power Sources, 2006, 153(2): 413-418
    [59] 马仁志,魏秉庆,基于碳纳米管的超级电容器,中国科学:E 辑,2000, 30(2): 112-116
    [60] Izquierdo G, West A R. Phase equilibria in the system Li2O-TiO2, Materials Research Bulletin, 1980, 15(11): 1655-1660
    [61] Colbow K M, Dahn J R, Haering R R. Structure and electrochemistry of the spinel oxides LiTi2O4 and Li4/3Ti5/3O4, Journal of Power Sources, 1989, 26(3-4): 397-402
    [62] Gover R K B, Irvine J T S. A new solid solution series linking LiTi2O4 and Li2Ti3O7 ramsdellites: A combined X-ray and neutron study, Journal of Solid State Chemistry, 1998, 141(2): 365-372
    [63] 尹鸽平,王庆,程新群,等,锂离子电池新型负极材料的新进展,电池,1999, 29(6): 270-274
    [64] 高玲,仇卫华,赵海雷,Li4Ti5O12作为锂离子电池负极材料电化学性能,北京科技大学学报,2005, 27(1): 82-85
    [65] Ohzuku T, Ueda A, Yamamoto A. Zero-strain insertion material of Li[Li1/3Ti5/3Ti5/3]O4 for rechargeable lithium cells, Journal of the Electrochemical Society, 1995, 142(5): 1431-1435
    [66] Izquierdo G, West A R. Phase equilibria in the system Li2O-TiO2, Materials Research Bulletin, 1980, 15(11): 1655-1660
    [67] Roberston A D, Tukamoto H, Irvine J T S. Li1+xFe1-3xTi1+2xO4 (0.0≤x≤0.33) based spinels: Possible negative electrode materials for future Li-ion batteries, Journal of the Electrochemical Society, 1999, 146(11): 3958-3962
    [68] Comizzoli R B, Crane G R, Fiorino M E, et al. Materials reliability issues with coaxial cable systems for the information superhighway, Journal of Materials Research, 1997, 12(3): 857-865
    [69] Idrissi H, Aboujalil A, Deloume J P, et al. Molten salt prepared lead titanate: Powder characterization, sintering and physical properties, Journal of the European Ceramic Society, 1999, 19(11): 1997-2004
    [70] Ito Y, Shimada S, Inagaki M. Molten-salt synthesis of Ba1-xPbxTiO3/BaTiO3 composites with controlled compositions, Solid State Ionic, 1997, 101-103(1): 1135-1140
    [71] Wan D M, Wang J, Ng S C. Formation and characterization of lead magnesium niobate synthesized from the molten salt of potassium chlorate, Journal of Alloys and compounds, 1998, 274(1-2): 110-117
    [72] 刘韩星,孙晓琴,肖静,等,熔盐法制备SrTiO3 片状晶的研究, 2004, 62(3):324-327
    [73] 阚艳梅, 王佩玲, 李永祥,等,工艺参数对熔盐法制备钛酸铋粉体影响的研究, 2002, 17(5): 1063-1067
    [74] Aboujalil A, Deloume J P, Chassagneux F, et al. Molten salt synthesis of the lead titanate PbTiO3, investigation of the reactivity of various titanium and lead salts with molten alkali-metal nitrites, Journal of Materials Chemictry, 1998, 8(7): 1601-1606
    [75] Zhu L H, Huang Q W, Gu H. Preparation of acicular strontium barium potassium niobate seed crystals, Journal of Crystal Growth, 2004, 267(1-2): 199-203
    [76] 程亮,刘海晶,熊焕明,等,超级电容器负极材料纳米Li4Ti5O12的制备及其碳包覆改性,第十三次全国电化学会议(广州),2005, 750-751
    [77] 潘群雄,潘晖华,陈建华,溶胶-凝胶技术与纳米材料的制备,材料导报,2001, 15(12): 40-42
    [78] Bach S, Pereira-Ramos J P, Baffier N. Electrochemical properties of sol-gel Li4/3Ti5/3O4, Journal of Power Sources, 1999, 81-82:273-276
    [79] Tatsumi K, Iwashita N, Sakaebe H, et al. Influence of the graphitic structure on the electrochemical characteristics for the anode of secondary lithium batteries, Journal of the Electrochemical Society, 1995, 142(3): 716-720
    [80] Shukla A K, Aric A S, Antonucci V. An appraisal of electric automobile power sources. Renewable and Sustainable Energy Reviews, 2001, 7(2):137-155
    [81] Yan X X, Patterson D. Novel power management for high performance and cost reduction in an electric vehicle. Renewable Energy, 2001,22:177-183
    [82] Kotz R, Bartschi M, Buchi F, et al. HYTOWER—A fuel cell car boosted with supercapacitors. Proceedings of the 12th International Seminar on Double Layer Capacitors and Similar Energy Storage Devices, Deerfield Beach, Florida, US, 2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700