硅基ZnO(MgZnO)薄膜及发光器件
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,Ⅱ-Ⅵ族半导体ZnO由于具有3.37eV的宽直接带隙、60meV的高激子束缚能、抗辐射能力强、湿化学腐蚀容易和制备工艺相对简单等优点,引起了人们巨大的研究热情。基于ZnO的发光器件是目前的研究热点,人们期望用ZnO取代GaN作为短波长发光器件的基础材料。然而,ZnO的p型掺杂还没有被彻底解决,因此在实现同质p-n结型的ZnO发光二级管和激光器方面还面临着相当大的困难。为了避开ZnO的p型掺杂的困难,人们在尝试利用异质结和金属—绝缘体—半导体(Metal-insulator-semiconductor,MIS)这两类器件来实现ZnO的电致紫外发光。众所周知,硅是最重要的半导体,是集成电路的基础材料。然而,硅是间接带隙半导体,不能直接用于制备发光器件。因此,将ZnO和Si的各自的优势相结合,形成硅基ZnO发光器件,不仅在理论上有重要的探索意义,而且在硅基光电子领域有良好的应用前景。
     本文详细地研究了硅基ZnO(MgZnO)薄膜材料及发光器件,在制备ZnO(MgZnO)/Si异质结、硅基ZnO(MgZnO)薄膜MIS器件的基础上,对这两类器件的发光特性及其物理机制进行了系统的研究,取得如下有创新意义的结果:
     (1)用重掺和轻掺的n型和p型(即n~+、n~-、p~+和p~-)硅片,分别与ZnO和MgZnO薄膜形成ZnO/Si和MgZnO/Si异质结,实现了它们的室温电致发光。研究发现:ZnO(MgZnO)/n~+-Si异质结在正向偏压下,产生源于ZnO(MgZnO)近带边辐射的紫外发光和与缺陷相关的可见发光,而在反向偏压下只有可见发光;ZnO(MgZnO)/n~--Si异质结只有在正向偏压下可以产生紫外发光和可见发光,而在反向偏压下几乎不发光;利用隧穿效应实现了ZnO(MgZnO)/p~+-Si异质结在反向偏压下的紫外和可见发光,而在正向偏压下只产生可见发光;ZnO(MgZnO)/p~--Si异质结无论在正向偏压还是反向偏压下都不能产生发光。从这些异质结的电流—电压特性和它们在不同偏压下的能带图出发,阐明了上述电致发光现象的物理机制。
     (2)利用以ZnO(MgZnO)薄膜为半导体层、以SiO_x(x≤2)为绝缘层的硅基MIS器件,在正向偏压下获得了源于ZnO(MgZnO)薄膜的较纯的紫外电致发光,并且通过改变MgZnO薄膜中Mg的含量,实现了紫外发光峰的蓝移。明确指出:适当厚度的绝缘层对于实现较纯的紫外发光至关重要,载流子在SiO_x/ZnO(MgZnO)界面处的积累是紫外发光被增强而可见发光被抑制的根本原因。
     (3)利用硅基ZnO多晶薄膜MIS器件,实现了室温电抽运ZnO薄膜的随机激光。当正向偏压不断增大时,ZnO薄膜的电致发光由自发辐射转变为随机激光。产生随机激光的原因是:发出的一部分光在薄膜近表面区域平面内传播时会遭到ZnO晶粒的散射,由于光散射的平均自由程小,因此经过多次散射后,一部分被散射的光可以回到起始散射点,形成随机闭环谐振腔。当正向偏压足够大时,在一些随机谐振腔中受激辐射产生的光的增益等于或超过损耗,从而产生激光。此外,还实现了电抽运的MgZnO薄膜的随机激光,所不同的是激光波长发生了蓝移。
     (4)发现了基于ZnO、MgZnO和Si的MIS器件在高电压下激发N_2微等离子体发光的现象。通过对MIS器件中电子输运特性的分析,指出N_2微等离子体是由于MIS器件在高电压下发射出足够高能量的电子而激发器件表面附近的空气所产生的。
     (5)利用硅基ZnO(MgZnO)薄膜MIS器件,研究了电场控制下的ZnO(MgZnO)薄膜的光致发光。与MIS器件在零偏压时的ZnO(MgZnO)薄膜的光致发光相比,正向偏压显著增强ZnO(MgZnO)薄膜的紫外发光而抑制其可见发光。在这种情况下,光生电子在SiO_x/ZnO(MgZnO)界面处积累,使得ZnO(MRZnO)薄膜的发光主要集中在近表面区域,并使ZnO(MgZnO)薄膜的带间辐射复合显著增强而参与发光的缺陷数目显著减少。另一方面,反向偏压对ZnO(MgZnO)薄膜的光致发光几乎没有影响。
     (6)利用硅基ZnO(MgZnO)薄膜MIS器件,通过电场诱导使ZnO(MgZnO)薄膜在恒定的He-Cd激光辐照下产生随机激光。研究表明,当正向电压足够大时,ZnO(MgZnO)薄膜的光致紫外发光的某些波长处出现随机激光。这是由于在较大正向电压下,光生电子在ZnO(MgZnO)薄膜近表面区的强烈积累导致该区域的光致发光增强,从而使得在该区域平面内传播的一部分光在随机谐振腔内振荡并产生出激光。
In recent years,enormous research enthusiasm onⅡ-Ⅵgroup semiconductor ZnO has been greatly spurred due to that it has a direct band gap of 3.37 eV and a large exciton binding energy of 60 meV and,moreover,it has distinct advantages over GaN, such as lower material cost,higher radiation hardness,simpler processing of device owing to amenability to chemical wet etching and ease of film deposition.Currently, great efforts have been expended on development of ZnO-based light emitting devices (LEDs)in order that ZnO can be an alternative to GaN as the semiconductor for short-wavelength optoelectronics.Unfortunately,the strategy of p-type doping for ZnO has not been substantially defined,thus leading to considerable difficulties in achieving ZnO-based light emitting and laser diodes of p-n junction.In order to avoid the difficulties in p-type doping of ZnO,the heterojunctions and metal-insulatorsemiconductor (MIS)devices have been employed in attempt to realize the ultraviolet (UV)electroluminescence(EL)from ZnO.It is well known that silicon is the most important semiconductor as the base material for integrated circuits.However,silicon cannot be applied to LEDs due to its intrinsic indirect bandgap.Evidently,the EL from ZnO and its alloy films on silicon substrate will find applications in silicon-based optoelectronics.In this dissertation,the silicon-based ZnO materials and LEDs have been intensively addressed.Based on the fabrication of ZnO(MgZnO)/Si heterojunctions and silicon-based ZnO(MgZnO)MIS devices,the light emission characteristics and related mechanisms for these two kinds of LEDs have been systematically investigated.In the following,the primary achievements in this work are described.
     (1)Electroluminescent ZnO/Si and MgZnO/Si heterojunctions were fabricated by deposition ZnO and MgZnO films on silicon substrates of n- and p-type with heavy-and light-doping(i.e.,n~+,n~-,p~+ and p~-),respectively.The ZnO(MgZnO)/n~+-Si heterojunction exhibited UV light characteristics of near-band-edge(NBE)emission from ZnO(MgZnO)and defect-related visible light under the forward bias but only visible light under reverse bias;while the ZnO(MgZnO)/n~--Si heterojunction only emitted relatively weak UV and visible light under the forward bias.On the other hand,the ZnO(MgZnO)/p~+-Si heterojunction was electroluminescent in the visible region under the forward bias while in both the UV and visible regions under the reverse bias;and the ZnO(MgZnO)/p~--Si heterojunction did not exhibit detectable EL under either forward or reverse bias.Starting from the current-voltage characteristics and the energy-band diagrams under different biases for these heterojunctions,the mechanisms underlying the EL performances as mentioned above have been essentially elucidated.
     (2)With the silicon-based MIS devices wherein the ZnO or MgZnO film and SiO_x (x≤2)film acted as the semiconductor and insulator respectively,fairly pure UV light emission from ZnO or MgZnO film was achieved and,moreover,the blue-shift of UV light could be realized by adjustment of Mg content in MgZnO. It is definitely pointed out that an appropriately thick SiO_x film is critical for the fairly pure UV light emission,while,the confinement of carriers in the region near the SiO_x/ZnO(MgZnO)interface is the root cause for the enhancement of UV emission and the suppression of visible light.
     (3)With the silicon-based polycrystalline ZnO film MIS device,the electrically pumped ZnO film random lasing was well demonstrated.Along with the increase of forward bias on the MIS device,the EL of ZnO film transformed from spontaneous emission to random lasing.Furthermore,the random lasing at shorter wavelengths from MgZnO was also realized.The reason for the random lasing is as follows:the in-plane propagation of electroluminescent light within the near-surface region of ZnO film is inevitably subjected to the scattering by the ZnO grain structure,due to the short scattering mean-free path,a part of scattered light will return to the scatterer from which it has been scattered before, thus,forming closed-loop random cavities for the light.With sufficiently high forward bias on the MIS device,in some cavities,the optical gain of stimulated emission will be equal to and even larger than the optical loss,thus leading to random lasing.
     (4)The luminescence of N_2 microplasma was found in the case of the ZnO,MgZnO and Si based MIS device applied with high forward voltage.Through the in-depth analysis of electron transportation in the MIS device,it is pointed out that the N_2 microplasma was formed by the activation of air around the surface of MIS device by the highly energetic electrons emitted from the MIS device under the high voltage.
     (5)Taking advantage of the silicon-based ZnO(MgZnO)MIS device applied with different bias,the electric-field-controlled photoluminescence(PL),i.e., electro-photoluminescence of ZnO(MgZnO)was investigated.Compared with the PL of ZnO(MgZnO)film in the case where there was no bias on the MIS structure,the positive bias with negative voltage applied on silicon substrate significantly enhanced the NBE UV emission while suppressing the defect-related visible emissions.This is due to the following reasons:under the positive bias,the photo-generated electrons accumulated in the region near the SiO_x/ZnO(MgZnO)interface,which,on one hand,made the PL of ZnO (MgZnO)proceed in the near-surface region;on the other hand,enhanced the inter-band radiative recombination and significantly reduced the amount of defects involved in PL.In contrast,the negative bias on the MIS device hardly changes the PL of ZnO film.
     (6)Taking advantage of the silicon-based ZnO(MgZnO)MIS device on the silicon substrate applied with appropriate forward bias,the random lasing from ZnO (MgZnO)film was induced by the electric field under a constant He-Cd laser illumination.It was found that with sufficiently high forward bias on the MIS device,random lasing occurred at certain wavelengths of photoluminescent UV light of ZnO(MgZnO)film.Such a random lasing action is due to that the strong accumulation of photo-generated electrons in the near-surface region of ZnO (MgZnO)film under the high forward bias significantly enhances the PL therein, in this case,a part of sufficiently strong photoluminescent light propagating in the plane of ZnO(MgZnO)film achieves optical gain and oscillates in the closed-loop random cavity,thus leading to random lasing.
引文
[1]S.J.Pearton,D.P.Norton,K.Ip,Y.W.Heo,and T,Steiner,"Recent progress in processing and properties of ZnO",Prog.Mater.Sci.50(2005)293-340
    [2]U.Ozgür,Y.I.Alivov,C.Liu,A.Teke,M.A.Reshchikov,S.Dogan,V.Avrutin,S.-J.Cho,and H.Morkoc,"A comprehensive review of ZnO materials and devices",J.Appl.Phys.98(2005)041301
    [3]N.Izyumskaya,V,Avrutin,U.Ozgür,Y.I.Alivov,and H.Morkoc,"Preparation and properties of ZnO and devices",Phys.Stat.Sol.B 244(2007)1439-1450
    [4]A.Kobayashi,O.F.Sankey,and J.D.Dow,"Deep energy levels of defects in the wurtzite semiconductors AIN,CdS,CdSe,ZnS,and ZnO",Phys.Rev.B 28(1983)946-956
    [5]A.Kobayashi,O.F.Sankey,S.M.Volz,and J.D.Dow,"Semiempirical tight-binding band structures of wurtzite semiconductors:AIN,CdS,CdSe,ZnS,and ZnO",Phys.Rev.B 28(1983)935-945
    [6]J.D.Albrecht,P.P.Ruden,S.Limpijumnong,W.R.L.Lambrecht,and K.F.Brennan,"High field electron transport properties of bulk ZnO",J.Appl.Phys.86(1999)6864-6867
    [7]D.C.Look,J.W.Hemsky,and J.R.Sizelove,"Residual native shallow donor in ZnO",Phys.Rev.Lett.82(1999)2552-2555
    [8]C.G.Van de Walle,"Hydrogen as a cause of doping in zinc oxide",Phys.Rev.Lett.85(2000)1012-1015
    [9]T.Minami,H.Sato,H.Nanto,and S.Takata,"Group Ⅲ impurity doped zinc oxide thin films prepared by rf magnetron sputtering",Jpn.J.Appl.Phys.24(1985)L781-L784
    [10]O.Bamiduro,H.Mustafa,R.Mundle,R.B.Konda,and A.K.Pradhan,"Metal-like conductivity in transparent Al:ZnO films",Appl.Phys.Lett.90(2007)252108
    [11]T.-h.Kim,S.-H.Jeong,I.-S.Kim,S.S.Kim,and B.-T.Lee,"Magnetron sputtering growth and characterization of high quality single crystal Ga-doped n-ZnO thin films",Semicond.Sci.Technol.20(2005)L43-L46
    [12]C.H.Chia,T.Makino,K.Tamura,Y.Segawa,M.Kawasaki,A.Ohtomo,and H.Koinuma,"Confinement-enhanced biexciton binding energy in ZnO/ZnMgO multiple quantum wells",Appl.Phys.Lett.82(2003)1848-1850
    [13]Y.R.Ryu,J.A.Lubguban,T.S.Lee,H.W.White,T.S.Jeong,C.J.Youn,and B.J.Kim,"Excitonic ultraviolet lasing in ZnO-based light emitting devices",Appl.Phys.Lett.90(2007)131115
    [14]B.-Y.Oh,M.-C.Jeong,T.-H.Moon,W.Lee,J.-M.Myoung,J.-Y.Hwang,and D.-S.Seo,"Transparent conductive Al-doped ZnO films for liquid crystal displays",J.Appl.Phys.99(2006)124505
    [15]E.M.C.Fortunato,P.M.C.Barquinha,A.C.M.B.G.Pimentel,A.M.F.Goncalves,A.J.S.Marques,R.F.P.Martins,and L.M.N.Pereira,"Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature",Appl.Phys.Lett.85(2004)2541-2543
    [16]P.Yu,L.Li,J.A.Lubguban,Y.Ryu,T.-S.Lee,and H.W.White,"Metal-Semiconductor-Metal Photodiode Ultraviolet Detector Based on High Quality ZnO",Physics of Semiconductors,28'International Conference,(2007)1421-1422
    [17]Z.L.Wang and J.Song,"Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays",Science 312(2006)242-246
    [18]T.Dietl,H.Ohno,F.Matsukura,J.Cibert,and D.Ferrand,"Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors",Science 287(2000)1019-1022
    [19]K.R.Kittilstved,N.S.Norberg,and D.R.Gamelin,"Chemical Manipulation of High-Tc Ferromagnetism in ZnO Diluted Magnetic Semiconductors",Phys.Rev.Lett.94(2005)147209-147204
    [20]T.Aokia,Y.Hatanaka,and D.C.Look,"ZnO diode fabricated by excimer-laser doping",Appl.Phys.Lett.76(2000)3257-3258
    [21]X.-L.Guo,J.-H.Choi,H.Tabata,and T.Kawai,"Fabrication and Optoelectronic Properties of a Transparent ZnO Homostructural Light-Emitting Diode",Jpn.J.Appl.Phys.40(2001)L177-L180
    [22]A.Tsukazaki,A.Ohtomo,T.Onuma,M.Ohtani,T.Makino,M.Sumiya,K.Ohtani,S.F.Chichibu,S.Fuke,Y.Segawa,H.Ohno,H.Koinuma,and M.Kawasaki,"Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO",Nat.Mater.4(2005)42-46
    [23]A.Tsukazaki,M.Kubota,A.Ohtomo,T.Onuma,K.Ohtani,H.Ohno,S.F.Chichibu,and M.Kawasaki,"Blue Light-Emitting Diode Based on ZnO",Jpn.J.Appl.Phys.44(2005)L643-L645
    [24]G.T.Du,W.F.Liu,J.M.Bian,L.Z.Hu,H.W.Liang,X.S.Wang,A.M.Liu,and T.P.Yang,"Room temperature defect related electroluminescence from ZnO homojunctions grown by ultrasonic spray pyrolysis",Appl.Phys.Lett.89(2006)052113
    [25]S.J.Jiao,Z.Z.Zhang,Y.M.Lu,D.Z.Shen,B.Yao,J.Y.Zhang,B.H.Li,D.X.Zhao,X.W.Fan,and Z.K.Tang,"ZnO p-n junction light-emitting diodes fabricated on sapphire substrates",Appl.Phys.Lett.88(2006)031911
    [26]J.-H.Lim,C.-K.Kang,K.-K.Kim,I.-K.Park,D.-K.Hwang,and S.-J.Park,"UV Electroluminescence Emission from ZnO Light-Emitting Diodes Grown by High-Temperature Radiofrequency Sputtering",Adv.Mater.(Weinheim,Ger.)18(2006)2720-2724
    [27]W.Liu,S.L.Gu,J.D.Ye,S.M.Zhu,S.M.Liu,X.Zhou,R.Zhang,Y.Shi,Y.D.Zheng,Y.Hang,and C.L.Zhang,"Blue-yellow ZnO homostructural light-emitting diode realized by metalorganic chemical vapor deposition technique",Appl.Phys.Lett.88(2006)092101
    [28]Y.Ryu,T.-S.Lee,J.A.Lubguban,H.W.White,B.-J.Kim,Y.-S.Park,and C.-J.Youn,"Next generation of oxide photonic devices:ZnO-based ultraviolet light emitting diodes",Appl.Phys.Lett.88(2006)241108
    [29]W.Z.Xu,Z.Z.Ye,Y.J.Zeng,L.P.Zhu,B.H.Zhao,L.Jiang,J.G.Lu,H.P.He,and S.B.Zhang,"ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition",Appl.Phys.Lett.88(2006)173506
    [30]B.T.Adekore,J.M.Pierce,R.F.Davis,D.W.Barlage,and J.F.Muth,"Nitrogen acceptors in bulk ZnO(0001)substrates and homoepitaxial ZnO films",J.Appl.Phys.102(2007)024908
    [31]X.Dong,H.C.Zhu,B.L.Zhang,X.P.Li,and G.T.Du,"ZnO-based homojunction light-emitting diodes fabricated by metal-organic chemical vapor deposition",Semicond.Sci.Technol.22(2007)1111-1114
    [32]W.F.Liu,J.M.Bian,L.Z.Hu,H.W.Liang,H.Q.Zang,J.C.Sun,Z.W.Zhao,A.M.Liu,and G.T.Du,"Electroluminescence from a ZnO homojunction device grown by pulsed laser deposition",Solid State Commun.142(2007)655-658
    [33]J.C.Sun,J.Z.Zhao,H.W.Liang,J.M.Bian,L.Z.Hu,H.Q.Zhang,X.P.Liang,W.F.Liu,and G.T.Du,"Realization of ultraviolet electroluminescence from ZnO homojunction with n-ZnO/p-ZnO:As/GaAs structure",Appl.Phys.Lett.90(2007)121128
    [34]Z.P.Wei,Y.M.Lu,D.Z.Shen,Z.Z.Zhang,B.Yao,B.H.Li,J.Y.Zhang,D.X.Zhao,X.W.Fan,and Z.K.Tang,"Room temperature p-n ZnO blue-violet light-emitting diodes",Appl.Phys.Lett.90(2007)042113
    [35]Z.Z.Ye,J.G.Lu,Y.Z.Zhang,Y.J.Zeng,L.L.Chen,F.Zhuge,G.D.Yuan,H.P.He,L.P.Zhu,J.Y.Huang,and B.H.Zhao,"ZnO light-emitting diodes fabricated on Si substrates with homobuffer layers",Appl.Phys.Lett.91(2007)113503
    [36]I.T.Drapak,"Alloyed ZnO-Cu_2O heterojunction",Semiconductors 2(1968)624
    [37]A.E.Tsurkan,N.D.Fedotova,and L.V.Kicherman,"Injection Electroluminescence in n-ZnO/p-ZnTe Heterojunctions",Semiconductors 6(1975)1183-1185
    [38]H.Ohta,K.Kawamura,M.Orita,M.Hirano,N.Sarukura,and H.Hosono,"Current injection emission from a transparent p-n junction composed of p-SrCu_2O_2/n-ZnO",Appl.Phys.Lett.77(2000)475-477
    [39]H.Ohta,M.Orita,M.Hirano,and H.Hosono,"Fabrication and characterization of ultraviolet-emitting diodes composed of transparent p-n heterojunction,p-SrCu_2O_2 and n-ZnO",J.Appl.Phys.89(2001)5720-5725
    [40]Y.I.Alivov,J.E.V.Nostrand,D.C.Look,M.V.Chukichev,and B.M.Ataev,"Observation of 430 nm electroluminescence from ZnO/GaN heterojunction light-emitting diodes",Appl.Phys.Lett.83(2003)2943-2945
    [41]Y.I.Alivov,E.V.Kalinina,A.E.Cherenkov,D.C.Look,B.M.Ataev,A.K.Omaev,M.V.Chukichev,and D.M.Bagnall,"Fabrication and characterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates",Appl.Phys.Lett.83(2003)4719-4721
    [42]Q.-X.Yu,B.Xu,Q.-H.Wu,Y.Liao,G.-Z.Wang,R.-C.Fang,H.-Y.Lee,and C.-T.Lee.,"Optical properties of ZnO/GaN heterostructure and its near-ultraviolet light-emitting diode",Appl.Phys.Lett.83(2003)4713-4715
    [43]S.F.Chichibu,T.Ohmori,N.Shibata,T.Koyama,and T.Onuma,"Greenish-white electroluminescence from p-type CuGaS_2 heterojunction diodes using n-type ZnO as an electron injector",Appl.Phys.Lett.85(2004)4403-4405
    [44]A.Osinsky,J.W.Dong,M.Z.Kauser,B.Hertog,A.M.Dabiran,P.P.Chow,S.J.Pearton,O.Lopatiuk,and L.Chernyak,"MgZnO/AlGaN heterostructure light-emitting diodes",Appl.Phys.Lett.85(2004)4272-4274
    [45]W.I.Park and G.-C.Yi,"Electroluminescence in n-ZnO Nanorod Arrays Vertically Grown on p-GaN",Adv.Mater(Weinheim,Ger.)16(2004)87-90
    [46]Y.I.Alivov,U.Ozgur,S.Dogan,C.Liu,Y.Moon,X.Gu,V.Avrutin,Y.Fu,and H.Morkoc,"Forward-current electroluminescence from GaN/ZnO double heterostructure diode",Solid-State Electron.49(2005)1693-1696
    [47]H.Y.Xu,Y.C.Liu,Y.X.Liu,C.S.Xu,C.L.Shao,and R.Mu,"Ultraviolet electroluminescence from p-GaN/i-ZnO/n-ZnO heterojunction light-emitting diodes",Appl.Phys.B:Lasers Opt.00(2005)1-4
    [48]C.Yuen,S.F.Yu,S.P.Lau,Rusli,and T.P.Chert,"Fabrication of n-ZnO:Al/p-SiC(4H) heterojunction light-emitting diodes by filtered cathodic vacuum arc technique",Appl.Phys.Lett.86(2005)241111
    [49]D.K.Hwang,S.H.Kang,J.H.Lim,E.J.Yang,J.Y.Oh,J.H.Yang,and S.J.Park,"p-ZnO/n-GaN heterostructure ZnO light-emitting diodes",Appl.Phys.Lett.86(2005)222101
    [50]S.J.An and G.-C.Yi,"Near ultraviolet light emitting diode composed of n-GaN/ZnO coaxial nanorod heterostructures on a p-GaN layer",Appl.Phys.Lett.91(2006)123109
    [51]C.-Y.Chang,F.-C.Tsao,C.-J.Pan,G.-C.Chi,H.-T.Wang,J.-J.Chen,F.Ren,D.P.Norton,S.J.Pearton,K.-H.Chen,and L.-C.Chen,"Electroluminescence from ZnO nanowire/polymer composite p-n junction",Appl.Phys.Lett.88(2006)173503
    [52]M.-C.Jeong,B.-Y.Oh,M.-H.Ham,and J.-M.Myoung,"Electroluminescence from ZnO nanowires in n-ZnO film/ZnO nanowire array/p-GaN film heterojunction light-emitting diodes",Appl.Phys.Lett.88(2006)202105
    [53]A.Murai,D.B.Thompson,H.Masui,N.Fellows,U.K.Mishra,S.Nakamura,and S.P.DenBaars,"Hexagonal pyramid shaped light-emitting diodes based on ZnO and GaN direct wafer bonding",Appl.Phys.Lett.89(2006)171116
    [54]D.J.Rogers,F.H.Teherani,A.Yasan,K.Minder,P.Kung,and M.Razeghi,"Electroluminescence at 375 nm from a ZnO/GaN:Mg/c-Al_2O_3 heterojunction light emitting diode",Appl.Phys.Lett.88(2006)141918
    [55]J.D.Ye,S.L.Gu,S.M.Zhu,W.Liu,S.M.Liu,R.Zhang,Y.Shi,and Y.D.Zheng,"Electroluminescent and transport mechanisms of n-ZnO/p-Si heterojunctions",Appl.Phys.Lett.88(2006)182116
    [56]H.Sun,Q.F.Zhang,and J.L.Wu,"Electroluminescence from ZnO nanorods with an n-ZnO/p-Si heterojunction structure",Nanotechnology 17(2006)2271-2274
    [57]P.L.Chen,X.Y.Ma,and D.R.Yang,"Ultraviolet electroluminescence from ZnO/p-Si heterojunctions",J.Appl.Phys.101(2007)053103
    [58]D.C.Kim,W.S.Han.H.K.Cho,B.H.Kong,and H.S.Kim,"Multidimensional ZnO light-emitting diode structures grown by metal organic chemical vapor deposition on p-Si",Appl.Phys.Lett.91(2007)231901
    [59]C.P.Chen,M.Y.Ke,C.C.Liu,Y.J.Chang,F.H.Yang,and J.J.Huang,"Observation of 394nm electroluminescence from low-temperature sputtered n-ZnO/SiO_2 thin films on top of the p-GaN heterostructure",Appl.Phys.Lett.91(2007)091107
    [60]R.W.Chuang,R.-X.Wu,L.-W.Lai,and C.-T.Lee,"ZnO-on-GaN heterojunction light-emitting diode grown by vapor cooling condensation technique",Appl.Phys.Lett.91(2007)231113
    [61]B.W.Thomas and D.Walsh,"Metal-insulator-semiconductor electroluminescent diodes in single-crystal zinc oxide",Electron.Lett.9(1973)362-363
    [62]T.Minami,M.Tanigawa,M.Yamanishi,and T.Kawamura,"Observation of Ultraviolet-Luminescence from the ZnO MIS Diodes",Jpn.J.Appl.Phys.13(1974)1475-1476
    [63]A.Shimizu,M.Kanbara,M.Hada,and M.Kasuga,"ZnO Green Light Emitting Diode",Jpn.J.Appl.Phys.17(1978)1435-1436
    [64]Y.I.Alivov,D.C.Look,B.M.Ataev,M.V.Chukichev,V.V.Mamedov,V.I.Zinenko,Y.A.Agafonov,and A.N.Pustovit 48,"Fabrication of ZnO-based metal insulator semiconductor diodes by ion implantation",Solid-State Electron.48(2004)2343-2346
    [65]H.-T.Wang,B.S.Kang,J.-J.Chen,T.Anderson,S.Jang,F.Ren,H.S.Kim,Y.J.Li,D.P.Norton,and S.J.Pearton,"Band-edge electroluminescence from N~+-implanted bulk ZnO",Appl.Phys.Lett.88(2006)102107
    [66]P.L.Chen,X.Y.Ma,and D.R.Yang,"Fairly pure ultraviolet electroluminescence from ZnO-based light-emitting devices",Applied Physics Letters 89(2006)111112
    [67]P.L.Chen,X.Y.Ma,D.S.Li,Y.Y.Zhang,and D.R.Yang,"347 nm ultraviolet electroluminescence from Mg_xZn_(1-x)O-based light emitting devices",Appl.Phys.Lett.90(2007)251115
    [68]D.-K.Hwang,M.-S.Oh,J.-H.Lim,Y.-S.Choi,and S.-J.Park,"ZnO-based light-emitting metal-insulator-semiconductor diodes",Appl.Phys.Lett.91(2007)121113
    [69]F.H.Nicoll,"Ultraviolet ZnO laser pumped by an electron beam",Appl.Phys.Lett.9(1966)13-15
    [70]J.M.Hvam,"Temperature-Induced Wavelength Shift of Electron-Beam-Pumped Lasers from CdSe,CdS,and ZnO",Phys.Rev.B 4(1971)4459
    [71]J.M.Hvam,"Exciton-exciton interaction and laser emission in high-purity ZnO",Solid State Commun.12(1973)95-97
    [72]J.M.Hvam,"Optical gain and induced absorption from excitonic molecules in ZnO",Solid State Commun.26(1978)987-990
    [73]D.C.Reynolds,D.C.Look,and B.Jogai,"Optically pumped ultraviolet lasing from ZnO",Solid State Commun.99(1996)873-875
    [74]D.M.Bagnall,Y.F.Chen,Z.Zhu,T.Yao,S.Koyama,M.Y.Shen,and T.Goto,"Optically pumped lasing of ZnO at room temperature",Appl.Phys.Lett.70(1997)2230-2232
    [75]D.M.Bagnall,Y.F.Chen,Z.Zhu,T.Yao,M.Y.Shen,and T.Goto,"High temperature excitonic stimulated emission from ZnO epitaxial layers",Appl.Phys.Lett.73(1998)1038-1040
    [76]P.Zu,Z.K.Tang,G.K.L.Wong,M.Kawasaki,A.Ohtomo,H.Koinuma,and Y.Segawa,"Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature",Solid State Communications 103(1997)459-463
    [77]Y.Segawa,A.Ohtomo,M.Kawasaki,H.Koinuma,Z.K.Tang,P.Yu,and G.K.L.Wong,"Growth of ZnO Thin Film by Laser MBE:Lasing of Exciton at Room Temperature",Phys.Stat.Sol.B 202(1997)669-672
    [78]Z.K.Tang,G.K.L.Wong,P.Yu,M.Kawasaki,A.Ohtomo,H.Koinuma,and Y.Segawa,"Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films",Appl.Phys.Lett.72(1998)3270-3272
    [79]R.F.Service,"Will UV Lasers Beat the Blues?" Science 276(1997)895
    [80]A.B.Djurisic and Y.H.Leung,"Optical Properties of ZnO Nanostructures",Small 2(2006)944-961
    [81]M.H.Huang,S.Mao,H.Feick,H.Yan,Y.Wu,H.Kind,E.Weber,R.Russo,and P.Yang,"Room-Temperature Ultraviolet Nanowire Nanolasers",Science 298(2001)1897-1899
    [82]V.S.Letokhov,"Generation of lasing a scattering medium with negative resonance absorption",Sov.Phys.J.EPT 26(1968)835-840
    [83]N.M.Lawandy,R.M.Balachandran,A.S.L.Gomes,and E.Sauvain,"Laser action in strongly scattering media",Nature 368(1994)436-438
    [84]H.Cao,Y.G.Zhao,H.C.Ong,S.T.Ho,J.Y.Dai,J.Y.Wu,and R.P.H.Chang,"Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films",Appl.Phys.Lett.73(1998)3656-3658
    [85]H.Cao,Y.G.Zhao,H.C.Ong,and R.P.H.Chang,"Far-field characteristics of random lasers",Phys.Rev.B 59(1999)15107-15111
    [86]H.Cao,Y.G.Zhao,S.T.Ho,E.W.Seelig,Q.H.Wang,and R.P.H.Chang,"Random Laser Action in Semiconductor Powder",Phys.Rev.Lett.82(1999)2278-2281
    [87]H.Cao,"Lasing in random media",Waves Random Media 13(2003)R1-R39
    [88]H.Cao,"Review on latest developments in random lasers with coherent feedback",J.Phys.A:Math.Gen.38(2005)10497-10535
    [89]H.Cao,J.Y.Xu,D.Z.Zhang,S.H.Chang,S.T.Ho,E.W.Seelig,X.Liu,and R.P.H.Chang,"Spatial Confinement of Laser Light in Active Random Media",Phys.Rev.Lett.84(2000)5584
    [90]D.Wiersma,"The smallest random laser",Nature 406(2000)132-133
    [91]Y.G.Wang,C.Yuen,S.P.Lau,S.F.Yu,and B.K.Tay,"Ultraviolet lasing of ZnO whiskers prepared by catalyst-free thermal evaporation",Chem.Phys.Lett.377(2003)329-332
    [92]S.F.Yu,C.Yuen,S.P.Lau,W.I.Park,and G.-C.Yi,"Random laser action in ZnO nanorod arrays embedded in ZnO epilayers",Appl.Phys.Lett.84(2004)3241-3243
    [93]H.-C.Hsu,C.-Y.Wu,and W.-F.Hsieh,"Stimulated emission and lasing of random-growth oriented ZnO nanowires",J.Appl.Phys.97(2005)064315
    [94]S.P.Lau,H.Y.Yang,S.F.Yu,H.D.Li,M.Tanemura,T.Okita,H.Hatano,and H.H.Hng,"Laser action in ZnO nanoneedles selectively grown on silicon and plastic substrates",Appl.Phys.Lett.(2005)013104
    [95]C.X.Xu,X.W.Sun,C.Yuen,S.F.Yu,G.P.Zhu,and Y.P.Cui,"Fabrication and laser action of nanostructual ZnO",Advanced Laser Technologies 2005,(2005)634421
    [96]E.V.Chelnokov,N.Bityurin,I.Ozerov,and W.Marine,"Two-photon pumped random laser in nanocrystalline ZnO",Appl.Phys.Lett.89(2006)171119
    [97]H.Y.Yang,S.P.Lau,S.F.Yu,A.P.Abiyasa,M.Tanemura,T.Okita,and H.Hatano,"High-temperature random lasing in ZnO nanoneedles",Appl.Phys.Lett.89(2006)011103
    [98]S.F.Yu,C.Yuen,S.P.Lau,and H.W.Lee,"Zinc oxide thin-film random lasers on silicon substrate",Appl.Phys.Lett.84(2004)3244-3246
    [99]C.Yuen,S.F.Yu,E.S.P.Leong,H.Y.Yang,S.P.Lau,N.S.Chen,and H.H.Hng,"Low-loss and directional output ZnO thin-film ridge waveguide random lasers with MgO capped layer",Appl.Phys.Lett.86(2005)031112
    [100]H.D.Li,S.F.Yu,S.P.Lau,E.S.P.Leong,H.Y.Yang,Tu Pei Chen,A.P.Abiyasa,and C.Y.Ng,"High-Temperature Lasing Characteristics of ZnO Epilayers",Adv.Mater.(Weinheim,Ger.)15(2006)771-774
    [101]H.D.Li,S.F.Yu,S.P.Lau,and E.S.P.Leong,"Simultaneous formation of visible and ultraviolet random lasings in ZnO films",Appl.Phys.Lett.89(2006)021110
    [102]S.Y.Kuo,F.I.Lai,W.C.Chen,C.P.Cheng,H.C.Kuo,and S.C.Wang,"Ultraviolet Lasing of Sol-Gel-Derived Zinc Oxide Polycrystalline Films",Jpn.J.Appl.Phys.45(2006)3662-3665
    [103]X.H.Zhang,S.J.Chua,A.M.Yong,H.D.Li,S.F.Yu,and S.P.Lau,"Exciton related stimulated emission in ZnO polycrystalline thin film deposited by filtered cathodic vacuum arc technique",Appl.Phys.Lett.88(2006)191112
    [104]A.P.Abiyasa,S.F.Yu,C.Yuen,and S.P.Lau,"Influence of Surface Roughness on the Lasing Performance of Highly Disordered ZnO Films",IEEE Photon.Technol.Lett.18(2006)2380
    [105]S.F.Yu,H.D.Li,A.P.Abiyasa,E.S.P.Leong,and S.P.Lau,"The formation characteristics of closed-loop random cavities inside highly disordered ZnO polycrystalline thin films",Appl.Phys.Lett.88(2006)121126
    [106]E.S.P.Leong and S.F.Yu,"UV Random Lasing Action in p-SiC(4H)/i-ZnO-SiO_2Nanocomposite/n-ZnO:Al Heterojunction Diodes",Adv.Mater.(Weinheim,Ger.)18(2006)1685-1688
    [107]E.S.P.Leong,S.F.Yu,and S.P.Lau,"Directional edge-emitting UV random laser diodes",Appl.Phys.Lett.89(2006)221109
    [108]T.Makino,Y.Segawa,M.Kawasaki,A.Ohtomo,R.Shiroki,K.Tamura,T.Yasuda,and H.Koinuma,"Band gap engineering based on Mg_xZn_(1-x)O and Cd_yZn_(1-y)O ternary alloy films",Appl.Phys.Lett.78(2001)1237-1239
    [109]T.Gruber,C.Kirchner,R.Kling,F.Reuss,A.Waag,F.Bertram,D.Forster,J.Christen,and M.Schreck,"Optical and structural analysis of ZnCdO layers grown by metalorganic vapor-phase epitaxy",Appl.Phys.Lett.83(2003)3290-3292
    [110]J.Ishihara,A.Nakamura,S.Shigemori,T.Aoki,and J.Temmyo,"Zn_(1-x)Cd_xO systems with visible band gaps",Appl.Phys.Lett.89(2006)091914
    [111]X.J.Wang,I.A.Buyanova,W.M.Chen,M.Izadifard,S.Rawal,D.P.Norton,S.J.Pearton,A.Osinsky,J.W.Dong,and A.Dabiran,"Band gap properties of Zn_(1-x)Cd_xO alloys grown by molecular-beam epitaxy",Appl.Phys.Lett.89(2006)151909
    [112]Y.R.Ryu,T.S.Lee,J.A.Lubguban,A.B.Corman,H.W.White,J.H.Leem,M.S.Han,Y.S.Park,C.J.Youn,and W.J.Kim,"Wide-band gap oxide alloy:BeZnO",Appl.Phys.Lett.88(2006)052103
    [113]W.J.Kim,J.H.Leem,M.S.Han,I.-W.Park,Y.R.Ryu,and T.S.Lee,"Crystalline properties of wide band gap BeZnO films",J.Appl.Phys.99(2006)096104
    [114]J.F.Sarver,F.L.Katnack,and F.A.Hummel,"Phase Equilibria and Manganese-Activated Fluorescence in the System Zn_3(PO_4)_2-Mg_3(PO_4)_2",J.Electrochem.Soc.106(1959)960-963
    [115]A.Ohtomo,M.Kawasaki,T.Koida,K.Masubuchi,H.Koinuma,Y.Sakurai,Y.Yoshida,T.Yasuda,and Y.Segawa,"Mg_xZn_(1-x)O as a Ⅱ-Ⅵ widegap semiconductor alloy",Appl.Phys.Lett.72(1998)2466-2648
    [116]A.Ohtomo,R.Shiroki,I.Ohkubo,H.Koinuma,and M.Kawasaki,"Thermal stability of supersaturated Mg_xZn_(1-x)O alloy films and Mg_xZn_(1-x)O/ZnO heterointerfaces",Appl.Phys.Lett.75(1999)4088-4090
    [117]W.Yang,S.S.Hullavarad,B.Nagaraj,I.Takeuchi,R.P.Sharma,T.Venkatesan,R.D.Vispute,and H.Shen,"Compositionally-tuned epitaxial cubic Mg_xZn_(1-x)O on Si(100)for deep ultraviolet photodetectors",Appl.Phys.Lett.82(2003)3424-3426
    [118]A.K.Sharma,J.Narayan,J.F.Muth,C.W.Teng,C.Jin,A.Kvit,R.M.Kolbas,and O.W.Holland,"Optical and structural properties of epitaxial Mg_xZn_(1-x)O alloys",Appl.Phys.Lett.75(1999)3327-3329
    [119]S.Choopun,R.D.Vispute,W.Yang,R.R Sharma,Y.Venkatesan,and H.Shen,"Realization of band gap above 5.0 eV in metastable cubic-phase Mg_xZn_(1-x)O alloy films",Appl.Phys.Lett.80(2002)1529-1531
    [120]P.Bhattacharya,R.R.Das,and R.S.Katiyar,"Fabrication of stable wide-band-gap ZnO/MgO multilayer thin films",Appl.Phys.Lett.83(2003)2010-2012
    [121]J.W.Kim,H.S.Kang,J.H.Kim,S.Y.Lee,J.-K.Lee,and M.Nastasi,"Variation of structural,electrical,and optical properties of Zn_(1-x)Mg_xO thin films",J.Appl.Phys.100(2006)033701
    [122]T.Makino,K.Tamura,C.H.Chia,Y.Segawa,M.Kawasaki,A.Ohtomo,and H.Koinuma,"Effect of MgZnO-layer capping on optical properties of ZnO epitaxial layers",Appl.Phys.Lett.81(2002)2172-2174
    [123]H.Matsui,H.Tabata,N.Hasuike,and H.Harima,"Critical thickness and lattice relaxation of Mg-rich strained Mg_(0.37)Zn_(0.63)O(0001)layers towards multi-quantum-wells",99(2006)024902
    [124]W.I.Park,G.-C.Yi,and H.M.Jang,"Metalorganic vapor-phase epitaxial growth and photoluminescent properties of Zn_(1-x)Mg_xO(0<x<0.49)thin films",Appl.Phys.Lett.79(2001)2022-2024
    [125]S.Muthukumar,J.Zhong,Y.Chen,Y.Lu,and T.Siegrist,"Growth and structural analysis of metalorganic chemical vapor deposited(11-2-0)Mg_xZn_(1-x)O(0<x<0.33)films on(01-1-2)R-plane Al_2O_3 substrates",Appl.Phys.Lett.82(2003)742-744
    [126]C.Y.Liu,Y.C.Liu,B.P.Zhang,and R.Mu,"Photoluminescence of Mg_xZn_(1-x)O films grown on a sapphire substrate by a MOCVD technique",Phys.Stat.Sol.C 3(2006)3508-3511
    [127]T.Minemoto,T.Negami,S.Nishiwaki,H.Takakura,and Y.Hamakawa,"Preparation of Zn_(1-x)Mg_xO films by radio frequency magnetron sputtering",Thin Solid Films 372(2000)173-176
    [128]G.-J.Fang,D.Li,and X.Zhao,"Fabrication and characterization of Zn_xMg_(1-x)O thin films by dc magnetron sputtering with a composite target of AZO and Mg",Phys.Stat.Sol.A 200(2003)361-368
    [129]D.Zhao,Y.Liu,D.Shen,Y.Lu,J.Zhang,and X.Fan,"Photoluminescence properties of Mg_xZn_(1-x)O alloy thin films fabricated by the sol-gel deposition method",J.Appl.Phys.90(2001)5561-5563
    [130]T.Murakawa,T.Fukudome,T.Hayashi,H.lsshiki,and T.Kimura,"Structural and optical properties of Mg_xZn_(1-x)O thin films formed by sol-gel method",Phys.Stat.Sol.C1(2004)2564-2568
    [131]J.Bian,W.Liu,H.Liang,L.Hu,J.Sun,Y.Luo,and G.Du,"Room temperature electroluminescence from the n-ZnMgO/ZnO/p-ZnMgO heterojunction device grown by ultrasonic spray pyrolysis",Chem.Phys.Lett.430(2006)183-187
    [132]Y.W.Heo,Y.W.Kwon,Y.Li,S.J.Pearton,and D.P.Norton,"p-type behavior in phosphorus-doped(Zn,Mg)O device structures",Appl.Phys.Lett.84(2004)3474-3476
    [133]Y.J.Li,Y.W.Heo,Y.Kwon,K.Ip,S.J.Pearton,and D.P.Norton,"Transport properties of p-type phosphorus-doped(Zn,Mg)O grown by pulsed-laser deposition",Appl.Phys.Lett.87(2005)072101
    [134]P.Wang,N.Chen,Z.Yin,R.Dai,and Y.Bai,"p-type Zn_(1-x)Mg_xO films with Sb doping by radio-frequency magnetron sputtering",Appl.Phys.Lett.89(2006)202102
    [135]K.Ip,Y.Li,D.P.Norton,S.J.Pearton,and F.Ren,"Low-resistance Au and Au/Ni/Au Ohmic contacts to p-ZnMgO",Appl.Phys.Lett.87(2005)071906
    [136]X.Zhang,X.M.Li,T.L.Chen,C.Y.Zhang,and W.D.Yu,"p-type conduction in wide-gap Zn_(1-x)Mg_xO films grown by ultrasonic spray pyrolysis",Appl.Phys.Lett.87(2005)092101
    [137]Z.P.Wei,B.Yao,Z.Z.Zhang,Y.M.Lu,D.Z.Shen,B.H.Li,X.H.Wang,J.Y.Zhang,D.X. Zhao,X.W.Fan,and Z.K.Tang,"Formation of p-type MgZnO by nitrogen doping",Appl.Phys.Lett.89(2006)102104
    [138]G.A.Armstrong and S.Crampin,"Preferential excitation of 2rid-mode piezoelectric surface waves in zinc-oxide-layered substrates",Electron.Lett.9(1973)322-323
    [139]K.L.Davis,"Surface acoustic waves with nearly dispersion-free propagation in a layered silicon configuration",J.Appl.Phys.45(1974)3255-3257
    [140]K.L.Davis,"S.A.W.frequency synthesis using a monolithic ZnO-on-Si convolver",Electron.Lett.12(1976)487-488
    [141]K.Hoh,S.Takada,and H.Hayakawa,"Long-time storage of surface-acoustic-wave signals in zinc-oxide on silicon structure",Appl.Phys.Lett.29(1976)454-456
    [142]Y.Arimoto,T.Moriizumi,and T.Yasuda,"ZnO/Si SAW convolver with surface-controlling junctions",Appl.Phys.Lett.31(1977)63-65
    [143]H.C.Tuan and G.S.Kino,"Large-time-bandwidth-product correlation and holographic storage with an s.a.w,storage correlator",Electron.Lett.13(1977)709-710
    [144]J.K.Elliott,R.L.Gunshor,R.F.Pierret,and A.R.Day,"A wideband SAW convolver utilizing Sezawa waves in the metal-ZnO-SiO_2-Si configuration",Appl.Phys.Lett.32(1978)515-516
    [145]S.J.Martin,R.L.Gunshor,and R.F.Pierret,"Zinc-oxide on silicon surface acoustic wave resonators",Appl.Phys.Lett.37(1980)700-701
    [146]M.R.Melloch,R.L.Gunshor,C.L.Liu,and R.F.Pierret,"Interface transduction in the ZnO-SiO_2-Si surface acoustic wave device configuration",Appl.Phys.Lett.37(1980)147-150
    [147]M.R.Melloch,R.L.Gunshor,and R.F.Pierret,"High frequency ZnO-SiO_2-Si surface acoustic wave convolvers",Electron.Lett.17(1981)827-828
    [148]M.R.Melloch,R.L.Gunshot,and R.F.Pierret,"Sezawa to Rayleigh mode conversion in the ZnO-on-Si surface acoustic wave device configuration",Appl.Phys.Left.39(1981)476-477
    [149]S.J.Martin,R.L.Gunshor,M.R.Melloch,S.Datta,and R.F.Pierret,"Surface acoustic wave mode conversion resonator",Appl.Phys.Lett.43(1983)238-240
    [150]S.J.Martin,S.S.Schwartz,R.L.Gunshor,and R.F.Pierret,"Surface acoustic wave resonators on a ZnO-on-Si layered medium",J.Appl.Phys.54(1983)561-569
    [151]B.M.Blok,J.H.Visser,E.van der Drift,J.Romijn,and A.Venema,"High-resolution technology for silicon-integrated surface acoustic wave devices",International symposium on electron,ion,andphoton beams,Monterey,California(USA),(1989)2048-2052
    [152]T.L.Tansley and S.J.T.Owen,"Conductivity of Si-ZnO p-n and n-n heterojunctions",J.Appl.Phys.55(1984)454-459
    [153]H.Kobayashi,H.Mori,T.Ishida,and Y.Nakato,"Zinc oxide/n-Si junction solar cells produced by spray-pyrolysis method",J.Appl.Phys.77(1995)1301-1307
    [154]D.G.Baik and S.M.Cho,"Application of sol-gel derived films for ZnO/n-Si junction solar cells",Thin Solid Films 354(1999)227-231
    [155]M.Purica,E.Budianu,and E.Rusu,"Heterojunction with ZnO polycrystalline thin films for optoelectronic devices applications",Microelectron.Eng.51-52(2000)425-431
    [156]H.Y.Kim,J.H.Kim,Y.J.Kim,K.H.Chae,C.N.Whang,J.H.Song,and S.Im,"Photoresponse of Si detector based on n-ZnO/p-Si and n-ZnO/n-Si structures",Opt.Mater.17(2001)141-144
    [157]H.Y.Kim,J.H.Kim,M.O.Park,and S.Im,"Photoelectric,stoichiometric and structural properties of n-ZnO film on p-Si",Thin Solid Films 398-399(2001)93-98
    [158]C.-H.Liu,Y.-L.Chen,B.-X.Lin,J.-J.Zhu,Z.-X.Fu,C.Peng,and Z.Yang,"Electrical Properties of the ZnO/Si Heterostructure",Chin.Phys.Lett.18(2001)1108-1110
    [159]Y.S.Choi,J.Y.Lee,S.Im,and S.J.Lee,"Photoresponse characteristics of n-ZnO/p-Si heterojunction photodiodes",J.Vac.Sci.Technol.B 20(2002)2384-2387
    [160]Y.-D.Ko,J.Jung,K.-H.Bang,M.-C.Park,K.-S.Huh,J.-M.Myoung,and I.Yun,"Characteristics of ZnO/Si prepared by Zn~3p~2 diffusion",Appl.Surf Sci.202(2002)266-271
    [161]J.Y.Lee,Y.S.Choi,W.H.Choi,H.W.Yeom,Y.K.Yoon,J.H.Kim,and S.Im,"Characterization of films and interfaces in n-ZnO/p-Si photodiodes",Thin Solid Films 420-421(2002)112-116
    [162]D.Song,D.-H.Neuhaus,J.Xia,and A.G.Aberle,"Structure and characteristics of ZnO:Al/n-Si heterojunctions prepared by magnetron sputtering",Thin Solid Films 422(2002)180-185
    [163]Y.S.Cho,J.Y.Lee,S.Im,and S.J.Lee,"Dynamic and Static Photo-Responses of n-ZnO/p-Si Photodiodes",Jpn.J.Appl.Phys.42(2003)1560-1562
    [164]I.-S.Jeong,J.H.Kim,and S.Im,"Ultraviolet-enhanced photodiode employing n-ZnO/p-Si structure",Appl.Phys.Lett.83(2003)2946-2948
    [165]S.E.Nikitin,Y.A.Nikolaev,I.K.Polushina,V.Y.Rud,Y.V.Rud,and E.I.Terukov,"Photoelectric Phenomena in ZnO:Al/p-Si Heterostructures",Semiconductors 37(2003)1291-1295
    [166]C.H.Park,I.S.Jeong,J.H.Kim,and S.Im,"Spectral responsivity and quantum efficiency of n-ZnO/p-Si photodiode fully isolated by ion-beam treatment",Appl.Phys.Lett.82(2003)3973-3975
    [167]C.H.Park,J.Y.Lee,S.Ira,and T.G.Kim,"n-ZnO/p-Si photodiodes fabricated using ion-beam induced isolation technique",Nucl.Instrum.Meth.B 206(2003)432-435
    [168]I.-S.Jeong,J.H.Kim,H.-H.Park,and S.Im,"n-ZnO/p-Si UV photodetectors employing AlO_x films for antireflection",Thin Solid Films 447-448(2004)111-114
    [169]C.H.Park,I.S.Jeong,H.S.Bae,T.G.Kim,and S.Im,"n-ZnO/p-Si photodiodes fully isolated by B~+ ion-implantation",Nucl.Instrum.Meth.B 216(2004)127-130
    [170]F.Chaabouni,M.Abaab,and B.Rezig,"Characterization of n-ZnO/p-Si films grown by magnetron sputtering",Superlattice.Microst.39(2005)171-178
    [171]W.G.Han,S.G.Kang,T.W.Kim,D.W.Kim,and W.J.Cho,"Effect of thermal annealing on the optical and electronic properties of ZnO thin films grown on p-Si substrates",Appl.Surf.Sci.245(2005)384-390
    [172]H.Lei,C.-H.Liu,and B.-X.Lin,"Influence of Interface Charge on Electrical Properties of ZnO/Si Heterojunction",Chin.Phys.Lett.22(2005)185-187
    [173]Y.Zhang,G.Du,B.Zhang,Y.Cui,H.Zhu,and Y.Chang,"Properties of ZnO thin films grown on Si substrates by MOCVD and ZnO/Si heterojunctions",Semicond.Sci.Technol.20(2005)1132-1135
    [174]X.D.Chen,C.C.Ling,S.Fung,C.D.Beling,Y.F.Mei,R.K.Y.Fu,G.G.Siu,and P.K.Chu,"Current transport studies of ZnO/p-Si heterostructures grown by plasma immersion ion implantation and deposition",Appl.Phys.Lett.88(2006)132104
    [175]A.A.Ibrahim and A.Ashour,"ZnO/Si solar cell fabricated by spray pyrolysis technique",J Mater Sci:Mater Electron 17(2006)835-839
    [176]Y.Zhang,J.Xu,B.Lin,Z.Fu,S.Zhong,C.Liu,and Z.Zhang,"Fabrication and electrical characterization of nanocrystalline ZnO/Si heterojunctions",Appl.Surf.Sci.252(2006)3449-3453
    [177]H.Zhu,G.Du,X.Li,Y.Zhang,Y.Cui,K.Huang,X.Xia,T.Yang,B.Zhang,and Y.Chang,"Optical and electronic properties of ZnO:P/n~+-Si heterostructures fabricated by metalorganic chemical vapour deposition",Semicond.Sci.Technol.21(2006)1090-1093
    [178]P.Bhattacharyya,P.K.Basu,N,Mukherjee,A.Mondal,H.Saha,and S.Basu,"Deposition of nanocrystailine ZnO thin films on p-Si by novel galvanic method and application of the heterojunction as methane sensor",J.Mater Sci.:Mater.Electron.18(2007)823-829
    [179]R.Ghosh and D.Basak,"Electrical and ultraviolet photoresponse properties of quasialigned ZnO nanowires/p-Si heterojunction",Appl.Phys.Lett.90(2007)243106
    [180]Y.F.Gu,X.M.Li,J.L.Zhao,W.D.Yu,X.D.Gao,and C.Yang,"Visible-blind ultra-violet detector based on n-ZnO/p-Si heterojunction fabricated by plasma-assisted pulsed laser deposition",Solid State Commun.143(2007)421-424
    [181]S.Mridha and D.Basak,"Ultraviolet and visible photoresponse properties of n-ZnO/p-Si heterojunction",J.Appl.Phys.101(2007)083102
    [182]H.Qi,Q.Li,C.Wang,L.Zhang,and L.Lv,"Effects of oxygen pressure on n-ZnO/p-Si heterojunctions fabricated using pulsed laser deposition",Vacuum 81(2007)943-946
    [183]J.-J.Wu and D.K.-P.Wong,"Fabrication and Impedance Analysis of n-ZnO Nanorod/p-Si Heterojunctions to Investigate Carrier Concentrations in Zn/O Source-Ratio-Tuned ZnO Nanorod Arrays",Adv.Mater.(Weinheim,Ger.)19(2007)2015-2019
    [184]J.John F.Conley,L.Stecker,and Y.Ono,"Directed integration of ZnO nanobridge devices on a Si substrate",Appl.Phys.Lett.87(2005)223114
    [185]A.Chandra and L.F.Eastman,"Rectification at n-n GaAs:(Ga,Al)As heterojunctions",Electron.Lett.15(1979)90-91
    [186]A.Chandra and L.F.Eastman,"Rectification at n-GaAs/n-Ga_(0.7)Al_(0.3)As heterojunctions grown by liquid phase epitaxy",J.Vac.Sci.Technol.16(1979)1525-1528
    [187]J.F.Womac and R.H.Rediker,"The graded-gap Al_xGa_(1-x)As-GaAs heterojunction",J.Appl.Phys.43(1972)4129-4133
    [188]C.M.Garner,Y.D.Shen,C.Y.Su,G.L.Pearson,and W.E.Spicer,"Auger profiling studies of LPE n-Al_xGa_(1-x)As/n-GaAs heterojunctions and the absence of rectification",J.Vac.Sci.Technol.15(1978)1480-1482
    [189]A.Ohtomo,M.Kawasaki,I.Ohkubo,H.Koinuma,T.Yasuda,and Y.Segawa,"Structure and optical properties of ZnO/Mg_(0.2)Zn_(0.8)O superlattices",Appl.Phys.Lett.75(1999)980-982
    [190]T.W.Hickmott,"Potential Distribution and Negative Resistance in Thin Oxide Films",J.AppI.Phys.15(1964)2679-2689
    [191]F.L.Worthing,"D-C Dielectric Breakdown of Amorphous Silicon Dioxide Films at Room Temperature",J.Electrochem.Soc.115(1968)88-92
    [192]G.Dearnaley,A.M.Stoneham,and D.V.Morgans,"Electrical phenomena in amorphous oxide films",Rep.Prog.Phys.33(1970)1129-1191
    [193]J.C.Anderson,"Dielectric and Transport Properties of Insulating Films",J.Vac.Sci.Technol.9(1971)1-11
    [194]D.P.Oxley,"Electroforming,switching and memory effects in oxide thin films", Electrocomponent Sci.Technol.3(1977)217-224
    [195]H.Biederman,"Metal-insulator-metal sandwich structures with anomalous properties",Vacuum 26(1979)513-523
    [196]A.K.Ray and C.A.Hogarth,"A critical review of the observed electrical properties of M IM devices showing VCNR",Int.J.Electronics 57(1984)1-78
    [197]F.Capasso and R.A.Kiehl,"Resonant tunneling transistor with quantum well base and high-energy injection:A new negative differential resistance device",J.Appl.Phys.58(1985)1366-1368
    [198]A.Kastalsky,M.Milshtein,L.G.Shantharama,J.Harbison,and L.Florez,"New negative differential resistance effects in the negative resistance field-effect transistor",J.Appl.Phys.66(1989)2186-2188
    [199]T.W.Hickmott,"Voltage-dependent dielectric breakdown and voltage-controlled negative resistance in anodized Al-Al_2O_3-Au diodes",J.Appl.Phys.88(2000)2805-2812
    [200]R.E.Thurstans and D.P.Oxley,"The electroformed metal-insulator-metal structure:a comprehensive model",J.Phys.D:Appl.Phys.35(2002)802-809
    [201]D.N.Kouvatsos,V.loannou-Sougleridis,and A.G.Nassiopoulou,"Charging effects in silicon nanocrystals within SiO_2 layers,fabricated by chemical vapor deposition,oxidation,and annealing",Appl.Phys.Lett.82(2003)397-399
    [202]G.R.Lin,"Effect of low-temperature annealing on the luminescent lifetime and negative differential resistance of silicon-implanted borosilicate glass",J.Appl.Phys.94(2003)7542-7546
    [203]S.Y.Chung,N.Jin,P.R.Berge,R.Yu,P.E.Thompson,R.Lake,S.L.Rommel,and S.K.Kurinec,"Three-terminal Si-based negative differential resistance circuit element with adjustable peak-to-valley current ratios using a monolithic vertical integration",Appl.Phys.Lett.84(2004)2688-2690
    [204]G.R.Lina and C.J.Lin,"Improved blue-green electroluminescence of metal-oxide-semiconductor diode fabricated on multirecipe Si-implanted and annealed SiO_2-Si substrate",J.Appl.Phys.95(2004)8484-8486
    [205]Z.Pei,A.Y.K.Su,H.L.Hwang,and H.L.Hsiao,"Room temperature tunneling transport through Si nanodots in silicon rich silicon nitride",Appl.Phys.Lett.86(2005)063503
    [206]N.-M.Park,S.H.Kim,S.Maeng,and S.-J.Park,"High negative differential resistance in silicon quantum dot metal-insulator-semiconductor structure",Appl.Phys.Lett.89(2006)153117
    [207]L.W.Yu,K.J.Chen,J.Song,J.M.Wang,J.Xu,W.Li,and X.F.Huang,"Coulomb blockade induced negative differential resistance effect in a self-assembly Si quantum dots array at room temperature",Thin Solid Films 515(2007)5466-5470
    [208]C.A.Neugebauer and M.B.Webb,"Electrical Conduction Mechanism in Ultrathin,Evaporated Metal Films",J.Appl.Phys.33(1962)74-82
    [209]G.D.Mahan,L.M.Levinson,and H.R.Philipp,"Theory of conduction in ZnO varistors",J.Appl.Phys.50(1979)2799-2812
    [210]G.E.Pike,S.R.Kurtz,P.L.Gourley,H.R.Philipp,and L.M.Levinson,"Electroluminescence in ZnO varistors:Evidence for hole contributions to the breakdown mechanism",J.Appl.Phys.57(1985)5512-5518
    [211]D.Hofstetter and R.L.Thornton,"Loss measurements on semiconductor lasers by Fourier analysis of the emission spectra",Appl.Phys.Lett.72(1997)404-406
    [212]R.C.Polson,G.Levina,and Z.V.Vardeny,"Spectral analysis of polymer microring lasers",Appl.Phys.Lett.76(2000)3858-3860
    [213]R.C.Polson,A.Chipouline,and Z.V.Vardeny,"Random Lasing in π-Conjugated Films and Infiltrated Opals",Adv.Mater.(Weinheim,Ger.)13(2001)760-764
    [214]R.C.Polson and Z.V.Vardeny,"Organic random lasers in the weak-scattering regime",Phys.Rev.B 71(2005)045205
    [215]R.C.Polson,G.Levina,and Z.V.Vardeny,"Mode characterization of microring polymer lasers",Synth.Met.116(2001)363-367
    [216]H.C.Ong,J.Y.Dai,A.S.K.Li,G.T.Du,R.P.H.Chang,and S.T.Ho,"Effect of a microstructure on the formation of self-assembled laser cavities in polycrystalline ZnO",J.Appl.Phys.90(2001)1663-1665
    [217]F.Kodowski,B.Huber,P.Steiner,and W.Lang,"Generating a microplasma with porous silicon",The 8th International Conference on Solid-state Sensors and Actuators,and Eurosensors Ⅸ.,Stockholm,Sweden,(1995)381-384
    [218]A.Bogaerts,E.Neyts,R.Gijbels,and J.v.d.Mullen,"Gas discharge plasmas and their applications",Spectrochim.Acta B 57(2002)609-658
    [219]J.G.Eden,S.-J.Park,N.P.Ostrom,and K.-F.Chen,"Recent advances in microcavity plasma devices and arrays:a versatile photonic platform",J.Phys.D:Appl.Phys.38(2005)1644-1648
    [220]J.Hopwood,F.Iza,S.Coy,and D.B.Fenner,"A microfabricated atmospheric-pressure microplasma source operating in air",J.Phys.D:Appl.Phys.38(2005)1698-1703
    [221]X.Lu and M.Laroussi,"Optimization of ultraviolet emission and chemical species generation from a pulsed dielectric barrier discharge at atmospheric pressure",J.Appl.Phys.98(2005)023301
    [222]S.-J.Park,K.S.Kim,and J.G.Eden,"Nanoporous alumina as a dielectric for microcavity plasma devices:Multilayer Al/Al_2O_3 structures",Appl.Phys.Lett.86(2005)221501
    [223]R.Rahul,O.Stan,A.Rahman,E.Littlefield,K.Hoshimiya,A.P.Yalin,A.Sharma,A.Pruden,C.A.Moore,Z.Yu,and G.J.Collins,"Optical and RF electrical characteristics of atmospheric pressure open-air hollow slot microplasmas and application to bacterial inactivation",J.Phys.D:Appl.Phys.38(2005)1750-1759
    [224]K.-F.Chen,N.P.Ostrom,S.-J.Park,and J.G.Eden,"One quarter million(500x500)pixel arrays of silicon microcavity plasma devices Luminous efficacy above 6 lumens/watt with Ne/50%Xe mixtures and a green phosphor",Appl.Phys.Lett.88(2006)061121
    [225]J.Y.Park,P.V.Kostyuk,S.B.Han,J.S.Kim,C.N.Vu,and H.W.Lee,"Study on optical emission analysis of AC air-water discharges under He,Ar and N_2 environments",J.Phys.D:Appl.Phys.39(2006)3805-3813
    [226]S.-J.Park,K.-S.Kim,and J.G.Eden,"Ultraviolet emission intensity,visible luminance,and electrical characteristics of small arrays of Al/Al_2O_3 microcavity plasma devices operating in Ar/N_2 or Ne at high-power loadings",J.Appl.Phys.99(2006)026107
    [227]M.K.Sharma,B.K.Saikia,A.Phukan,and B.Ganguli,"Plasma nitriding of austenitic stainless steel in N_2 and N_2-H_2 dc pursed discharge",Surface & Coatings Technology 201(2006)2407-2413
    [228]X.Li,L.Dong,N.Zhao,Z.Yin,T.Fang,and L.Wang,"A simple device of generating glow discharge plasma in atmospheric pressure argon",Appl.Phys.Lett.91(2007)161507
    [229]D.Mariotti,Y.Shimizu,T.Sasaki,and N.Koshizaki,"Gas temperature and electron temperature measurements by emission spectroscopy for an atmospheric microplasma",J.Appl.Phys.101(2007)013307
    [230]M.Zubek,"Excitation of the C~3Π_n state of N_2 by electron impact in the near-threshold region",J.Phys.B:At.Mol.Opt.Phys.27(1994)573-581
    [231]C.W.Lai,J.An,and H.C.Ong,"Surface-plasmon-mediated emission from metal-capped ZnO thin films",Appl.Phys.Lett.86(2005)251105
    [232]J.M.Lin,H.Y.Lin,C.L.Cheng,and Y.F.Chen,"Giant enhancement of bandgap emission of ZnO nanorods by platinum nanoparticles",Nanotechnology 17(2006)4391-4394
    [233]H.Y.Lin,C.L.Cheng,Y.Y.Chou,L.L.Huang,and Y.F.Chen,"Enhancement of band gap emission stimulated by defect loss",Opt.Express 14(2006)2372-2379
    [234]C.M.Mo,Y.H.Li,Y.S.Liu,Y.Zhang,and L.D.Zhang,"Enhancement effect of photoluminescence in assemblies of nano-ZnO particles/silica aerogels",J.Appl.Phys.83(1998)4389-4391
    [235]B.Yao,H.Shi,H.Bi,and L.Zhang,"Optical properties of ZnO loaded in mesoporous silica",J.Phys.:Condens.Matter(2000)6265-6270
    [236]Z.Fu,B.Yang,L.Li,W.Dong,C.J.and,and W.Wu,"An intense ultraviolet photoluminescence in sol-gel ZnO-SiO_2 nanocomposites",J.Phys.:Condens.Matter 15(2003)2867-2873
    [237]K.C.Hui,J.An,X.Y.Zhang,J.B.Xu,J.Y.Dai,and H.C.Ong,"Electron Beam Induced Light Emission and Charge Conduction Patterning in ZnO by Using an AlO_x Layer",Adv.Mater.(Weinheim,Ger.)17(2005)1960-1964
    [238]R.G.Xie,T.Sekiguchi,T.Ishigaki,N.Ohashi,D.S.Li,D.R.Yang,B.D.Liu,and Y.Bando,"Enhancement and patterning of ultraviolet emission in ZnO with an electron beam",Appl.Phys.Lett.83(2006)134103
    [239]C.-C.Lin,H.-P.Chen,H.-C.Liao,and S.-Y.Chena!,"Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates",Appl.Phys.Lett.86(2005)183103
    [240]J.W.P.Hsu,D.R.Tallant,R.L.Simpson,N.A.Missert,and R.G.Copeland,"Luminescent properties of solution-grown ZnO nanorods",Appl.Phys.Lett.88(2006)252103
    [241]Y.Lin,J.Xie,H.Wang,Y.Li,C.Chavez,S.Lee,S.R.Foltyn,S.A.Crooker,A.K.Burrell,T.M.McCleskey,and Q.X.Jia,"Green luminescent zinc oxide films prepared by polymer-assisted deposition with rapid thermal process",Thin Solid Fihns 492(2005)101-104
    [242]K.Kim,H.Tampo,J.Song,T.Seong,S.Park,J.Lee,S.Kim,S.Fujita,and S.Niki,"Effect of Rapid Thermal Annealing on Al Doped n-ZnO Films Grown by RF-Magnetron Sputtering",Jpn.J.Appl.Phys.44(2005)4776-4779
    [243]V.A.Coleman,J.E.Bradby,C.Jagadish,and M.R.Phillips,"Observation of enhanced defect emission and excitonic quenching from spherically indented ZnO",Appl.Phys.Lett.89(2006)082102
    [244]S.Y.Bae,C.W.Na,J.H.Kang,and J.Park,"Comparative Structure and Optical Properties of Ga-,In-,and Sn-Doped ZnO Nanowires Synthesized via Thermal Evaporation",J.Phys.Chem.B 109(2005)2526-2531
    [245]S.Gao,H.Zhang,R.Deng,X.Wang,D.Sun,and G.Zheng,"Engineering white light-emitting Eu-doped ZnO urchins by biopolymer-assisted hydrothermal method", Appl. Phys. Lett. 89 (2006)123125
    [246] J. V. Foreman, J. Li, H. Peng, S. Choi, H. O. Everitt, and J. Liu, "Time-Resolved Investigation of Bright Visible Wavelength Luminescence from Sulfur-Doped ZnO Nanowires and Micropowders", Nano Lett. 6 (2006) 1126-1130
    [247] W. Shan, W. Walukiewicz, J. W. A. III, K. M. Yu, Y. Zhang, S. S. Mao, R. Kling, C. Kirchner, and A. Waag, "Pressure-dependent photoluminescence study of ZnO nanowires", Appl. Phys. Lett. 86(2005)153117
    [248] S. J. Chen, Y. C. Liu, C. L. Shao, C. S. Xu, Y. X. Liu, C. Y. Liu, B. P. Zhang, L. Wang, B. B. Liu, and G. T. Zou, "Photoluminescence study of ZnO nanotubes under hydrostatic pressure", Appl. Phys. Lett. 88(2006) 133127
    [249] S. J. Chen, Y. C. Liu, C. L. Shao, C. S. Xu, Y. X. Liu, L. Wang, B. B. Liu, and G T. Zou, "Photoluminescence of wurtzite ZnO under hydrostatic pressure", J. Appl. Phys. 99 (2006) 066102
    [250] F. H. Su, Y. F. Liu, W. Chen, W. J. Wang, K. Ding, G H. Li, A. G Joly, and D. E. McCready, "Temperature and pressure dependences of the copper-related green emission in ZnO microrods", J. Appl. Phys. 100 (2006) 013107
    [251] A. B. Djurisic, Y. H. Leung, K. H. Tam, L. Ding, W. K. Ge, H. Y. Chen, and S. Gwo, "Green, yellow, and orange defect emission from ZnO nanostructures: Influence of excitation wavelength",Appl. Phys. Lett. 88(2006) 103107
    [252] W. S. Shi, B. Cheng, L. Zhang, and E. T. Samulski, "Influence of excitation density on photoluminescence of zinc oxide with different morphologies and dimensions", J. Appl. Phys. 98 (2005)083502
    [253] H. D. Li, S. F. Yu, A. P. Abiyasa, C. Yuen, S. P. Lau, H. Y. Yang, and E. S. P. Leong, "Strain dependence of lasing mechanisms in ZnO epilayers", Appl. Phys. Lett. 86 (2005) 261111

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700