光固化有机/无机防潮材料的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物基纳米复合材料是指以聚合物为基体、以各种纳米尺度的粒子为分散相的复合材料,这类复合材料综合了有机聚合物和无机材料的优良特性,明显提高高分子材料的力学性能、热稳定性,并能赋予高分子材料一些特殊性能,如高阻隔性、高导电性、高阻燃性、优良的光学性能等,是制备新型高性能材料的最经济实效的一种方法。
     本论文制备光固化的有机/无机杂化防潮材料主要综合利用了光聚合技术和纳米复合技术的优点。设计合成一种具有光聚合活性的长碳链季铵盐,先通过阳离子交换插层进入蒙脱土的片层间,再经过紫外光聚合,蒙脱土片层间的活性基团也能参与光聚合反应,从而将蒙脱土片层间距扩大,形成剥离状态,均匀分散在聚合物基体中。而蒙脱土的片层对透过聚合物基体的气体分子、水气等起到了好的阻隔作用,从而得到聚合物/杂化土纳米复合防潮材料。
     XRD结果表明合成的一种具有光聚合活性的长碳链季铵盐,插层到到蒙脱土MMT-2的片层间,使得蒙脱土片层间距明显扩大,由原来的1.515nm增加到4.152nm。红外扫描证明制备的有机杂化土带有可光聚合的活性丙烯酸酯双键,能参与光固化体系的光聚合反应。TGA结果表明改性后的杂化土中有机成分含量占到60%左右,已经具有明显的有机相容性。对固化膜的透湿量测试表明,剥离的蒙脱土片层对水蒸气有明显的阻隔作用,杂化膜的透湿量明显低于纯的聚合物膜。实验表明当杂化土的添加量为3%左右时,固化膜的透湿量是最低的,阻湿效果最佳。
Polymer nanocomposite is a kind composite material that a variety of nanoscale particles were dispersed in the polymer matrix which combination the superior characteristics of organic polymer materials and the inorganic particles. The mechanical properties and thermal stability of the polymer nanocomposite materials were improved significantly, and with some special properties of polymer materials, such as high barrier, high conductivity, high flame resistance, excellent optical properties. It is an economic effectiveness method to prepare the new high-performance materials.
     In this thesis, preparation of the organic/inorganic hybrid humidity resistance materials by UV photopolymerization combines the advantages of both nanocomposites and the UV photopolymerization. A photopolymerisable quaternary ammonium salt (PQAS-18) was synthesized and intercalated into the inorganic montmorillonite (Na-MMT) as organic modifier to preparation a novel organic-inorganic hybrid nanoclay by cationic exchange process. Then the hybrid nanoclay was added into the photopolymer matrix and after UV exposure, the lamellar structure of MMT was exfoliated to form a peeling state and dispersed in the polymer matrix because the active groups between the layers participate the polymerization. The composite material has good moisture resistance properties, because the exfoliated MMT layers which dispersed in the polymer matrix provide a barrier to the gas molecules or water vapor.
     XRD results showed that the layer spacing of the modified MMT was increased from the original 1.515 nm to 4.152 nm when the synthetic long chain photopolymerisable quaternary ammonium salt was intercalated into the layers. Fourier transform infrared spectroscopy (FTIR) confirmed that the PQAS-18 with active groups intercalated into the layers of the MMT still retain a high reactivity, and can participate in the UV polymerization. Thermo gravimetric analysis (TGA) showed that the amount of PQAS-18 intercalation was about 60%. The test of the water vapor transmission (WVT) of the cured film showed that the WVT of hybrid film was much lower than that of the pure polymer film. Experiments showed that when the hybrid soil was added by 3%, the WVT of the cured film was the lowest and the moisture resistance was the best.
引文
[1]Akane Okada, Arimitsu Usuki. Twenty Years of Polymer-Clay Nanocomposites. Macromol [J]. Mater. Eng.2006,291:1449-1476.
    [2]Ahmadi, S.J., Huang, Y.D., Li, W. Synthetic routes, properties and future applications of polymer-layered silicate nanocomposites [J]. Mater. Sci.2004,39:1919-1925.
    [3]Peng Liu. Polymer modified clay minerals:A review [J]. Applied Clay Science 2007,38: 64-76.
    [4]Giannelis EP. Polymer layered silicate nanocomposites [J]. Adv Mater 1996,8(1):29-35.
    [5]Manias E, Touny A, Wu L, Strawhecker K, Lu B, Chung TC. Polypropylene/montmorillonite nanocomposites. Review of the synthetic routes and materials properties [J]. Chem. Mater. 2001,13:3516-23.
    [6]Giannelis, E.P. Polymer layered silicate nanocomposites [J]. Adv. Mater.1996,8:29-35.
    [7]Gilman, J.W. Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites [J]. Appl. Clay Sci.1999,15:31-49.
    [8]Harvey, C.C., Murray, H.H. Industrial clays in the 21st century:a perspective of exploration, technology and utilization [J]. Appl. Clay Sci.1997,11:285-310.
    [9]Biswas M, Ray SS. Recent progress in synthesis and evaluation of polymer-montmorillonite nanocomposites [J]. Adv. Polym. Sci.2001,155:167-221.
    [10]Krishnamoorti R, Vaia RA, Giannelis EP. Structure and dynamics of polymer-layered silicate nanocomposites [J]. Chem. Mate.r 1996,8:1728-1734.
    [11]Vaia RA, Jandt KD, Kramer EJ, Giannelis EP. Kinetics of polymer melt intercalation [J]. Macromolecules 1995,28:8080-8085.
    [12]Xie W, Gao ZW, Pan WP, Hunter D, Singh A, Vaia R. Thermal degradation chemistry of alkyl quaternary ammonium montmorillonite. Chem. Mater.2001,13:2979-2990.
    [13]Oztekin, N., Alemdar, A., Gungor, N., Erim, F.B. Adsorption of polyethyleneimine from aqueous solution on bentonite clays [J]. Mater. Lett.2002,55:73-76.
    [14]Breen, C. The characterization and use of polycation-exchanged bentonites [J]. Appl. Clay Sci.1999,15:187-219.
    [15]Burmistr, M.V., Sukhyy, K.M., Shilov, V.V., Pissis, P., Spanoudaki, A., Sukha, I.V., Tomilo, V.I., Gomza, Y.P. Synthesis, structure, thermal and mechanical properties of nanocomposites based on linear polymers and layered silicates modified by polymeric quaternary ammonium salts (ionenes) [J]. Polymer 2005,46:12226-12232.
    [16]Giulio Malucelli, Silvia Ronchetti, Nahal Lak, Aldo Priola, Nadka Tzankova Dintcheva, Francesco Paolo La Mantia. Intercalation effects in LDPE/o-montmorillonites nanocomposites. European Poiymer Journal 43 (2007) 328-335.
    [17]Chu, C.C., Chiang, L.M., Tsai, CM., Lin, J.J. Exfoliation of montmorillonite clay by Mannich polyamines with multiple quaternary salts [J]. Macromolecules 2005,38: 6240-6243.
    [18]Deng, Y.J., Dixon, J.B., White, GN., Loeppert, R.H., Juo, A.S.R. Bonding between polyacrylamide and smectite [J]. Colloids Surf. A Physicochem. Eng. Asp.2006,281:82-91.
    [19]Grandjean, J., Laszlo, P. Interaction of nonionic polymers at a clay interface [J]. Magn. Reson. Imaging 1996,14:983-984.
    [20]Hu, S.W., Wang, Y., McGinty, K., Brittain, W.J. Surface modification of a silicate substrate by a "grafting from" methodology utilizing a perester initiator [J]. Eur. Polym.2006,42: 2053-2058.
    [21]Fan, X.W., Xia, C.J., Advincula, R.C. Grafting of polymers from clay nanoparticles via in situ free radical surface-initiated polymerization:monocationic versus bicationic initiators [J]. Langmuir 2003,19:4381-4389.
    [22]Kathleen, A.C. Synthetic organo-and polymer-clays:preparation, characterization, and materials applications [J]. Appl. Clay Sci.2000,17:1-23.
    [23]LeBaron, P.C., Wang, Z., Pinnavaia, T.J. Polymer-layered silicate nanocomposites:an overview [J]. Appl. Clay Sci.1999,15:11-29.
    [24]Morgan, A.B., Dubois, P. Polymer-layered silicate nanocomposites:Preparation, properties and use of new class of materials [J]. Mater. Sci. Eng. R Rep.2000,28:1-63.
    [25]E. Manias, A. Touny, L. Wu, K. Strawhecker, B. Lu, and T. C. Chung. Polypropylene/Montmorillonite Nanocomposites. Review of the Synthetic Routes and Materials Properties [J]. Chem. Mater.2001,13:3516-3523.
    [26]李青山,丛军英,王庆瑞,刘丹.聚合物/粘土纳米复合材料研究进展[J].材料科学与工艺 2004,12(6):618-621.
    [27]舒中俊,陈光明,漆宗能.聚合物/粘土纳米复合材料及其特殊阻燃性能[J].塑料工业,2000,28(3):24-26.
    [28]Jiawen Xiong, Yunhang Liu, Xiaohui Yang, Xinling Wang. Thermal and mechanical properties of polyurethane/montmorillonite nanocomposites based on a novel reactive modifier [J]. Polymer Degradation and Stability 2004,86:549-555.
    [29]Carroll JB, Waddon AJ, Nakade H, Rotello VM. "Plug and play" polymers. Thermal and X-ray characterizations of noncovalently grafted polyhedral oligomeric silsesquioxane (POSS)-polystyrene nanocomposites [J]. Macromolecules 2003,36:6289-6291.
    [30]Zhu J, Uhl FM, Morgan AB, Wilkie CA. Studies on the mechanism by which the formation of nanocomposites enhances thermal stability [J]. Chem. Mater.2001,13:4649-4654.
    [31]Ray, S.S., Okamoto, M. Polymer/layered silicate nanocomposites:a review from preparation to processing [J]. Prog. Polym. Sci.2003,28:1539-1641.
    [32]Diagne, M., Gueye, M., Vidal, L., Tidjani, A. Thermal stability and fire retardant performance of photo-oxidized nanocomposites of polypropylene-graft-maleic anhydride/clay [J]. Polym. Degrad. Stab.2005,89:418-426.
    [33]Gorrasi G, Tortora M, Vittoria V, Pollet E, Lepoittevin B, Alexandre M. Vapor barrier properties of polycaprolactone montmorillonite nanocomposites:effect of clay dispersion [J]. Polymer 2003,44:2271-2279.
    [34]Osman MA, Mittal V, Morbidelli M, Suter UW. Polyurethane adhesive nanocomposites as gas permeation barrier [J]. Macromolecules 2003,36:9851-9858.
    [35]Mosto Bousmina. Study of Intercalation and Exfoliation Processes in Polymer Nanocomposites [J]. Macromolecules 2006,39:4259-4263.
    [36]Chao JW, Paul DR. Nylon 6 nanocomposites by melt compounding [J]. Polymer 2001, 42:1083-1094.
    [37]Usuki A, Kojima Y, Kawasumi M, Okada A, Fukushima Y, Kurauchi T. Synthesis of nylon 6-clay hybrid [J]. Mater. Res.1993,8:1179-84.
    [38]Hasegawa N, Okamoto H, Kato M, Tsukigase A, Usuki A. Polyolefin-clay hybrids based on modified polyolefins and organophilic clay [J]. Macromol Mater Eng 2000,280:76-79.
    [39]Jin YH, Park HJ, Im SS, Kwak SY, Kwak S. Polyethylene/clay nanocomposite by in-situ exfoliation of montmorillonite during Ziegler-Natta polymerization of ethylene [J]. Macromol Rapid Commun.2002,23:135-40.
    [40]Alexandre M, Dubois P, Tao S, Garces JM, Jerome R. Polyethylene-layered silicate nanocomposites prepared by the polymerization-filling technique:synthesis and mechanical properties [J]. Polymer 2002,43(8):2123-2132.
    [41]Wang, Z.M., Nakajima, H., Manias, E., Chung, T.C. Exfoliated PP/clay nanocomposites using ammonium-terminated PP as the organic modification for montmorillonite. Macromolecules 2003,36:8919-8922.
    [42]Magaraphan R, Lilayuthalert W, Sirivat A, Schwank JW. Preparation, structure, properties and thermal behavior of rigidrod polyimide/montmorillonite nanocomposites [J]. Compos Sci Technol.2001,61:1253-1264.
    [43]Yeh JM, Liou SJ, Lin CY, Cheng CY, Chang YW. Anticorrosively enhanced PMMA-clay nanocomposite materials with quaternary alkylphosphonium salt as an intercalating agent [J]. Chem. Mater.2002,14:154-61.
    [44]Wang Z, Pinnavaia TJ. Nanolayer reinforcement of elastomeric polyurethane [J]. Chem. Mater.1998,10:3769-3771.
    [45]Zilg C, Thomann R, Mu" lhaupt R, Finter J. Polyurethane nanocomposites containing laminated anisotropic nanoparticles derived from organophilic layered silicates [J]. Adv Mater.1999,11:49-52.
    [46]Chang JH, Uk An Y. Nanocomposites of polyurethane with various organoclays: thermomechanical properties, morphology, and gas permeability [J]. Polym. Sci. Part B: Polym. Phys.2002,40:670-677.
    [47]Lan T, Kaviratna PD, Pinnavaia TJ. Mechanism of clay tactoid exfoliation in epoxy-clay nanocomposites [J]. Chem. Mater.1995,7:2144-2150.
    [48]Gu A, Liang GZ. Thermal degradation behaviour and kinetic analysis of epoxy/ montmorillonite nanocomposites [J]. Polym Degrad Stab 2003,80:383-391.
    [49]Chang JH, Park DK, Ihn KJ. Montmorillonite-based nanocomposites of polybenzoxazole: synthesis and characterization (I) [J]. Polym. Sci. Part B:Polym. Phys.2001,39:471-476.
    [50]Su, S.P., Jiang, D.D., Wilkie, C.A. Novel polymerically modified clays permit the preparation of intercalated and exfoliated nanocomposites of siyrene and its copolymers by melt blending [J]. Polym. Degrad. Stab.2004; 83:333-346.
    [51]Sen, S., Memesa, M., Nugay, N., Nugay, T. Synthesis of effective poly(4-vinylpyridine) nanocomposites:in situ polymerization from edges/surfaces and interlayer galleries of clay [J]. Polym. Int.2006,55:216-221.
    [52]Uthirakumar, P., Hahn, Y.B., Nahm, K.S., Lee, Y.S. Exfoliated high-impact polystyrene/MMT nanocomposites prepared using anchored cationic radical initiator-MMT hybrid [J]. Eur. Polym.2005,41:1582-1588.
    [53]Guth, U., Brosda, S., Schomburg, J. Application of clay minerals in sensor techniques [J]. Appl. Clay Sci.1996,11:229-236.
    [54]Vaccari, A. Clays and catalysis:a promising future [J]. Appl. Clay Sci.1999,14:161-198.
    [55]Lauppi U.V. Radiation curing-an overview [J]. Radiat. Phys Chem.1990,35(1):30-35.
    [56]陈用烈,曾兆华,杨建文.辐射固化材料及其应用[M].北京:化学工业出版社,2003:8.
    [57]Decker C. Photoinitiated crosslinking polymerization[J]. Prog Polym Sci,1996,21(4): 593-650.
    [58]Lauppi U.V. Radiation curing-an overview [J]. Radiat Phys Chem,1990,35(1):30-35.
    [59]杨永源,吴玉民,胡辉,谭昊涯.辐射固化材料的现状和某些进展[J].感光科学与光化学,2002,(20):230-238.
    [60]卞忠义.不饱和聚酯树脂反应性研究[J].玻璃钢/复合材料,2000,(1):30-32.
    [61]Chen Y. New UV curable cyclotriphosphazenes as fire retardant coating material for wood [J]. Journal of Applied Polymer Science,1998,69(2):115-122.
    [62]Chang-sik H A. Properties of U V curable polyurethane acrylates using nonyellowing polyisocyanate for floor coating [J]. Journal of Applied Polymer Science,1996, (62):1011-1021.
    [63]Hong X Y, Chen Q D, Zhang Y M.. Synthesis and characterization of a hyperbran-ched polyol with long flexible chains and its application in cationic UV curing [J]. Journal of Applied Polymer Science,2000,77(7):1353-1356.
    [64]魏无际,郑耀臣,鲁钢.光固化ADGDE齐聚物的合成及特性[J].化学世界,2002,43(12):638-640.
    [65]Crivello J V, Lam JHW. New photoinitiatiators for cationic polymerization[J]. J. Polym. Sci., Symp.,1976,56:383-395.
    [66]Andrzejewska E. Photopolymerization kinetics of multifunctional monomers [J]. Prog. in Polym. Sci.2001,26(4):605-665.
    [67]Eleonora Polo, Andrea Barbieri, Silvana Sostero, and Malcolm L. H. Green. Zirconocenes as Photoinitiators for Free-Radical Polymerisation of Acrylates [J]. Eur. J. Inorg. Chem. 2002,405-409.
    [68]王文君,邹应全.光固化涂料的应用进展[J].信息记录材料2004,5:27-30.
    [69]Rao A V, Kanitkar D S, Parab A K. Some speciality coatings from radiation curable poly (acrylic) combination [J]. Progress in Organic Coatings 1995, (25):221-233.
    [70]Chen Y. New UV curable cyclotriphosphazenes as fire retardant coating material for wood [J]. Journal of Applied Polymer Science 1998, (69):115-122.
    [711 Papilloud S, Baudraz D. Migration tests for substrates printed with UV ink systems in aqueous simulants [J]. Progress in Organic Coatings 2002,45(2-3):231-237.
    [72]吕希光,马家举,江棂.辐射固化胶粘剂的应用与研究[J].中国胶粘剂,2004,13(5):55-59.
    [73]景惧斌.紫外光UV固化粘合剂[J].信息记录材料,2004,5(4):31-36.
    [74]Liu J H, Lin S H, Shi J C. Preparation and characterization of photoreactive copolymers containing curable pendants for positive photoresist [J]. Journal of Applied Polymer Science 2001,80:328-333.
    [75]肖啸,刘世杰.光刻技术发展现状分析[J].乐山师范学院学报2004,24:26-29.
    [76]Sthel M, Rieumont J, Martinez R. Study on the spatial resolution of a furfuryl alcohol-negative photoresist using a holographic system [J]. Journal of Applied Polymer Science 1999,71:1749-1751.
    [77]L. Keller, C. Decker, K. Zahouily, S. Benfarhi, J.M. Le Meins, J. Miehe-Brendle. Synthesis of polymer nanocomposites by UV-curing of organoclay-acrylic resins [J]. Polymer 2004, 45:7437-7447.
    [78]S. Benfarhi, C. Decker, L. Keller, K. Zahouily. Synthesis of clay nanocomposite materials by light-induce crosslinking polymerization [J]. European Polymer Journal 2004,40:493-501.
    [79]M. Sangermano, G. Malucelli, E. Amerio, A. Priola, E. Billi, G. Rizza. Photopolymerization of epoxy coatings containing silica nahoparticles [J]. Progress in Organic Coatings 2005,54: 134-138.
    [80]Alper Nese, Sinan Sen, Mehmet Atilla Tasdelen, Nihan Nugay,* Yusuf Yagci. Clay-PMMA Nanocomposites by Photoinitiated Radical Polymerization Using Intercalated Phenacyl Pyridinium Salt Initiators [J]. Macromol. Chem. Phys.2006,207:820-826.
    [81]Hailin Tan, Jun Nie. Photopolymerization and Characteristics of Polyurethane/Organoclay Nanocomposites. Macromol [J]. React. Eng.2007,1:384-390.
    [82]Hailin Tan, Jing Han, Guiping Ma, Ming Xiao, Jun Nie. Preparation of highly exfoliated epoxy-clay nanocomposites by sol-gel modification [J]. Polymer Degradation and Stability 2008,93:369-375.
    [83]卢春生,米耀荣.化整为零:聚合物/粘土纳米复合材料的微观结构和阻隔性能[J].研究快讯2006,35(7):550-552.
    [84]Fredrickson GH, Bicerano J. Barrier properties of oriented disk composites [J]. Chem. Phys. 1999,110:2181-2188.
    [85]Akelah, A., Moet, A. Polymer-clay nanocomposites:freeradical grafting of polystyrene on to organophilic montmorillonite interlayers [J]. Mater. Sci.1996,31:3589-3596.
    [86]Kwame Owusu-Adom, Joel Schall, and C. Allan Guymon. Photopolymerization Behavior of Thiol-Acrylate Monomers in Clay Nanocomposites [J]. Macromolecules 2009,42: 3275-3284.
    [87]Vaia RA, Giannelis EP. Polymer melt intercalation in organically modified layered silicates: model predictions and experiment [J]. Macromolecules 1997,30:8000-8009.
    [88]Xiaohua Qin, Ya Wu, Kemin Wang, Hailin Tan, Jun Nie. In-situ Synthesis of Exfoliated Nanocomposites by Photopolymerization Using a Novel Montmorillonite-anchored Initiator [J]. Applied Clay Science 2009,45 (3):133-138.
    [89]Boyd, S.A. Method of removing hydrocarbon contaminants from air and water with organophilic, quaternary ammonium ion-exchanged semctnite clay. US Patent,1993, 5,268,109. Chang-sik H A. Properties of UV curable polyurethane acrylates using nonyellowing
    [90]polyisocyanate for floor coating [J]. Journal of Applied Polymer Science,1996,62: 1011-1021.
    [91]Ma JS, Zhang SF, Qi ZN. Synthesis and characterization of elastomeric polyurethane/clay nanocomposites [J]. Appl. Polym. Sci.2001,82:1444-1448.
    [92]Mishra JK, Kim I, Ha CS. New millable polyurethane/organoclay nanocomposite: preparation, characterization and properties [J]. Macromol Rapid Commun.2003, 24:671-675.
    [93]Su, S.P., Jiang, D.D., Wilkie, C.A. Polybutadiene-modified clay and its nanocomposites [J]. Polym. Degrad. Stab.2004,84:279-288.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700