超支化聚硅氧烷改性双马来酰亚胺树脂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
先进树脂基复合材料(Advanced Polymeric Composite,APC)以其轻质、高比强、高比模、耐高温和极强的材料-性能可设计性而成为发展迅猛的高技术材料之一。基体树脂是决定复合材料性能优劣的一个关键因素。双马来酰亚胺(BMI)树脂既有聚酰亚胺(PI)的耐高温、耐辐射、耐湿热等多种优良特性,又有类似于环氧树脂(EP)的易加工性能,在许多方面满足了APC的要求,国外对其需求正以每年15%的速度增长。但是,未改性的BMI存在着熔点高、溶解性差、成型温度高、固化物脆性大等缺点,其中韧性差是阻碍BMI发展和应用的关键,因此增韧改性是BMI改性的前沿课题。
     作为APC基体树脂,不仅要有优良的机械性能(尤其是断裂韧性)、耐热、耐湿热、耐老化、耐腐蚀等,而且还要有优良的加工性。但现有树脂存在的主要问题是不能将高温性能、耐湿热性、韧性及加工性有机地统一起来。
     聚硅氧烷是一类具有突出耐热性、韧性和介电性能的聚合物,有望成为热固性树脂优良的增韧剂,但是聚硅氧烷的粘度大、与BMI的相容性差,使得增韧效果一直难以发挥。
     超支化聚合物是一类结构规整性低、质量分布宽,末端聚集大量活性官能团的化合物,具有结构和性能独特、聚合条件简单的特点,已成为近年来高分子材料领域研究的一个热点。超支化聚合物已用于环氧树脂的增韧改性,但是尚未有关于超支化聚合物用于BMI改性的研究报道。BMI的增韧改性的重点之一是必须兼顾BMI耐热性以及介电性能等,因此超支化聚合物是否能够在保证BMI突出耐热性以及优异介电性能的基础上实现BMI的增韧改性是一个值得探究的科学问题,这也正是本文的研究目的。
     我们选取了较为常见的、含不同活性端基、与BMI有不同反应机理的硅氧烷,分别是端基为环氧基团的γ-缩水甘油醚氧丙基三甲氧基硅烷(KH560),端基为活性双键的γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH570),以及端基为氨基的γ-氨丙基三乙氧基硅烷(KH550),分别经水解合成了三种端基为不同活性基团的超支化聚硅氧烷(HBPSi),以期不仅集成超支化聚合物和聚硅氧烷的特点,而且通过活性端基解决聚硅氧烷和BMI的相容性问题。在此基础上,探索了HBPSi改性BMI树脂的制备方法,全面评价了BMI改性体系的结构与性能。实验数据证明,HBPSi的加入能显著提高体系的冲击强度、耐热性能等,使体系的综合性能有较大幅度的提高。
Advanced polymer matrix composites (APCs) have been one kind of high-tech materials owing to their light weight, large specific strength and modulus, outstanding thermal resistance, and high designability. The matrice is a key factor to determine the performances of a composite. Bismaleimide (BMI) resin has the advantages of polyimide such as including outstanding thermal and radiation resistance, and the similar processing characteristics of epoxy (EP) resins. BMI meets the requirements of the APCs in many aspects. However,BMI has big brittleness and poor processing characteristics including high melting point, poor solubility, and high curing temperature. Among them, brittleness becomes the biggest barrier to impede the applications of BMI. Therefore, the toughening is one of the most important subject on the modification of BMIs.
     In general, APCs should have not only excellent mechanical properties (especially fracture toughness),heat resistance,damp-heat,anti-aging,corrosion resistance and so on,but also have excellent processability. However,it seem not possible to overcome the contradiction between the processability.and performances of cured resins such as thermal resistancance, moisture resistance, and toughness.
     Polysiloxane is a kind of high performance polymers with outstanding heat resistance, toughness and dielectric properties, so it is expected to be used as an excellent tougher of thermosetting resins. But polysiloxane has big viscosity, poor compatibility with BMI, so the toughening effect of polysiloxane is difficult to be taken effect.
     Hyperbranched polymers are a class of polymers with low structural regularity, wide mass distribution, and a large number of active groups, which have been a hot spot of researches in the field of polymer materialsin recent years due to their unique structure and properties as well as simple polymerization conditions. Some hyperbranched polymers have been used for toughening of epoxy resins,but no similar researches are carried out for the modification of BMIs. More importantly, toughening of BMI resins should be carried out without sacrificing the original advantages of BMI resins including outstanding heat resistance and excellent dielectric properties, etc, whether the modification of BMIs by hyperbranched polymers can get the target is a worthy subject to be addresses, this is the object of this research.
     Three hyperbranched polysiloxanes (HBPSi) with different active end groups (epoxy, C=C double bonds and amine groups) are designed and synthesized by the hydrolyzation. These hyperbranched polysiloxanes are expected to combine the advantages of both hyperbranched polymers and polysiloxanes, but also get good compatibility with BMI through active-terminated groups. On this basis, new method for preparing HBPSi modified BMI resins is developed, and the structure-property relationship of modified resins is evaluated. Results show that the addition of HBPSi into BMI can effectively improve the impact strength and therma resistance of the resin, so that the overall performances of resins are greatly enhanced.
引文
[1].梁国正,顾嫒娟.双马来酰亚胺[M].北京化学工业出版社,1997年:1~5.
    [2].益小苏,杜善义,张立同.中国材料工程大全(第10卷)复合材料工程[M].北京化学工业出版社,2006年:84~90.
    [3]. Jiang Bibiao, Hao Jianjun, Wang Wenyun, et al. Synthesis and properties of novel polybismaleimide oligomers[J]. European Polymer Journal, 2001, 37: 463~467.
    [4]. Tang Haoyu, Naiheng Song, Zihong Gao, et al. Synthesis and properties of 1, 3, 4-oxadiazole-containing high–performance bismaleimide resins [J]. Polymer, 2007, 48(1): 129~138.
    [5]. Ying-ling Liu, Yu-Jane Chen. Novel thermosetting resins based on 4-(N-maleimidohenyl)glycidyletherⅡ: Bismaleimides and polybismaleimides [J]. Polymer, 2004, 45: 1797~1804.
    [6].王洪波,周浩然,徐双平.二元胺/环氧树脂增韧BMI树脂的研究[J].哈尔滨理工大学学报,2005,10(5):88~90.
    [7]. M. Naffakh, M. Dumon, J.F. Gérard. Study of a reactive epoxy–amine resin enabling in situ dissolution of thermoplastic films during resin transfer moulding for toughening composites [J]. Composites Science and Technology, 2006, 66(10): 1376~1384.
    [8]. Mohammed Naffakh, Michel Dumon, Jer?me Dupuy, Jean-Fran?ois Gérard Na. Cure kinetics of an epoxy/liquid aromatic diamine modified with poly(ether imide) [J]. Journal of Applied Polymer Science, 2005, 96(3): 660~672.
    [9]. Marie Folrence, Crenier Loustalot, Louis Da Cunha. Influence of sterichindrance on the reactivity and kinetics of stateradical polymerization of binary bismaleimide-diamine systems [J]. Polymer, 1998, 39(10): 1799~1814.
    [10].黄发荣,焦扬声,祖志诚.双马来酰亚胺树脂增韧[J].功能高分子学报,1994,7(1):47~54.
    [11].潘祖仁.高分子化学[M].北京化学工业出版社,2007年,2.
    [12].刘润山,范和平.先进复合材料BMI树脂基体的特性和发展[J].高分子材料科学与工程,1991,5:8~16.
    [13]. Zheng Hongfei, Li Zhihong, Zhu Yumei. Bismaleimide Modified by Allyl Novolak for Superrabrasives [J]. Chinese Journal of Chemical Engineering, 2007, 15 (2): 302~304.
    [14]. Gu Aijuan. Novel high performance RTM bismaleimide resin with low cure temperature for advanced composites [J]. Polymers for Advanced Technologies, 2005, 16 (7): 563~566.
    [15]. Chaudhari.M, Galvin.T, King.J. Characterization of bismaleimide system Xu292 [J]. SAMPE, 1985, 21(4): 17~21.
    [16]. Qin Haihu, Patrick T Mather, Jong-Beom Baek, Loon-SengTan. Mofification of bisphenol-A based bismaleimide resin ( BPA-BMI ) with ally-terminated hyperbranched polyimide (AT-PAEKI) [J]. Polymer, 2006, 47 (8): 2813~2821.
    [17].周励民,刘润山.液态和混合烯丙基酚改性BMI树脂研究[J].高分子材料科学与工程, 2000, 16 (3) : 138~141.
    [18]. Gu Aijuan, Liang Guozheng, Liang Dan, Ni Miao. Bismaleimide/carbon nanotube hybrids for potential aerospace application: I. Static and dynamic mechanical properties [J]. Polymers for Adanced Technologies, 2007, 18 (10): 835~840.
    [19].周宏福,刘润山.双马来酰亚胺树脂的改性研究进展[J].合成技术及应用,2009,24(2):35~40.
    [20]. Liu Xiaoyun, Yu Yingfeng, Li Shanjun, Viscoelastic phase separation in polyethersulfone modified bismaleimeide resin [J]. European Polymer Journal, 2006, 42(4): 835~842.
    [21]. Rong Zhuxia, Huang Funei, Shen Xuening, Huang Farong. Preparation and properties of dipropargyl ether of bisphenol A modified bismaleimide resins and composites [J]. Polymer Composites, 2008, 29(5): 483~488.
    [22].王汝敏,杨利,郑水蓉.热塑性树脂增韧MBMI/DABPA复合材料效果研究[J].固体火箭技术,2001,24(4):62~65.
    [23].刘刚,宁荣昌,叶保民.聚醚酸亚胺改性双马来酸亚胺树脂体系的研究[J].塑料工业,2007,35:168.
    [24]. Liu Xiaoyun, Yu Yingfeng, Li Shangjun. Study on cure reaction of the blends of bismaleimide and dicyanate ester [J]. Polymer, 2006, 47(11): 3767~3773.
    [25].潘玉良,项小宇,袁漪.高频线路板基板—三嗪覆铜板[J].热固性树脂,1998,1:32~36.
    [26]. Lin Rong Hsien, Lu Wei Hua, Lin Chih Wei. Cure reacations in the blend of cyanate ester with maleimide [J]. Polymer, 2004, 45(13): 4423~4435.
    [27]. I Hamerton, H Herman, A K Mudhar, A Chaplin, S J Shaw. Multivariate anaylsis of spectra of cyanate ester/bismaleimide blends and correlations with properties [J]. Polymer, 2002, 43(11): 3381~3386.
    [28]. Barton J M, et al. The Synthesis, Characterization and Thermal Behavior of Functionalized Aryl Cyanate Ester Monomers [J]. Polymer International, 1992, 29(2): 145~156.
    [29]. Barton J M, et al. A Study of the Thermal and Dynamic Mechanical Properties of Functionalized Aryl Cyanate Ester and their Polymers [J]. Polymer International, 1993 (1): 95~106.
    [30]. Gu Aijuan. High performance bismaleimide/cyanate ester hybrid polymer networks with excellent dielectric properties [J]. Composites Science and Technology, 2006, 66(11/12): 1749~1755.
    [31].赵丽敏,夏华,龚荣洲.双马来酰亚胺改性酚醛型环氧树脂的研究[J].功能材料,2007,3:404~407.
    [32].李全步,胡程耀,叶炜.双马来酰亚胺改性酚醛型环氧树脂性能研究[J].航空材料学报,2008,2:82~86.
    [33].黄凯兵,高琳,周久红. BMI改性丁腈橡胶在聚合物基摩擦材料中的应用研究[J].非金属矿,2007,3:58~60.
    [34].雷永,荆晓东,江璐霞.橡胶增韧双马来酰亚胺树脂的研究[J].化工新型材料,2001,29(2):26~29.
    [35].张麟.碳纳米管改性双马来酰亚胺复合材料的研究[C].西北工业大学硕士论文,2007:3.
    [36].黄福伟,周燕,沈学宁.八氨基苯笼形倍半硅氧烷改性的双马来酰亚胺树脂[J].宇航材料工艺,2008,2:17~21.
    [37].李玲,蓝立文. BMI原位复合材料的研究[J].西北工业大学学报, 2001, 19(3):459~492.
    [38].刘孝波,江璐霞,蔡兴贤.液晶热固性聚酰亚胺树脂的最新研究进展[J].材料导报,1994,4:62~64.
    [39].陈志华,张永化,胡长存,游华燕.有机硅改性聚合物的研究进展[J].化工新型材料, 2006, 34 (3) : 14~17.
    [40]. Li Wanwan, Liu Feng, Wei Liuhe, Zhao Tong. Synthesis, morphology and properties of polydimethylsiloxane-modified allylated novolac/4,4′-bismaleimidodiphenylmethane [J]. European Polymer Journal, 2006, 42(3): 580~592.
    [41]. Meng Jiru, Hu Xiao, Boey Freddy Y.C., Li Lin. Effect of layered nano-organosilicate on the gel point rheology of bismaleimide/diallylbisphenol A resin [J]. Polymer, 2005, 46(8): 2766~2776.
    [42]. Liu Yingling, Yu-Jane Chen. Novel thermosetting resins based on 4-(N-maleimidophenyl)glycidylether: II. Bismaleimides and polybismaleimides [J]. Polymer, 2004, 45(6): 1797~1804.
    [43].佀庆法,范晓东,王生杰,孔杰.超支化聚硅(碳/氧)烷的研究进展[J].高分子通报, 2006, 6: 44~56.
    [44].金日光,华幼卿.高分子物理[M].北京:化学工业出版社,2000:11
    [45]. Wei huan-yu, Shi Wen-fang. Structural characteristics, syntheses and applications of hyperbranched polymer [J]. Kao Teng Hsueh Hsiao Hua Heush Hsueh Pao/Chemical Journal of Chinese Universities, 2001, 22(2): 338~344.
    [46]. Schmaljohann D, Komber H, Barratt J, et al. Kinetics of nonideal hyperbranched polymerizations [J]. Macromolecules, 2003, 36(1): 97~108.
    [47]. Rokicki G, et al. New hyperbranched polyether containing cyclic carbonate groups as a toughening agent for epoxy resin [J]. Polymer, 2007, 48(7): 1857~1865.
    [48]. Debdatta Ratna. Toughened FRP composites reinforced with glass and carbon fibe [J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(3): 462~469.
    [49]. Fan Long Jin, Soo Jin Park. Thermal properties and toughness performance ofhyperbranched-polyimide-modified epoxy resins [J]. Journal of Polymer Science. 2006, 44(23): 3348~3356.
    [50].朱超,林丽娟,戚豹.超支化聚合物改性环氧树脂的研究[J].化学与粘合. 2007, 2 (4): 261~264.
    [51].张道洪,贾德民,黄险波.超支化环氧树脂增韧增强双酚A型环氧树脂[J].华南理工大学学报(自然科学版), 2006, 34(9): 90~95.
    [52].顾嫒娟,等. CN101418074、CN101434700.
    [53].赵宝辉,巴信武,侯文龙.超支化聚(酰胺-酯)/聚氯乙烯共混体系流变性能及其力学性能研究[J].高分子材料科学与工程,2003,288(4):318~325.
    [54]. Orietta Monticelli, Daniela Oliva, Saverio Russo, Carola Clausnitzer, Petra P?tschke, Brigitte Voit. On blends of polymide 6 and a hyperbranched aramid [J]. Macromolecular Materials and Engineering, 2003, 288(4): 318~325.
    [55]. Jannerfeldt C, Boogh L, Manson J A E. Influence of hyperbranched polymers on the interfacial tension of polypropylene/polyamide-6 blends [J]. Journal of Polymer Science, Part B: Polymer Physics, 1999,37(16): 2069~2077.
    [56]. Schmaljohann D, Potschke P, Hassler R, Voit B I, Froehling P E, Mostert B, Loontjens J A. Blends of amphiphilic, hyperbranched polymesters and different polyolefins [J]. Macromolecules, 1999, 32(19): 6333~6339.
    [57]. Kim Y H, Webster O W. Hyperbranched polyphenylenes [J]. Macromolecules, 1992, 25(21): 5561~5572.
    [58]. Mulkern T J, Beck Tan N C. Processing and characterization of reactive polystyrene/hyperbranched polyester blends [J]. Polymer, 2000, 41(9): 3193~3203.
    [59]. Diao Jianzhi, Zhang Jianmin, Zhao Qi, Yang HuiFang. Mechanical properties and Morphology of blends of hyperbranched polymer with polypropylene and poly(vinyl chloride). [J]. Iran Polymer Journal, 2006, 15(1): 93~101.
    [60]. Jin F L, Park S J. Thermal properties and toughness performance of hyperbranched-polyimide-modified epoxy resins [J]. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44(23): 3348~3356.
    [61]. Zhang D H, Jia D M. Toughness and strength improvement of diglycidyl ether of bisphenol-A by low viscosity liquid hyperbranched epoxy resin [J]. Journal ofApplied Polymer Science, 2006, 101(4): 2504~2511.
    [62].张国彬,范晓东,刘郁杨,孔杰,王生杰.紫外光固化超支化聚硅氧烷的合成及其光固化动力学研究[J].高分子学报,2007,7:644~646.
    [63]. Sacarescu L, Capmare E, Ardeleanu R, Sacarescu G. Hyperbranched polycyclocarbosiloxane [J]. European Polymer Journal, 2002, 38(5): 983~987.
    [64]. Miravet J F, Fréchet J M J. New hyperbranched poly(siloxysilanes): Variation of the branching pattern and end-functionalization [J]. Macromolecules, 1998, 31(11): 3461~3468.
    [65]. Ishida Y, Seino M , Yokomachi K,et al. Synthesis and end-functionalization of hyperbranched poly ( siloxysilane) s with AB3-type monomer [J]. Polym Preprints ,2006 ,55 (1) :392~394.
    [66]. Kim Y H. Hyperbranched polymers 10 years after [J]. Journal of polymer science partA : Polymer Chemistry, 1998, 36(11): 1685~1698.
    [67]. Voit Brigitte. New developments in hyperbranched polymers [J]. Polymer Science Part A: Polymer Chemistry, 2000, 38(14): 2505~2525.
    [68].刘立男,蓝立文.环氧改性双马来酰亚胺树脂聚集态结构的研究[J].高分子材料科学与工程,1994,5(3): 131~133.
    [69]. Gu Aijuan, Liang Guozheng. Preparation and properties of a novel high-performance resin system with low injection temperature for resin transfer moulding [J]. Polymer International, 2004, 53(9): 1388~1393.
    [70]. Yu H Y, Zhang Y, Ren W T. Toughening Effect of Ethylene-Vinyl Acetate Rubber on Nylon 1010 Compatibilized by Maleated Ethylene-Vinyl Acetate Copolymers [J]. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47(4), 434~444.
    [71]. Li GL. Silicone chemistry [M]. Science Press, 1998: 1.
    [72]. Boogh L, Pettersson B, Manson J A E. Dendritic hyperbranched polymers as tougheners for epoxy resins [J]. Polymer, 1999, 40(5): 2249~2261.
    [73]. Zhu C. Modification of epoxy with hyperbranched polymer [J]. Chemical Bonding, 2007, 29(4): 261~264.
    [74].秦亮,陈麒,张宜荣,周正,倪礼忠.双马来酰亚胺改性甲基二苯乙炔基硅氧烷性能的研究[J].功能高分子学报,2004,3:109~112.
    [75]. Takao Iijima, Satoru Katsurayama, Wakichi Fukuda, Masao Tomoi. Modification of cyanate ester resin by poly(ethylene phthalate) and related copolyesters [J]. Journal of Applied Polymer Science. 2000, 76(2), 208~219.
    [76]. Yang Chunzhuang, Gu Aijuan, Song Hongwei, Xu Zhongbin, Fang Zhengping, Tong Lifang. Novel modification of cyanate ester by epoxidized polysiloxane [J]. Journal of Applied Polymer Science, 2007, 105(2): 2020~2025.
    [77]. Kroschwitz JJ. Encyclopedia of polymer science and engineering, vol.5. Wiley, New York. 1990: 278~279.
    [78]. Huang Fuwei, Rong Zhuxia, Shen Xuening, Huang Farong, Du Lei, Li Zhongping. Organic/inorganic hybrid bismaleimide resin with octasilsesquioxane [J]. Polymer Engineering and Science, 2008, 48(5): 1022~1028.
    [79]. Smith A L. The Analytical Chemistry of Silicones. New York: Wiley Interscience, 1991: 291~292.
    [80]. Tamaki Ryo, Tanaka Yasuyuki, Asuncion Michael Z, Choi Jiwon, Laine Richard M. Octa(aminophenyl)silsesquioxane as a Nanoconstruction Site [J]. Journal of American Chemical Society, 2001, 123(46): 11420~11430.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700