硅基溶胶直接静电纺纤维形成机理及生物模拟矿化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用溶胶-凝胶法和静电纺丝联合技术(简称:溶胶直接静电纺技术,Directly Electro-spinning of Sol,DESS)制备了SiO2,SiO2-P2O5和SiO2-CaO-P2O5三种硅基凝胶纤维。采用电导、粘度和拉丝能力等评估方法对硅基溶胶的凝胶化过程及其影响因素进行了研究;采用TG- DSC、XRD、FTIR、SEM和TEM等技术对硅基凝胶及纤维的微观形貌和结构、形成机理、煅烧过程和产物进行了表征,对SiO2-CaO-P2O5凝胶及其纤维煅烧前后的样品在37℃,初始pH= 7.0的5倍浓度模拟体液中浸泡10天后获得的矿化产物进行了评估。综合分析认为:
     (1)随着陈化时间的延长,三种硅基溶胶的电导率先降后升,并与TEOS水解过程中的两个反应对应。SiO2-CaO-P2O5溶胶初始pH值对其凝胶化时间有较大影响。随着溶胶初始pH值减小,凝胶化时间增加。随着陈化时间延长(< 20h),硅基溶胶的拉丝长度增加十分缓慢,但当陈化时间进一步延长(>20h),拉丝长度迅速增加,然后又迅速减小。在室温条件下,三种硅基溶胶的可拉丝长度、硅基溶胶粘度随陈化时间的变化规律完全一致。因此,可以用硅基溶胶粘度来确定可纺时间范围。(2)三种硅基溶胶直接静电纺产物的微观形貌随溶胶粘度变化的规律基本相同,但是,不同溶胶直接静电纺产物的各形貌特征出现情况有一定差别。随溶胶粘度增加(40-550mPa·s),SiO2溶胶直接静电纺产物的微观形貌按:球状颗粒→节珠纤维→光滑纤维→中空颗粒次序变化;SiO2-P2O5溶胶直接静电纺产物的微观形貌按:球状颗粒→节珠纤维→纺锤状纤维→光滑纤维→中空节珠纤维→中空颗粒次序变化;SiO2-CaO-P2O5溶胶直接静电纺产物的微观形貌按:球状颗粒→节珠纤维→纺锤状纤维→光滑纤维→中空纤维次序变化。当组成和静电纺参数一定时,硅基溶胶直接静电纺产物的微观形貌还将受环境条件影响,其形貌特征既可能不全部出现,也可能交叉出现。
     (3)硅基溶胶直接静电纺产物微观形貌的主要影响因素是溶胶粘度,硅基溶胶的组成、电场强度和环境条件也会对其形貌产生不可忽视的影响。当硅基溶胶粘度为200-350mPa·s时,可以获得表面光滑、直径均匀的凝胶纤维。
     (4)首次采用单管喷头和溶胶直接静电纺技术获得了SiO2-CaO-P2O5中空凝胶短纤维。TEM分析表明,700°C煅烧后的SiO2-CaO-P2O5中空短纤维具有明显的中空质厚衬度和微晶衍衬特征。
     (5)体外模拟矿化研究表明,SiO2-CaO-P2O5凝胶及其纤维的煅烧前后产物都具有良好的矿化性能和生物活性。
In this paper, three kinds of SiO2, SiO2-P2O5 and SiO2-CaO-P2O5 gel fibers were prepared by sol-gel method and electrospinning comnined technology (Abbreviated: Directly Electro-spinning of Sol, DESS). The test methods of conductivity, viscosity, and drawing capabilities were used to assess the processes of sol-gels and their influencing factors; TG-DSC, XRD, FTIR, SEM and TEM techniques were used to characterize silica-based gels and micro-morphologies and structures, formation mechanism, calcining process and products of DESS gel fibers. The SiO2-CaO-P2O5 gel and gel fibers obtained before and after calcination, mineralizated in the initial pH = 7.0, 5 times concentration of simulated body fluid (SBF) at 37℃for 10 days were assessed. Comprehensive analysis results shown as follows:
     (1) As the aging time increases, the conductivity of three silica-based sols firstly fell then rose, and corresponded to the two reactions of the TEOS hydrolysis process. The initial pH value has significant impact to the gelation time of SiO2-CaO-P2O5 sol. With the initial pH value decrease, the gelation time increased. With aging time increasing (<20h), the drawing length of silica-based sols increased very slow, but when the aging time further extends (>20h), the length increased fast to maxim value and then decreased rapidly. Under ambient conditions, the drawing length and viscosity of the three sols varyied in the same law with the aging time increasing. Therefore, the viscosity is able to be foundation of directly electrospinning of silica-based sols.
     (2) The micro-morphological variations of three DESS gel fibers with the viscosity followed the same law, but the occurrence of various morphological features shown some differences. With the viscosity increase (40-550mPa?s) of silica-based sols, the micro- morphological variations of the SiO2 DESS products shown as: beads→gel fibers with beads→smooth fibers→hollow beads; the micro-morphological variations of the SiO2-P2O5 DESS products shown as: beads→gel fibers with beads→spindle-shaped fibers→smooth fibers→gel fibers with hollow beads→hollow beads; the micro-morphological variations of SiO2-CaO-P2O5 DESS products shown as: beads→gel fibers with beads→spindle-shaped gel fibers→smooth fibers→hollow fibers. Under the given conditions of the sol compositions and electrospun parameters, the micro- morphologies of DESS products are also affected by environmental conditions, the micro-morphological characteristics are not necessarily all there, some kinds of them may overlap.
     (3) The main factor effects the micro-morphologies of DESS products is the sol viscosity, but sol compositions, electric field intensity and the environmental conditions can not be ignored, either. When the sol viscosity is 200-350mPa?s, the DESS gel fibers of smooth surface, uniform diameter will be available.
     (4) The SiO2-CaO-P2O5 gel hollow fibers by using single-tube jet and DESS technology were prepared firstly. TEM analysis shown that: the SiO2-CaO-P2O5 hollow fibers calcined at 700℃have obvious features of the hollow mass thickness and microcrystalline diffraction contrast.
     (5) The biomimetic mineralization research shown that: SiO2-CaO-P2O5 gel and gel fibers obtained before and after calcination have excellent performances of mineralization and biological activity.
引文
[1]黄剑锋.溶胶-凝胶原理与技术[M].化学工业出版社,2005,6-109
    [2] Robert A. Meyers. Encyclopedia of physical science and technology[M]. Academic Press,2001,257-276
    [3] A. Formhals. US Patent.1975,504:1934
    [4] Sigmund W,Yuh W J,Park H, et al. Processing and structure relationships in electrospinning of ceramic fiber systems[J]. Journal of American Ceramic Society, 2006,89 (2):395-407
    [5] J. Zeleny. Instability of electrified liquid surfaces[J]. Phys. Rev.,1917,10:1-8
    [6] D. Michelson. Electrostatic Atomization[J]. Bristol:Adam Hilger,1990
    [7] G. Taylor. Proc. Roy .Soc.,1969,313:453-475
    [8] Y. M. Shin, M. M. Hohman, M. P. Brenner, et al. Electrospinning: a whipping fluid jet generates submicron polymer fibers[J]. App. Phys. Lett.,2001,78:1149-1151
    [9] Koombhongse S, Liu W X, Reneker D H. Flat polymer ribbons and other shapes by elect-rospinning [J]. Journal of Polymer Science Part B:Polymer Physics, 2001, 39(21):2598-2606
    [10] M. M. Hohman, M. Shin, G. C. Rutledge, et al. Electrospinning and electrically forced jets. II. applications[J]. Phys. Fluids,2001,13(8):2221-2236
    [11] M. M. Hohman, M. Shin, G. C. Rutledge, et al. Electrospinning and electrically forced jets. I. Stability theory[J]. Phys. Fluids,2001,13(8):2201-2220
    [12] J. M. Deitzel, J. Kleinmeyer, D. Harris, et al. The effect of processing variables on the morphology of electrospun nanofibers and textiles[J]. Polymer, 2001, 42(1): 261-272
    [13]周险峰.静电纺丝法制备ABO3型钙钛矿复合氧化物微纳米纤维[D].吉林大学,2007
    [14] I. G. Loscertales, A. Barrero, I. Guerrero, et al. Micro/Nano encapsulation via electrified coaxial liquid Jets[J]. Science,2002,295(5560):1695-1698
    [15] Li D, Xia Y N, Direct fabrication of composite and ceramic hollow nanofibers by electrospinning [J]. Nano. Lett.,2004,4(5):933-938
    [16] J. Kameoka, R. Orth, Y. Yang, et al. A scanning tip electrospinning source for deposition of oriented nanofibres[J]. Nanotechnology,2003,14:1124-1129
    [17] A. Theron, E. Zussman, A. L. Yarin. Electrostatic field-assisted alignment of electrospun nanofibres[J]. Nanotechnology,2001,12(3):384-390
    [18] R.Dersch,T.Liu,A.K.Schaper,et al. Electrospun nanofibers:internal structure and intrinsic orientation[J]. J. Polym. Sci. PartA:Polym.Chem.,2003,41(4),545-553
    [19] J. M. Deitzel, J. D. Kleinmeyer, J. K. Hirvonen, et al. Controlled deposition of electrospun poly(ethylene oxide) fibers[J]. Polymer,2001,42(19):8163-8170
    [20] D. H. Reneker, I. Chun. Nanometre diameter fibres of polymer produced by electrospinning[J]. Nanotechnology,1996,7(3):216-223
    [21] D. Li, T. Herricks, Y. Xia. Magnetic nanofibers of nickel ferrite prepared by electrospinning [J]. Appl. Phys. Lett.,2003,83(22):4586-4588
    [22] V. Tomer, R. Teye-Mensah, J. C. Tokash, et al. Selective emitters for thermophotovoltaics: Erbia-modified electrospun titania nanofibers[J]. Sol. Eng. Mater. Sol. Cells, 2005,85(4): 477-488
    [23] J. Yuh, J. C. Nino, W. A. Sigmund. Synthesis of barium titanate (BaTiO3) nanofibers via electrospinning[J]. Mater. Lett.,2005,59(28):3645-3647
    [24] M. Azad, T. Matthews, J. Swary. Processing and characterization of electrospun Y2O3-stabilized ZrO2(YSZ) and Gd2O3-doped CeO2(GDC) nanofibers[J]. Mater. Sci. Eng. B,2005,123(3): 252-258
    [25] M. Azad. Fabrication of yttria-stabilized zirconia nanofibers by electrospinning[J]. Mater. Lett.,2006,60(1):67-72
    [26] Z. W. Fu, J. Ma, Q. Z. Qin. Nanostructured LiCoO2 and LiMn2O4 fibers fabricated by a high frequency electrospinning[J]. Solid State Ionics, 2005, 176 (17 -18):1635-1640
    [27] G. Larsen, R. Velarde-Ortiz, K. Minchow, et al. A method for making inorganic and hybrid (organic/inorganic) fibers and vesicles with diameters in the submicrometer and micrometer range via sol-gel chemistry and electrically forced liquid jets[J]. J. Am. Chem. Soc.,2003, 125(5):1154-1155
    [28] W. Kataphinan, R. Teye-Mensah, E. A. Evans, et al. High-temperature fibermatrices: Electrospinning and rare-earth modification[J]. J. Vac. Sci. Technol. A,2003, 21(4): 1574-1578
    [29] S. S. Choi, S. G. Lee, S. S. Im, et al. Silica nanofibers from electrospinning/sol-gel process[J]. J. Mater. Sci. Lett.,2003,22(12):891-893
    [30] Y. Wang, R. Furlan, I. Ramos, et al. Synthesis and characterization of micro/nanoscopic Pb (Zr 0.52Ti0.48)O3 fibers by electrospinning[J]. Applied Physics A: Materials Science and Processing,2004,78(7):1043-1047
    [31] Y. Wang, J. J. Santigano-Aviles. Synthesis of lead zirconate titanate nanofibres and the Fourier-transform infrared characterization of their metallo-organic decomposition process[J]. Nanotechnology,2004,15(1):32-36
    [32]G. Zhang, W. Kataphinan, R. Teye-Mensah, et al. Electrospun nanofibers for potential space-based applications[J]. Materials Science and Engineering B: Solid-State Materials for Advanced Technology,2005,116(3):353-358
    [33] Dai X S, Shivkumar S. Electrospinning of hydroxyapatite fibrous mats[J]. Materials Letters, 2007,61:2735 -2738
    [34]许乾慰,王伟,李岩等.静电纺丝纤维形貌的研究[J].材料导报,2007,21(10):95-98
    [35] Li D, Ouyang G, McCann J T, et al. Collecting Elect rospun Nanofibers with Patterned Elect rodes[J]. Nano Letters,2005,5(5):913-916
    [36] Li D, Wang Y L, Xia Y N. Elect rospinning of polymer and ceramic nanofibers as uniaxially aligned arrays[J]. Nano Letters,2003,3(8):1167-1171
    [37]吴大诚,杜仲良,高绪珊.纳米纤维[M].北京:化学工业出版社,2003,98-103
    [38] Doshi J, Reneker D H. Electrospinning process and applications of electrospun fibers [J].Electrostat,1995,35:151-160
    [39] Doshi J. Nanofiber-based nonwoven composites:properties and applications[J]. Nonwovens World,2001:64-68
    [40]史文红,赵成如,金刚.经典纺丝技术在生物医用材料领域中的应用[J].中国医疗器械信息,2006,12 (5):17-22
    [41]尹桂波.纳米纤维支架在组织工程中的应用进展[J].南通纺织职业技术学院学报(综合版),2007,7 (2):15-18
    [42] Audrey Frenot, Ioannis, Chronakis.电子纺丝法制备功能性纳米纤维[J].国外丝绸,2003,18 (6):31-33
    [43]师奇松,于建香,顾克壮等.静电纺丝技术及其应用[J].化学世界,2005,5:313-316
    [44] Shao C. L., Kim H. Y., Gong J., et al. A novel method for making silica nanofibres by using electrospun fibres of polyvinylalcohol/silica composite as precursor[J]. Nanotechnology, 2002, 13: 635-637
    [45] G. Larsen, S. Noriega, R. Spretz, et al. Electrohy drodynamics and hierarchical structure control:submicron-thick silica ribbons with an ordered hexagonal mesoporous structure[J]. J. Mater. Chem.,2004,14:2372-2373
    [46] D. Li, J. T. McCann, Y. Xia. Use of electrospinning to directly fabricate hollow nanofibers with functionalized inner and outer surfaces[J]. Small,2005,1:83-86
    [47] J. T. McCann, D. Li, Y. Xia. Electrospinning of nanofibers with core-sheath hollow or porous structures[J]. J.Mater. Chem.,2005,15:735-738
    [48] Loscertales G, Barrero A, Marquez M, et al. Electrically forced coaxial nanojets for one-step hollow nanofiber design[J]. J.Am.Chem.Soc., 2004, 126 (17):5376-5377
    [49] X. M. Cui, W. S. Lyoo, W. K. Son, , et al. Fabrication of YBa2Cu3O7-δsuperconducting nanofibres by electrospinning[J]. Supercond. Sci. Technol., 2006, 19:1264-1268
    [50] D. T. Welna, J. D. Bender, X.L.Wei, et al. Preparation of boron-carbide/carbon nanofibers from a poly(norbornenyldecaborane) single-source precursor via electrostatic spinning[J]. Adv. Mater.,2005,17:859-862
    [51] M. Bognitzki, M. Becker, M Graeser, et al. Preparation of Sub-micrometer copper fibers via electrospinning[J]. Adv. Mater. ,2006,18:2384-2386
    [52] X. F. Lu, D. L. Zhang, Q. D. Zhao, et al. Large-Scale synthesis of necklace-like single-crystalline PbTiO3 nanowires[J]. Macromol. Rapid Commun., 2006,27:76-80
    [53] Yong Zhao, Xinyu Cao, Lei Jiang. Bio-mimic multichannel microtubes by a facile method[J]. J.Am.Chem.Soc.,2007,129,764-765
    [54] Wu Y Q, Hench L L, Du J, et al. Preparation of hydroxyapatite fibers by electrospinning technique[J]. Journal of American Ceramic Society,2004,87(10): 1988-1991
    [55]朱红宏.关于严格限制项目检验中使用致癌或强毒性有机溶剂作为展开剂的建议[J].中国中医药信息杂志,2006,13 (2):87-88
    [56]李玉莉,陈晓峰,王延军等.溶胶-凝胶生物活性玻璃纤维的制备及其体外矿化性能研究[J].无机材料学报,2007,22(4):617-621
    [57]杨华忠,史铁钧,翟林峰等.硅溶胶电纺性能及其形态研究[J].无机材料学报,2006,21(5):1273-1277
    [58] Ito Y, Hasuda H, Kamitakahara M, et al. A composite of hydroxyapatite with electrospun biodegradable nanofibers as a tissue engineering material[J]. Journal of Bioscience and Bioengineering,2005,100(1):43-49
    [59] Li D,Marquez M,Xia Y N.Capturing electrified nanodroplets under Rayleigh instability by coupling electrospray with a sol-gel reaction[J]. Chemical Physics Letters,2007,445(4-6): 271-275
    [60] L. L. Hench, R. J. Splinter, W. C. Allen, et al. Biomed. Mater. Res. Symp., 1971, 2:117-141
    [60] Hench L L. Bioceramcis[J]. Journal of the American Ceramic Society, 1998, 81(7): 1705-1728
    [62] L. L. Hench, Polak J M. Thrid-generation biomedical materials[J]. Science, 2002, 295(5557):1014-1017
    [63] Xynos I D, Hukkanen M V, Batten J J, et al. Bioglass 45S5 stimulates osteoblast turnover and enhances bone formation In vitro:implications and applications for bone tissue engineering[J]. Calcif Tissue Int, 2000,67(4):321-329
    [64] Xynos I D, Edgar A J, Buttery L D, et al. Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factorⅡmRNA expression and protein synthesis[J]. Biochem Biophys Res Commun,2000,276(2):461-465
    [65] Gao T, Aro H T, Ylanen H, et al.Salica-ed bioactive glasses modulate expression of bone morphogenetic protein-2 mRNA in Saos-2 osteoblasts in vitro [J].Biomaterials,2001, 22(12):1475-1483
    [66] Xynos I D, Edgar A J, Buttery L D, et al. Gene-expression profiling of human osteoblasts following treatmeat with the ionic products of Bioglass 45S5 dissolution [J].Biomed Master Res,2001,55(2):151-157
    [67] D. C. Greenspan, J. P. Zhong, G. P. Latorre. Effect of surface area to volume ratio on in vitro surface reactions of bioactive[J]. Bioceramics,1994,7:28-32
    [68]刘朗,李亚东.CaO-B2O3-2SiO2干凝胶制备及其生物模拟矿化现象[J].新技术新工艺,2009,10:104-107
    [69] Ioannis S C. Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process-a review[J]. Journal of Materials Processing Technology,2005,167: 283-293
    [70] Li D, Mccann J T, Xia Y N, et al. Electrospinning:A simple and versatile technique for producing ceramic nanofibers and nanotubes[J]. Journal of American Ceramic Society, 2006, 89 (6):1861-1869
    [71]孙柯,陆海纬,李达等.静电纺丝法制备氧化锰纳米丝电极及其电化学性能[J].无机材料学报,2009,24(2):357-360
    [72] Kang M, Kim B J, Cho S M, eta l. Decomposition of toluene using an atmospheric pressure plasma/TiO2 catalytic system[J]. J. Mol. Catal. A:Chem.,2002,180(1/2): 125-132
    [73] Yi Jing, Wei Guangfeng, Huang Xiaohui, et al. Sol-gel derived mesoporous bioactive glass fibers as tissue-engineering scaffolds[J]. J. Sol-Gel Sci. Technol.,2008,45: 115-119
    [74] Shunsuke Fujibayashi, Masashi Neo, Hyun-Min Kim. A comparative study between in vivo bone ingrowth and in vitro apatite formation on Na2O-CaO-SiO2 glasses[J]. Biomaterials, 2003,24:1349-1356
    [75] Yadong Li, M. N. Rahaman, B. S. Bal, et al. Conversion of bioactive borosilicate glass to multilayered hydroxyapatite in dilute phosphate solution[J]. J Am Ceram Soc,2007,90 (12):3804-3810
    [75]宁佳,王德平,黄文旵.硼硅基生物玻璃的制备及其体外生物活性和降解性[J].硅酸盐学报,2006,34(11):1327-1329
    [77]马海红,史铁钧,宋秋生.以TEOS为前驱体的硅溶胶可纺性及其玻璃纤维的制备研究[J].化工新型材料, 2008,36(2):50-52
    [78]林健.催化剂对正硅酸乙酯水解-聚合机理的影响[J].无机材料学报,1997,12(3):363-369
    [79] Brinker C J. Hydrolysis and condensation of silicates :effects on structure[J]. Journal of Non-Crystalline Solids,1988,100:31-50
    [80] Xu Y D,Zhou W C,Zhang L T,et al. Spinnability and crystallizability of silica glass fiber by the sol-gel method[J]. Journal of Materials Processing Technology,2000, 101:44-46
    [81]何创龙,黄争鸣,韩晓建等.同轴射流技术制备纳米复合材料研究进展[J].复合材料学报,2005,22(6):l-8
    [82] Fong H, Chun I, Reneker D H, et al. Beaded nanofibers formed during electrospinning[J]. Polymer,1999,40(16):4585-4592
    [83] Rayleigh L. On the equilibrium of liquid conducting masses charged with electricity[J]. Philos. Mag. ,1882,14:184-186
    [84] Duft D, Achtzehn T, Muller R, et al. Coulomb fission: rayleigh jets from levitated microdroplets[J]. Nature,2003,421:128-128
    [85] Mohamed Mami, Anita Lucas-Girot, Hassane Oudadesse, et al. Investigation of the surface reactivity of a sol-gel derived glass in the ternary system SiO2-CaO-P2O5[J]. Applied Surface Science, 2008,22:7386-7393
    [86] W. L. Huang, S. H. Cui, K. M. Liang, et al. Evolution of pore and surface characteristics of silica xerogels during calcining[J]. J. Phys. Chem. Solids,2002,63: 645-650
    [87]甘礼华,陈龙武,张字星等.非超临界干燥法制备SiO2气凝胶[J].物理化学学报,2003, 19(6):504-509
    [88] Einarsmd M A. Light gels by conventional drying[J]. Journal of Non-Crystalline Solids,1998,225:1-7
    [89] M. Vallet-Reg?, A. Ramila. New Bioactive Glass and Changes in Porosity during the Growth of a Carbonate Hydroxyapatite Layer on Glass Surfaces[J]. Chem. Mater., 2000,12: 961-965
    [90] Jia Ning, Aihua Yao,et al. Synthesis and in vitro bioactivity of a borate-based bioglass[J]. Materials letter, 2007,04(089):1-4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700