基于超支化技术的新型氰酸酯树脂体系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氰酸酯(CE)树脂是含有两个或两个以上氰酸酯官能团(—OCN)的酚衍生物,它的固化物具有优异的介电性能、高的耐热性和优良的力学性能。此外,其粘接性好、吸湿率低,因而被公认为―二十一世纪制备高性能结构/性能一体化材料最具竞争力的树脂品种‖,在航空航天、电子信息、交通运输等工业领域显示出巨大的应用潜力。然而,与其他热固性树脂一样,脆性大是CE树脂一个不可避免的缺陷,对于许多尖端领域的应用场合来说,脆性已经成为制约CE树脂应用的―瓶颈‖。
     本文以KH-560为原料,通过水解缩合法设计制备了一种带有环氧活性官能团的超支化聚硅氧烷(HPSiE),并对其结构与性能进行表征。以HPSiE作为改性剂,制得HPSiE/CE树脂,研究了HPSiE含量对HPSiE/CE树脂的固化行为和性能的影响。为了提高HPSiE/CE树脂的热稳定性,通过共聚向树脂体系中引入具有突出耐热性的改性双马来酰亚胺/二烯丙级双酚A(记为BD)树脂,制备了CE/BD/HPSiE树脂,并对其性能进行系统的研究。
     酸被用来作为水解的催化剂。为了研究水与KH-560的摩尔比(m)对HPSiE性能的影响,分别采用6个不同的m(1.1—1.6)进行水解。结果表明,产物的重均分子量(Mw)和粘度随着m的增大而变大。取m值为1.5的粘度适中的产物作为研究对象,IR、1H-NMR和29Si-NMR测试表明,通过KH-560的受控水解,可以实现甲氧基向硅氧基的转变,进而生成可溶性的超支化聚硅氧烷。
     对于HPSiE/CE树脂体系,探讨了HPSiE含量对树脂的韧性、耐热性、介电性能及吸水率等关键性能的影响。研究结果表明,引入HPSiE不仅可以提高CE树脂的韧性和抗水性,同时对CE树脂的固化反应有着明显的催化作用,而且这些积极的效果随着HPSiE在树脂体系中含量的增加而更显著。此外,随着HPSiE含量的增加,介电常数和介电损耗稍微上升,耐热性有所降低。需要指出的是,HPSiE/CE树脂体系在800℃下的残炭率均高于纯CE,树脂的阻燃效果有所提高。由适当含量HPSiE组成的HPSiE/CE树脂具有比纯CE更佳的综合性能。
     对于CE/BD/HPSiE树脂体系,重点研究了组成的配比对树脂的力学性能、介电性能、热性能等的影响。结果表明,BD和HPSiE之间存在一个最佳计量比使CE/BD/HPSiE树脂具有最大的冲击强度(大约为CE/BD树脂的1.5倍),与CE/BD树脂相比,CE/BD/HPSiE树脂体系具有更高的抗水性。随着HPSiE含量增加,CE/BD/HPSiE树脂体系的线性热膨胀系数逐渐升高,而热稳定性均呈逐渐降低趋势,但介电常数和损耗基本保持不变。值得注意的是,与HPSiE/CE树脂相比,当HPSiE在整个体系中的质量分数相当时,CE/BD/HPSiE树脂具有较高的起始热分解温度,表明CE/BD/HPSiE树脂具有较HPSiE/CE树脂高的热稳定性。由适当配比组成的CE/BD/HPSiE树脂也具有杰出的热性能和介电性能。固化树脂性能的变化与HPSiE的特殊结构和交联网络化学结构的改变有关。
Cyanate ester (CE) resins are derivatives of compounds containing two or more cyanate functional groups (?O?C≡N). Cured CE resins possess a good combination of excellent dielectric properties, high thermal stability and good mechanical property. In addition, CE resins have very good adhesion, and almost the lowest moisture absorption among thermosets. Therefore, CE resins have been considered as―the most competitive resin for preparing advanced structural and functional materials in 21st century‖, showing great potential in many fields including aviation and aerospace, electric and transportation. However, being a thermosetting resin, the inherent brittleness is the major drawback of CE resins, which are the major disadvantages to restrict further prosperity of CEs into the advanced industrial applications.
     In this thesis, a reactive hyperbranched polysiloxane (HPSiE) with epoxy groups was designed and synthesized via the hydrolyzation of KH-560 and water, and its structure and properties were characterized. HPSiE was used to develop a novel high performance HPSiE/CE resin, in addition, the effect of HPSiE content on the processing characteristics and properties of HPSiE/CE resins were investigated intensively. In order to improve the thermal stability of HPSiE/CE resin, bismaleimide/diallyl bisphenol A (coded as BD) was introduced by copolymerizing to prepare
     CE/BD/HPSiE resins, of which the key properties were systemicly investigated. Acid is used as the catalyst to speed up the hydrolysis process. In order to study the effect of molar ratio (m) of H2O and KH-560 on of the properties of HPSiE, six m (1.1—1.6) were designed. Reslults show that the molecular weight (Mw) and viscosity of HPSiE increase with the m value. Due to the moderate viscosity, HPSiE synthesized by using the m value of 1.5 was used as the example to study the synthesizing process. The results from IR,1H-NMR and 29Si-NMR indicate that methoxy groups have transformed into silicon oxidation groups successfully.
     For HPSiE/CE resins, the effects of HPSiE concentration on key properties such as toughness, thermal and dielectric properties as well water resistance were discussed in detail. Results reveal that the addition of HPSiE in CE resin can not only improve the toughness and water resistance of CE resin, but also display obvious catalytic effect on the curing reaction of neat CE. Moreover, these positive effects increase with the increase of HPSiE concentration in HPSiE/CE resins. In addition, with the increase of HPSiE content in HPSiE/CE resins, both the dielectric constant and loss increase slightly, while the thermal resistance decreases. It is need to point that the char yields of HPSiE/CE resins were higher than neat CE resin, indicating better flame retardation. The HPSiE/CE resins with desirable HPSiE content have more outstanding integrate properties than neat CE resin.
     For CE/BD/HPSiE resins, the effect of the formulations on key properties mainly including mechanical, dielectric and thermal properties, etc, was emphasized investigated. Results show that there is an optimum stoichiometry between BD and HPSiE for obtaining the maximum impact strength (which is about 1.5 times of that of original CE/BD resin), and CE/BD/HPSiE resins have much better water resistance than CE/BD resin. With the increase of HPSiE content in CE/BD/HPSiE resins, the coefficient of thermal expansion increases, and thermal resisitance decreases, while the dielectric constant and loss almost does not change. Comparing to HPSiE/CE resins, CE/BD/HPSiE resins with desirable HPSiE content show higher initial degradation temperature, or better thermal stability. In addition, these resins also have outstanding thermal and dielectric properties. These changes of properties are explained by an inherent feature of HPSiE, and the alteration of chemistry in network.
引文
[1]颜红侠,梁国正,马晓燕,朱光明.氰酸酯树脂的增韧改性研究进展[J].材料导报,2004,18(11):57
    [2] W.K. Goertzen, M.R. Kessler. Thermal and mechanical evaluation of cyanate estercomposites with low-temperature processability[J]. Composites: Part A. 2007,38(3):779
    [3]王凌侃,陆一尘,陇麒,倪礼忠.环氧改性氰酸酯树脂固化动力学的研究[J].热固性树脂,2009,24(1):31
    [4]刘杰,顾嫒娟,袁莉,梁国正.偶联剂对氰酸酯树脂/二氧化钛复合材料固化行为的影响[J].工程塑料应用,2008,36(11):15
    [5]周宏福,刘润山.氰酸酯树脂在高性能印刷电路板的应用研究进展[J].覆铜板资讯,2009,2:26
    [6]朱雅红,马晓燕,校峰.四氢呋喃聚醚型聚氨酯预聚体增韧双酚A型氰酸酯树脂.青岛科技大学学报(自然科学版)[J],2007,28(4):313
    [7]郭宝春,贾德民,傅维文等.聚醚酰亚胺对氰酸酯树脂、环氧树脂共混物的增韧作用[J].材料研究学报,2002,16(1):99
    [8]钟翔屿,包建文,陇祥宝,李哗.改性氰酸酯树脂体系韧性及介电性能研究[J].材料工程,2006,1:38
    [9]颜红侠,梁国正,马晓燕,王结良.聚苯醚改性氰酸酯树脂的研究[J].西北工业大学学报,2004,22(3):301
    [10] Hwang J W, Cho K, Yoon T H, et al. Effects of moleculer weight of polysulfone onphase separation behavior for cyante ester/polysulfone blends[J]. Journal ofApplied Polymer Science, 2000, 77: 921
    [11] Hwang J W, Cho K, Park C E, et al. Phase separation behavior of cyanate esterresin polysulfide blends[J]. Journal of Polymer Science, 1999, 74(1):33
    [12] Lijima takao, kasurayama. Modification of cyanate ester resin by poly(ethylenephthalate) and related copolyester[J]. Journal of Applied Polymer Science, 2000,76(2): 208
    [13]祝保林.热塑性树脂改性氰酸酯树脂的相结构表征[J].热固性树脂,2008,23(3):19
    [14]秦华宇,吕玲,梁国正.环氧树脂改性氰酸酯树脂的研究[J].机械科学不技术,2000,19(1):137
    [15] Yang Jieying.Study on mechanical properties and dielectric properties ofcyanate/epoxy resin system [J].Journal of Aeronautical Materials, 2004, 24(3): 21
    [16]张增平,梁国正,任鹏刚,卢婷利,王结良.环氧改性氰酸酯树脂研究[J].航空材料学报, 2006,26(4):100
    [17]方芬,颜红侠,张军平,李倩.双马来酰亚胺改性氰酸酯树脂的研究[J].高分子材料科学不工程. 2007,23(4):222
    [18]尹剑波,梁国正.共聚改性氰酸酯树脂及其性能[J].塑料工业,2001,29(1):36
    [19] Feng Yu,Fang ZhengPing,Gu Aijuan.Toughening of cyanate ester resin bycarboxyl terminated nitrile rubber[J].Polymers for Advanced Technologies,2004,15(10):628
    [20] Yang P C, Picklman D M. A new cyanate matrix resin with improvedtoughness-toughing mechanism and composite properties. 35th internationalSAMPE symposium, 1990, 2-5:1131
    [21] Yang P C, Woo E P, Bishop M T, et al. Rubber toughing of thermosets: A systemapproach. Proceeding of ACS division of polymeric materials science andengineering, 1990, 63: 315
    [22] Kinloch A J, Taylor A C.The toughening of cyanate-ester polymers Part I:Physical modification using particle,fibres and woven-mats[J].Journal ofMaterials Science, 2002, 37: 433
    [23] Wooster T J,Abrol S,Hey J M,et a1.ThermaI,mechanical, and conductivityproperties of cyanate ester composites[J].Composites Part A : Applied Scienceand Manufacturing, 2004, 35(1): 75
    [24]左瑞霖.热固性丙烯酸液晶树脂的研究[西北工业大学博士论文].西安:西北工业大学,2003
    [25]李静,梁国正.苯乙烯改性氰酸酯树脂的研究[J],化工新型材料,2000,28(10):37
    [26]魏焕郁,施文芳.超支化聚合物的结构特征、合成及其应用[J].高等学校化学学报.2001, 22(2):338
    [27] Mathias L J,Carothers T W.Hyperbranched Poly(siloxysi1anes)[J].Journal of theAmerican Chemical Society,1991, 113:4043
    [28] Miravet J F,Fréchet J M J. New Hyperbranched Poly(siloxysilanes): Variation ofthe Branching Pattern and End-Functionalization[J]. Macromolecules, 1998, 31:3461
    [29] Xiao Yingxin, Son David Y. Hyperbranched Polymers from Propargyloxysilanes:New Types of Acetylenic Resins[J].Journal of Polymer Science: Part A: PolymerChemistry,2001, 39: 3383
    [30] Si Qingfa,Wang Xin,Fan Xiaodong,Wang Shengjie.Synthesis andCharacterization of Ultraviolet-Curable HyperbranchedPoly(siloxysilane)s[J].Journal of Polymer Science: Part A: Polymer Chemistry,2005,43: 1883
    [31]王生杰,范晓东,孔杰等.可光固化聚硅氧基硅烷的合成不表征[J].高分子学报,2006,8:1024
    [32] Wang xin, Fan Xiao-dong, Wang Sheng-jie, et al.Hyperbranched poly(siloxysilane)and its UV curing kinetics[J].Polymer Materials Science and Engineering,2008,24(7):44
    [33] Ishida Y,Seino M, Yokomachi K,et al.Synthesis and end-functionalization ofhyperbranched poly(siloxysilane)s with AB3-type monomer[J].Polymer Preprints,2006,55(1) :392
    [34] Yokomachi K,Seino M,Hayakawa T,Kakimoto M.Synthesis and properties ofhyperbranched poly(siloxysilanes) with various functional terminalgroups[J].Polymer Preprints,2005,54(1):436
    [35] Yokomachi K,Seino M,Grunzinger S J,Hayakawa T,Kakimoto M.Synthesisand degree of branching of epoxy-terminated hyperbranchedpolysiloxysilane[J].Polymer Journal,2008,40(3) :198
    [36] Wang Sheng-jie,Fan Xiao-dong,Kong jie,et al.A new controllable approach tosynthesize hyperbranched poly(siloxysilanes)[J].Journal of Polymer Science:PartA:Polymer Chemistry,2008,46(8):2708
    [37] Sakka S,Tanaka Y,Kokubo T.Hydrolysis and polycondensation ofdimethyldiethoxysilane and methyltriethoxysilane as materials for the sol-gelprocess[J].Journal of Non-Crystalline Solids,1986,82(1):24
    [38] Jaumann M,Rebrov E A,Kazakova V V,et a1.Hperbranched PolyalkoxysiloxanesVia AB3-Type Monomers[J].Macromolecular Chemistry and Physics,2003,204:1014
    [39]张国彬,范晓东,刘郁杨等.紫外光固化超支化聚硅氧烷的合成及其光固化动力学研究[J].高分子学报,2007,7:644
    [40]陇卫星,许岗,单民瑜等.紫外光固化聚硅氧烷的合成及性能研究[J].西安工业大学学报,2007,27(3):247
    [41] Paulasaari Jyri K,Weber William P.Hyperbranched polysiloxane via basecatalyzed proton transfer polymerization (PTP) of1-hydroxypentamethylcyclotrisiloxane[J].American Chemical Society,PolymerPreprints,Division of Polymer Chemistry,2000,41(1):159
    [42] Sacarescu L,Capmare E,Ardeleanu R,et a1.Hyperbranchedpolycyclocarbosiloxane[J].European Polymer Journal,2002,38:983
    [43]杜茂平,魏伯荣等.聚硅氧烷增韧环氧树脂研究新进展[J].有机硅材料,2007,22(1):46
    [44]幸松民,王一璐.有机硅合成工艺及产品应用[M].北京:化学工业出版社,2000
    [45]左晶,李临生,丁红梅,安秋风,黄良仙.有机聚硅氧烷在医药中的应用进展[J].化工进展,2005,24(1):14
    [46]冯圣玉,张洁,李美江,朱庆增.有机硅高分子及其应用[M].北京:化学工业出版社,2004
    [47]陇荣国,肖荔人,陇庆华,章文贡.超支化聚合物的性能、合成及其功能化应用研究[J].功能材料,2007,38(A10):3993
    [48] Sakka S,Tanaka Y,Kokubo T.Hydrolysis and polycondensation ofdimethyldiethoxysilane and methyltriethoxysilane as materials for the sol-gelprocess[J].Journal of Non-Crystalline Solids,1986,82(1):24
    [49] Caiguo Gong, Jean M. J. Fréchet.End Functionalization of HyperbranchedPoly(siloxysilane):Novel Crosslinking Agents and Hyperbranched–LinearStarBlock Copolymers[J].Journal of Polymer Science: Part A: Polymer Chemistry,2000, 38:2970
    [50]陆方,严宝珍,胡高飞,郭灿雄,许锦华.笼形倍半硅氧烷NMR的研究[J].波普学杂志,2004,21(1):57
    [51]尤丽虹,惠雪梅.氰酸酯增韧技术研究进展[J].玻璃钢/复合材料,2009,2:82
    [52]朱超,林丽娟.超支化聚合物增韧环氧树脂的研究进展[J].工程塑料应用,2006,35(1):78
    [53] Yang Chunzhuang, Gu Aijuan, Song Hongwei, et al. Novel Modification ofCyanate Ester by Epoxidized Polysiloxane[J]. Journal of Applied Polymer Science,2007, 105: 2020
    [54]孙旭东,曾敏峰等.环氧树脂/贝壳粉复合材料的自由体积特性的正电子湮没研究[J].核技术,2007,30(9):735
    [55]佀庆法,范晓东,王生杰,孔杰.超支化聚硅(碳/氧)烷的研究进展[J].高分子通报,2006,6:45
    [56] Zhang Qilu, Ma Xiaoyan, Liang Guozheng, Qu Xiaohong, Huang Yun, WangShuhui, Kou Kaichang. Morphology and Properties of Cyanate Ester/LiquidPolyurethane/Silica Nanocomposites[J]. Journal of Polymer Science: Part B:Polymer Physics, 2008, 46:1243
    [57] William K. Goertzen, M.R. Kessler. Dynamic mechanical analysis of fumedsilica/cyanate ester Nanocomposites[J]. Composites: Part A, 2008, 39: 761
    [58] S. MALLARINO, J. F. CHAILAN, J. L. VERNET. Sizing Effects on MainRelaxation Process of Cyanate Ester Glass Fiber Composites Using DynamicMechanical and Microthermal Analyses[J]. Journal of Polymer Science: Part B:Polymer Physics, 2006, 44: 205
    [59] S. Nagendiran, S. Premkumar, M. Alagar. Mechanical and MorphologicalProperties of Organic–Inorganic, Hybrid, Clay-Filled, and Cyanate Ester/SiloxaneToughened Epoxy Nanocomposites [J]. Journal of Applied Polymer Science, 2007,106: 1263
    [60] Cheng X B. High-Performance Base Body Resin[M]. Beijing: Chemical IndustryPress,1999
    [61] Aijuan Gu, Guozheng Liang. Thermal degradation behaviour and kinetic analysisof epoxy/montmorillonite nanocomposites[J]. Polymer Degradation and Stability,2003, 80: 383
    [62] Shaobo He, Guozheng Liang, Jinhe Wang, Hongxia Yan. Mechanical and thermalproperties of bisphenol A based cyanate ester and diallyl phthalate blends[J].Polymer Bulletin, 2009, 62:237
    [63]杨春壮.高频印制电路板用树脂基体—氰酸酯树脂改性的研究[浙江大学硕士论文].浙江:浙江大学,2007
    [64]程雷,王汝敏,王小建,党婧.烯丙基化合物改性双马来酰亚胺树脂的研究进展[J].中国胶粘剂,2009,l8(4):58
    [65] Jing Fan, Xiao Hu, Chee Yoon Yue. Static and Dynamic Mechanical Properties ofModifiedBismaleimide and Cyanate Ester Interpenetrating Polymer Networks[J].Journal of Applied Polymer Science, 2003, 88:2000
    [66] Rong-Hsien Lina, Wei-Hua Lub, Chih-Wei Lina. Cure reactions in the blend ofcyanate ester with maleimide[J]. Polymer, 2004, 45: 4423
    [67]过梅丽.高聚物不复合材料的动态力学热分析[M].北京:化学工业出社,2002
    [68] Jing Fan, Xiao Hu, Chee Yoon Yue. Thermal degradation study of interpenetratingpolymer network based on modified bismaleimide resin and cyanate ester[J].Polymer International, 2003, 52: 15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700