水环境镉对罗非鱼的毒性作用和机理探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重金属镉已成为世界各地水域主要污染物之一,严重影响水生生物的生长、发育、繁殖,并通过食物链损害人类健康。鱼类与哺乳动物(包括人)生理构造相似,大多数污染物对鱼类和人类机体产生类似影响。因此,深入研究Cd~(2+)对鱼类的毒害作用以及机理对实现水产养殖业可持续发展和人类健康具有重要意义。本试验以世界广泛养殖的罗非鱼(Oreochromis niloticus)为试验对象,通过对水环境Cd~(2+)胁迫作用下罗非鱼内分泌、血浆渗透压和离子组成调节能力、能量代谢、GSH代谢等方面的研究,对Cd~(2+)内分泌干扰作用以及ROS诱导机制进行了探讨。具体内容主要包括以下几方面:
     1罗非鱼对水环境Cd~(2+)的敏感性
     采用静水水生生物急性毒性试验方法,观察罗非鱼中毒症状并计算半数致死浓度(LC_(50))。结果发现高浓度组鱼首先出现异常行为:游动急促,上下窜动;随后身体失去平衡,游动缓慢,反应迟钝,最后呈螺旋式运动,逐渐丧失运动能力而静止在底部,直至死亡。低浓度组出现中毒症状需要时间较长,但一旦中毒症状相同。解剖显示:血液暗红色;肝脏颜色加深,质地松软;腹腔内充满黄色胶胨状物质;鱼鳃水肿,呈紫红色。计算结果显示,水环境Cd~(2+)对罗非鱼鱼种24h、48h、72h和96h LC_(50)分别为27.73mg/L,16.87mg/L,12.43mg/L和9.11mg/L,安全试验浓度为0.91mg/L。
     1罗非鱼对水环境Cd~(2+)的蓄积和排放
     采用室内模拟方法,将罗非鱼在不同浓度Cd~(2+)(0.5mg/L和1.0mg/L)溶液中暴露60d后再转移到清洁水体排放30d。结果表明,罗非鱼对水环境Cd~(2+)蓄积具有时间和剂量效应关系;蓄积速度因组织而异:鳃、肝、肾Cd~(2+)浓度迅速增加,肌肉中增加缓慢。60d后Cd~(2+)蓄积量为肾>肝>鳃>肌肉。排放期间,鳃和肌肉Cd~(2+)迅速降低,肝Cd~(2+)含量几乎维持不变,肾Cd~(2+)含量略有增加。排放30d后,肌肉Cd~(2+)排出率59.37%(0.5mg/L)和80.44%(1.0mg/L)。表明受Cd~(2+)污染罗非鱼经清洁水排放后有望达到食用标准。
     3水环境Cd~(2+)对罗非鱼渗透压和血浆离子组成的影响
     将罗非鱼分别暴露在0.5和1.5mg/L Cd~(2+)溶液中,分别在5,10和20d后对血浆渗透压、离子组成及调节系统进行了检测。结果显示,0.5mg/LCd~(2+)暴露5d后鳃扁平上皮细胞(PC)微脊数量增加,泌氯细胞(CC)和ATPase无明显变化,促肾上腺皮质激素(ACTH)、皮质醇(Cor)和3,5-环化腺苷酸(cAMP)含量以及头肾腺苷酸化酶(AC)活性显著升高(p<0.05);10d后,PC微脊增多并呈不规则排列,CC表面积增加,但数量无明显变化,ATPase活性显著升高(p<0.05),其余指标恢复正常;20d后,CC数量增加,颗粒物排列密度降低,部分CC表面积增加,呈丘状突出;ATPase、ACTH、Cor和cAMP含量以及AC活性显著高于对照(p<0.05);20d暴露期内渗透压和离子组成无显著变化(p>0.05)。1.5mg/LCd~(2+)20d暴露期内PC细胞个体清晰可辨,微脊明显增多;CC数量和ATPase活性在暴露5d后呈增加趋势(p>0.05),ACTH、Cor和cAMP含量以及AC酶被显著诱导(p<0.05),血浆K~+浓度显著升高,Na~+和Cl~-浓度显著下降(p<0.05),Ca~(2+)浓度和渗透压正常;10d后CC数量明显增加,颗粒物排列密度明显降低,ATPase显著升高(p<0.05),其余检测指标正常;20d后CC数量、Ca~(2+)-ATPase、渗透压、Ca~(2+)、Na~+和Cl~-浓度显著降低(p<0.05),K~+、ACTH浓度显著高于对照,Cor水平正常。20d暴露期内,所有处理组MDA与对照无显著差异(p>0.05)。由此可见,高浓度Cd~(2+)长时间胁迫干扰ACTH信号传递,影响Cor合成和释放,损害了鱼体修复能力,从而诱发血浆渗透压和离子组成不可逆紊乱。因此,内分泌信号传递干扰作用可能是Cd~(2+)毒性机理之一。
     4.水环境Cd~(2+)对罗非鱼鳃能量代谢的影响
     将罗非鱼分别暴露在0mg/L、0.5mg/L和2.5mg/LCd~(2+)水中7d,观察鳃线粒体超微结构并对线粒体琥珀酸脱氢酶(SDH)、细胞色素氧化酶(CCO)、超氧化物歧化酶(SOD)活性、丙二醛(MDA)含量和鳃磷酸果糖激酶(PFK)、乳酸(LD)、游离氨基酸(FAA)、总蛋白、谷丙转氨酶(GPT)、谷草转氨酶(GOT)、磷酸烯醇式丙酮酸羧激酶(PEPCK)、血糖、血清FAA和能量负荷(EC)进行了检测。结果显示,0.5mg/LCd~(2+)胁迫作用下,SOD、SDH和CCO活性在前5d暴露时间内被持续诱导,7d后恢复正常;血糖仅仅在暴露后的第3d和第5d显著高于对照(p<0.05);其余检测指标无显著变化。2.5mg/L处理组7d后可见部分线粒体肿胀、空泡化、膜结构破损,线粒体计分显著升高(p<0.05)。SOD活性被逐渐诱导,3d后达最高,但从第5d起开始下降,7d后显著降低(p<0.05)。PFK、SDH和CCO活性逐渐增加,5d后活性最大,比对照分别高58.33%、37.00%和59.62%,同时FAA、GOT、GPT和PEPCK也显著高于对照(p<0.05);7d后,除PEPCK恢复正常外,其余酶活指标均显著降低而LD显著增加(p<0.05);血糖持续升高,7d后浓度达到0.97mg/L,比对照提高67.24%(p<0.005);FAA在暴露后的第5d和第7d比对照显著高30.91%和60.31%,浓度分别为0.72和0.75mg/mL。EC仅仅在暴露7d后显著降低(p<0.05)。结果提示:低浓度Cd~(2+)暴露导致罗非鱼蛋白质周转代谢和糖氧化分解加强;高浓度Cd~(2+)短时间胁迫作用下罗非鱼不但加强糖氧化分解满足能量需求和加快蛋白质周转代谢合成各种应激分子,还分解部分蛋白氧化供能。但高浓度Cd~(2+)胁迫长时间胁迫,将抑制线粒体SOD酶活性,导致线粒体氧化损伤,同时抑制PFK,引发鱼鳃能量供应障碍。因此,Cd~(2+)引发鱼鳃能量代谢障碍可能是Cd~(2+)毒性机理之一。
     5.水环境Cd~(2+)胁迫作用下罗非鱼肝脏GSH代谢的变化和活性氧(ROS)的诱导机理
     将罗非鱼鱼种在3.0mg/LCd~(2+)暴露1、5、10、20和40d后,对还原型谷胱甘肽(GSH)、氧化型谷胱甘肽(GSSG)和谷胱甘肽循环代谢相关酶活性进行测定,并对GSSG-GSH比率进行了计算。结果表明,GSH含量逐渐降低,GSSG-GSH比率逐渐升高;硒依赖谷胱甘肽过氧化酶(Se-GPX)、谷胱甘肽硫转移酶(GST)、葡萄糖—6—磷酸脱氢酶(G6PDH)的活性和GSSG含量在前20d暴露期内逐渐升高,40d后显著降低,但仍显著高于对照(p<0.05)。谷胱甘肽还原酶(GR)和γ—谷胺酰二酰基半胱胺酸合成酶(γ-GCS)活性在试验期间变化不明显,GR仅仅在40d后显著降低,暴露20d后γ-GCS短暂升高。40d后线粒体计分显著增加。结果表明Cd~(2+)亚慢性胁迫作用初期肝脏通过加强GSH合成和周转代谢抵御Cd~(2+)的毒害作用,但随着暴露时间延长,这种反应逐渐丧失。结果提示:Cd~(2+)在初期诱导ROS生成增加并非通过损伤线粒体完成,但GSH耗竭将导致线粒体损伤而将加速ROS形成。
Contamination of fresh water systems by heavy metal cadmium(Cd) has been recognized as a global environmental problem, exposure of fish to even low Cd~(2+) concentrations can have severe toxic effects on growth, development and reproduction. The transfer of Cd~(2+) through food chains also endangers the human health. The effects of pollutants on fish are similar to that of mammalian(including human being) due to the semblable physiological structure. Thus, the deep investigation on the toxic effects of Cd~(2+) on fish is quite important for the realization of sustained development of aquaculture, environmental protection and human health. In current study, the variations of tilapia Oreochromis niloticus cultured worldwide in endocrine, osmo-and ion-regulation and energy metabolism as well as the GSH metabolism have been investigated, the possible mechanisms for the endocrine disruption and the induction of reactive oxygen species(ROS) have been intensively discussed. The main contents are as following:
     1 The sensitivity of tilapia O. niloticus to waterborne Cd~(2+)
     The acute toxicity of Cd~(2+) to tilapia O. niloticus was studied with the static test method. The intoxication symptom and the LC_(50)(median lethal concentration) value through linear regression based on the recording mortality rate were investigated. The results demonstrated that the fish exposed to the highest Cd~(2+) concentration showed abnormal behavior initially. The main symptoms showed that the swimming ability of fish was affected heavily, the fish hastily swim up and down at the beginning of intoxication, subsequently, fish loss body balance and swam slowly and responses obtuse, with the prolonged exposure period the fish swam spirally and gradually lose the swimming ability and died finally. The intoxication symptom appeared after a longer exposure period in the fish exposed to lower Cd~(2+) concentrations, however, the pathological changes were similar in spite of the different exposure concentrations. The results of dissection showed that the fish were characteristic of dull-redness blood, purple gill covered with much mucous and swollen abdominal cavity filled with yellow jelly materials. The LC_(50) of 24, 48, 72 and 96h for Cd~(2+) to juvenile tilapia are 27.73mg/L, 16.87mg/L, 12.43mg/L and 9.11mg/L, respectively. The safe concentration of Cd~(2+) to juvenile tilapia is 0.91 mg/L.
     2 Kinetics of cadmium accumulation, distribution and elimination in tilapia
     The Cd~(2+) accumulation and elimination in the tilapia after exposure to sublethal concentrations(0.05, 0.5 mg l~(-1) Cd~(2+)) for 60 days followed by a 30-day depuration under a simulated pollution had been investigated. The results showed that Cd~(2+) exposure resulted in an increased Cd uptake in tissues with the exposure periods and concentrations, and the patterns of accumulation varied with the organs. For gill, liver, and kidney Cd~(2+)concentrations increased sharply. However, Cd~(2+) level in muscle was increased slowly. After 60 days Cd~(2+) exposure, the order of Cd~(2+) accumulation was in organs kidney>liver>gill>muscle. During the elimination days, the loss of accumulated Cd~(2+) was rapid and immediate in gill whereas the Cd~(2+) concentration increased slightly in kidney and remained constant in liver and muscle. At the end of the cleaning period, the elimination rate in muscle was about 59.37 % at 0.5mg/L Cd~(2+) and 80.44 % at 1.0mg/LCd~(2+). Hence, it is expected that the tilapia contaminated by waterborne Cd can reach the edible standard after elimination in the cleaning water.
     3 The effects of waterborne Cd~(2+) on the plasma osmolality and ion composition
     Juvenile tilapia were exposed to different Cd~(2+) concentrations(0.5, 1.5mg/L) for 20 days. The plasma osmolality and ion composition as well as the regulation system were investigated after the exposure of 5, 10 and 20 days. The results showed that the exposure ot 0.5mg/L Cd~(2+) for 5 days caused to an increase in the microdige of pavement cells(PC) and cortisl(Cor), adrenocorticotrophic hormone(ACTH) concentrations in plasma as well as the adenylate cyclase(AC) activity and cAMP contents in head kidney but no variation in chloride cells(CC) and ATPase. After 10 days of exposure, the microdige of PC becomes irrgeluar and the surface area of CC was elevated without significant changes in the number, ATPase activities werer enhanced and other indicators return to normal level. Subsequently, the amounts were enhanced with a decreas in the denstity of granule in the CCs while the surface area of partial CCs were increased and showed hillock prominence after 20-day exposure, meanwhile, ATPase and AC activities and ACTH, Cor, cAMP concentrations were higher significantly than the control. There was no significant change in the plasma osmolality and ion composition during the whole exposure period. On the other hand, there was an obvious increase in the microridge of the squamous PCs, and the individual was discriminable during the whole exposure period at 1.5mg/LCd~(2+), while the CC amount and ATPase activities showed an increase trend after 5-day exposure without significant difference, however, ACTH, Cor, cAMP, K~+ concentration as well as AC were elevated significantly, in addition, the osmolality and Ca~(2+) concentration reamined at normoral level whereas Na~+ and Cl~-concentrations were decreased significantly(p<0.05). After 10 days of exposure, CC amounts increased and the density of granule decrease obviously, ATPase were increased significantly with normal value in other indicators assayed. A similar change to that of 5-day exposure in K~+, Na~+ and Cl~-concentrations was detected after 20 days of exposure, meanwhile a significant decrease in CC amount, Ca~(2+)-ATPase, osmolality and Ca~(2+) concentration were observed, whereas, a normal Cor and augmented ACTH concentration in plasma were detected. Furthermore, the MDA levels in kidney were kept at the control levels in two treatment groups. The results showed that the impairment of gill, especial the inhibition of ATPase would lead to the disruption of plasma ion composition and osmolality, however, the fish can cope with the stress through enhancing secretion of Cor, which can increase CC amount and surface and ATPase activity and strengthen the regulation ability. But exposure of fish to the higher concentration for a longer time, the regulation ability of plasma osmolality and ion composition. The normal ACTH concentration and AC activity suggest that impairment of ion regulation and osmolality may be ascribe to the disruption of ACTH signal transduction and/or inhibit the synthesis of Cor, which would lead to a decrease in the repair ability. Hence, the disruption of endocrine signal transduction would be one of the possible mechanisms for Cd~(2+)toxicity.
     4 The effects of waterborne Cd~(2+) on the energy metabolism in the gills of tilapia and the possible mechanism
     The activities of succinate dehydrogenase(SDH), cytochrome C oxidase(CCO), superoxide dismutase(SOD) and MDA in mitochondria in the gills of tilapia and phosphorfucto kinase(PFK), glutamate oxaloacetate transaminase(GOT), glutamate pyruvate transaminase(GPT), phosphoenolpyruvate carboxykinase(PEPCK), lactic acid(LD), total protein, free amino acid(FAA), ATP, ADP, AMP in gills and plasma glucose as well as FAA in plasma were determined after exposure to different Cd~(2+) concentrations(0mg/L、0.5mg/L and 2.5mg/L for 7 days. The results showed that 5-day exposure of fish to 0.5mg/L Cd~(2+) led to a constant elevation in SOD, SDH and CCO activites while returned to normal level after 7 days of exposure, meantime a transitional increase in plasma glucose on the third and fifth day were detected. Howver, exposure to 0.5mg/L Cd~(2+) had no significant effect on other index. The exposure of fish to 2.5mg/L lead to damage to the mitochondrion in the gill, and some swollen and blank regions and broken membranes in mitochondria were observed after 7 days of exposure. Meanwhile, the mitochondrial scoring was significant higher than the control. The SOD activities was induced significantly in the initial period and rose to the maximum after 3 days of exposure and showed a decreasing trend and the difference became significant after 7-day exposure. PFK, SDH and CCO activities also were enhanced continuously at the beginning and were up to the highest value and elevated by 58.33%, 37.00%and 59.62% than the control, respectively, at one time, FAA contents and PEPCK, GPT, GOT activities were increased significantly. However, all indicators assayed were decreased significantly apart from the return of PEPCK to normal levels and significant elevation in LD contents after 7 days of exposure. Plasma glucose were increased continuously during the exposure period and reached the highest with 0.97mg/L, which was increased by 67.24%(p<0.005), at the end of the experiment. The significant increase in plasma FAA concentration was detected on the 5th day and 7th day, which was increased by 30.91 % and 60.31 % as compared to the control, respectively.
     The present results demonstrated that tilpia speed up the protein turnover metabolism and carbohydrate aerobics glycolytic to satisfy the energy requirement after exposure of tilapia to lower concentration of Cd~(2+) for a short time. For the short-term exposure of fish to higher concentration of Cd~(2+), fish also enhance the supply of energy through speeding the carbohydrate aerobics glycolytic and decompose partial protein to cope with the stress, but for a long-term exposure there is obstacle in the supply of energy due to the decrease in PFK activity and the impairment of mitochondrion resulting from the inhibition of SOD. Hence, it can be concluded that the obstacle of energy metabolism was one of the possible mechanism for Cd~(2+) toxicity.
     5 The variation of hepatic GSH metabolism and the induction of ROS after exposure to waterborne Cd~(2+)
     To explore the effects of Cd~(2+) exposure of tilapia(Oreochromis niloticus) on hepatic glutathione(GSH) metabolism, tilapias were exposed to 3.0 mg/l Cd for 1,5,10, 20 and 40 days. The contents of reduced GSH and oxidized GSH(GSSG) and the activities of enzymes involved in GSH metabolism and the GSSG-GSH ratio were investigated. The results showed that reduced GSH were depleted progressively whereas the GSSG-GSH ratio increased. The activities of selenium-dependent glutathione peroxidase, glutathione S-transferase and glucose-6-phosphate dehydrogenase and GSSG levels increased initially and decreased subsequently but still higher than the controls. Glutathione reductase activity dropped on the 40th day. A transient increase inγ-glutamylcysteine synthetase activity was detected on the 20th day. Mitochondrion scoring was elevated significantly only after 40 days of exposure. These results indicated that sub-chronic exposure to waterborne Cd~(2+) affect the hepatic GSH metabolism. During the initial period, the synthesis and turnover were strengthened to deal with the stress while the response ability weakened for a longer exposure. In addition, the significant elevation in mitochondrion scoring after 40 days of exposure while the GSH was depleted suggested the ROS in the initial period was induced via other routines not mitochondrion impairment, but the depletion of GSH accelerate the formation of ROS due to the impairment of mitochondrion.
引文
1.孙丽虹,张启海.半导体化合物Hg_(1-x)Cd_xTe中x值的测定,稀有金属,1996,20(2):149-152.
    2.柯长茂,李先机,贺代杰,等.露d铅锌矿环境中镉对人体健康影响的调查研究,环境与健康杂志,1985,2(5):9-13
    3.安志装,王校常,严蔚东,等.镉硫交互处理对水稻吸收累积镐及其蛋白琉基含量的影响,土壤学报,2004,41(5):728-734
    4. Schlenk, D., Rice, C.D. Effect of zinc and cadmium treatment on hydrogen peroxide-nduced mortality and expression of glutathione and metallothionein in a teleost heptoma cell line. Aquatic Toxicology, 1998, 43: 121-129.
    5.包克光,彭良斌.炼铜排放金属污染地带环境中金属对人体健康的影响,中国环境科学,1984,4(6):27-34.
    6.蔡诗文,岳麟,袁一傲,等.环境镉污染所致健康危害判定标准的研究,环境与健康杂志,1994,11(3):97-99.
    7.王夔主编.生命科学中的微量元素(第二版)[M],北京:中国计量出版社,1996,7:850-858
    8. UNEP: Environmental Data Report. Basil Blackwell Ltd. Oxford. U.K., 1991.
    9. Yan, Y., Zhenjun, Z., Yiping L., et al. Study on the mutagenicity of organic extracts and metal features of total suspended particulates in Xi'an city. 中国临床康复,2004,8 (15):2970-2972.
    10.黄益宗,朱永官.森林生态系统镉污染研究进展,生态学报,2004,24(1):101-108.
    11.刘莉,钱琼秋.影响作物对镉吸收的因素分析及土壤镉污染的防治对策,浙江农业学报,2005,17(2):111-116.
    12.周启星,高拯民.作物籽实中Cd与Zn的交互作用及其机理的研究,农业环境保护,1994,13(4):148—151.
    13.赵中秋,朱永官,蔡运龙.镉在土壤-植物系统中的迁移转化及其影响因素,生态环境2005,14(2):282-286.
    14.曹仁林,贾晓葵,张建顺.镉污染水稻土防治研究,天津农林科技,1999,(6):12.
    15.王江平.入世后高浓度磷肥中的问题,磷肥与复肥,2002,17(5):11-15.
    16.国家环保局.《中国环境质量报告——水质部分》,1991~1995年.
    17.赵璇,吴大宝.我国饮用水源的重金属污染及治理技术深化问题,给水排水,1998.24(10):22-25.
    18.王宗元.动物营养代谢和中毒病[M].北京:中国农业出版社,1997:20.
    19.宁文吉 张桂芳 董桂贤,等.水中镉的达旦黄-吐温80分光光度快速测定法,职业与健康,2006,22(1):33.
    20.罗江,葛海霖,张文清,等.溶出伏安法测定饲料级硫酸铜中铅和镉,华东理工大学学报(自然科学版),2005,31(4):532-534,545.
    21.卞莉,曹萍.石墨炉原子吸收光谱法测定土壤样品中镉,吉林地质,2005,24(2):115-117.
    22.王守箐.ICP-AES法测定淀粉中的铅、汞、镉、砷,化学分析计量,2005,14(4):43-44.
    23.葛虹.渔用配合词料重金属的毒残危害及安全限量,渔业致富指南,2004,7:15-18.
    24. Leland, H.V., Kuwabara, J.S. Trace metals. In: Rand GM, Petrocelli SR. Fundamentals of Aquatic Toxicology. Hemisphere Publishing Corporation: New York, 374-415, 1985.
    25.刘长发,陶澍,龙爱民.金鱼对铅和镉的吸收蓄积,水生生物学报,2001,25(4):344-349.
    26. Pagenkopf, G..K. Gill surface interaction model for trace-metal toxicity to fishes: role of complexation, pH, and water hardness. Environmental Science and Toxicology, 1983, 17(6): 342-346.
    27. Rainbow, P.S. Trace metal accumulation in marine invertebrates. Marine biology or marine chemistry? Journal of Marine Biology and Assessment of the United Kingdom, 1997, 77: 195—210.
    28. Woo, P.T.K., Yoke, M.S., Wong, M.K. The effects of short term acute cadmium exposure on blue tilapia, Orcochromus aurues. Environmental Biology of Fishes, 1993, 37: 67-74.
    29. Allen, P. Chronic accumulation of cadmium in the edible tissues of Oreochromis aureus (Steindachmer): Modification by mercury and lead. Archives of Environmental Contamination and Toxicology, 1995, 29: 8—14.
    30. McGeer, J.C., Szebedinszky, C., McDonald, D.G.., et al. M. Effects of chronic sublethal exposure to waterborne Cu, Cd, or Zn in rainbow trout 2: tissue specific metal accumulation. Aquatic Toxicology, 2000, 50: 245-256.
    31. Kraal, M.H., Kraak, M.H.S., Groot, C.J., et al. Uptake and tissue distribution of dietary and aqueous cadmium by carp (Cyprinus carpio). Ecotoxicology and Environmental Safety, 1995, 31: 179-183.
    32. Cinier, C.C, Ramel, M.P, Faure, R., et al. Cadmium bioaccumulation in carp (Cyprinus carpio) tissues during long-term high exposure: analysis by inductively coupled plasma-mass spectrometry. Ecotoxicology and Environmental Safety, 1997, 38: 137-143.
    33.苏传福.镉对水生动物的危害作用研究紧张,重庆水产,2005,3:42-46.
    34.马健.鲤鱼对食物及水中镉的摄取及在组织中的分配,国外环境科学技术,1997,2:21-24..
    35. Kim, S.G., Jee, J.H., Ju, C.K. Cadmium accumulation and elimination in tissues of juvenil olive flounder, Paralichthus olivaceus after sub-chronic cadmium exposure. Environmental Pollution, 2004, 127:117-123.
    36. Klaverkamp, J.F., McDonald, W.A., Duncan, D.A., et al. Metallothionein and acclimation to heavy metals in fish: A review. In : Carins, V.W., Hodson, P.V., Nriagu, J.O. (Eds.), Contaminant effects on fisheries, Adv. Environ. Sci. Technil. Sreies 16. Wiley, New York, pp. 99-113, 1984
    37. Roseijadi, G. Metallothioneins in metal regulation and toxicity in aquatic animals. Aquatic Toxicology, 1992, 22:81-114.
    38. Cinier, C.C., Ramel, M.P., Faure, R., et al. Cadmium bioaccumulation in carp (Cyprinus carpio) tissues during long-term high exposure: analysis by inductively coupled plasma-mass spectrometry. Ecotoxicology and Environmental Safety, 1997 38: 137-143.
    39. Cinier, C.C., Ramel, M.P., Faure, R., et al. Kinetics of cadmium accumulation and elimination in carp Cyprinus carpio tissues. Comparative Biochemistry and Physiology Part C, 1999, 122: 345-352.
    40. Heath, A.G. Water Pollution and Fish Physiology. CRC Press: Boca Raton, pp 245, 1995.
    41. Kuroshima, R., Kimura, S., Date, K., et al. Kinetic analysis of cadmium toxicity to red sea bream, Pagrus major. Ecotoxicology and Environmental Safety, 1993, 25: 300-314,
    42. Sudo, J.I., Hayashi, T., Terui, J., et al. Kinetics of Cd~(2+) in plasma, liver and kidneys after single intrave- nous injection of Cd-metallothionein-Ⅱ. European Journal of Pharmacology, 1994, 270: 229-235.
    43. Schwartz, N.B., Justo, S.N. Acute changes in serum gonadotrophins and steroids following_orchidectomy in the rat: role of the adrenal gland. Endocrinology, 1977, 100(6):1550-1556.
    44.陈其晨,张克俭,徐关文,重金属对鱼类毒性的综合研究,水产学报,1988,12(1):21-33.
    45.姜礼燔,曹萃禾,热污染对草鱼、鲢鱼胚胎发育的影响,中国环境科学,1984,4(6):40-45.
    46.郭永灿,周青山,谢锦云,等,底泥中重金属对水生生物的影响,水生生物学报,1991,15(3):234-241.
    47.村木茂树,农学研究,1981,59(3):12-16
    48. Pickering, A.D., Porringer, P. Seasonal and diet changes in plasma cortisol levels of the brown trout, Salmo trutta L. General and Comparative Endocrinology, 1983, 49: 232-239.
    49. Jones, I., Kille, P., Sweeney, G.. Cadmium delays growth horomone expression during trout development. Journal of Fish Biology, 2001, 59(4): 1015-1022.
    50. Brodeur, J., Daniel, C.D., Ricard, A.C., et al. In vitro response to ACTH of the interrenal tissue of rainbow trout (Oncorhnchus mykiss) exposed to cadmium. Aquatic toxicology, 1998, 42:103-113.
    51. Pelgrom, S.M.G., Lock, R.A.C., Balm, P.H.M., et al. Effects of combined waterborne Cd and Cu exposure on ionic composition and plasma cortisol in tilapia, Orechromis mossambicus. Comparative Biochemistry and Physiology, 1995, 111(2): 227-235.
    52. Iger, Y., Balm, P.H.M., Jenner, H.A. et al. Cortisol induces stress related changes in the skin of rainbow trout (Oncorhynchus mykiss). General and Comparative Endocrinology, 1995, 97: 188-198.
    53. Mommsen, T.P., Vijayan, M.M., Moon, T.W., Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation, Reviews in Fish Biology and Fisheries. 1999, 9: 211-268.
    54. Mallatt, J., Stinson, C. Toxicant extraction efficiency and branchial NaCl fluxes in lampreys exposed to Keponc. Archives of Environmental Contamination and Toxicology, 1990, 19: 307-313.
    55. Mallatt, J. Fish gill structure changes induced by toxicants and other irritants: A statistical reviews. Canadian Journal of Fisheries and Aquatic Sciences, 1985, 42: 630-648.
    56.林浩然.鱼类生理学,广州:广东高等教育出版社,109—145,1999
    57.蔺玉华,张冰艳,卢健民,等.鱼体汞的甲基化及其甲基汞的吸收和代谢,水产学报,1994,18(4):326-329.
    58. Lee, T.H., Hwang, P.P., Lin, H.C. Morphological changes of integumental chloride cells to ambient cadmium during the early development of the teleost, Oreochromis mossambicus. Environmental Biology and Fishes, 1996, 45: 95-102.
    59. Williams, D.R., Giesy, J.P. Jr. Relative importance of food and water sources to cadmium uptake by Gambusia affinis. Environmental Research, 1978, 16: 326-332.
    60. Verbost, P.M., Flik, G., Lock, R.A.C. Cadmium inhibition of Ca~(2+) uptake in rainbow trout gills. American Journal of Physiology, 1987, 253:216-221.
    61. Verbost, P.M., Flik, G., Lock, R.A.C. et al. Cadmium inhibits plasma membrane calcium transport. Journal of Membrane Biology, 1988, 102: 97—104.
    62.贾秀英,陈志伟.铜、镉对鲫鱼组织Na~+—K~+—ATPase酶活性的影响,科技通报,2003,19(1):50-53.
    63. Lemaire-Gony, S., Lemaire P., Pulsfor, A.L. Effects of cadmium and benzo(a)pyrene on the immune system, gill ATPase and EROD activity of European sea bass Dicentrarchus labrax. Aquatic Toxicology, 1995, 31:297~313.
    64. Lionetto, M.G., Maffia, M., Cappello, M.S., et al. Effect of cadmium on carbonic anhydrase and Na~+-K~+-ATPase in eel, Anguilla anguilla, intestine and gills. Comparative biochemistry and physiology Part A, 1998, 120: 89-91.
    65. Wong, C.K.C, Chan, D.K.O. Isolation of variable cell types from the gill epithelium of Japanese eel Anguilla japonica. American Journal of Physiology, 1999, 276: 363-372.
    66.侯林,辛萍,石秉霞.脑卒中病人Na~+-K~+-ATPase活性及SOD水平检测,青岛医学院学报,1996,32:239-240.
    67. Blasco, J., Puppo, J. Effects of heavy metals (Cu, Cd, and Pb) on aspirate and alanine aminotransferase in Ruditapes philippinarum (Mollusc: Bivalvia). Comparative biochemistry and physiology Part C, 1999, 122: 253-263.
    68.贾秀英,董爱华,施农农.镉对鲫鱼过氧化物酶活性的影响,上海环境科学,2000, 19(8):394—395.
    69.关海红,潘伟志,蔺玉华,等.4种重金属对松浦鲤生长及组织的影响,华中农业大学学报,2005,24(1):68-73.
    70. Couture, P., Kumar, P.R., Impairment of metabolic capacities in copper and cadmium contaminated wild yellow perch (Perca flavescens). Aquatic Toxicology, 2003, 64(1): 107-120.
    71. Vaglio, A., Landriscina, C. Changes in liver enzyme activity in the teleost Sparus aurata in response to cadmium intoxication. Ecotoxicology and Environmental Safety, 1999, 43: 111-116.
    72. Cattani, O., Serra, R., Isani, G., et al. Correlation between metallothionein and energy metabolism in sea bass, Dicentrarchus labrax, exposed to cadmium. Comparative biochemistry and physiology, Part C, 1996, 113(2): 193-199.
    73. Smet H.D., Blust R., Stress responses and changes in protein metabolism in carp cyprinus carpio during cadmium exposure. Ecotoxicology and Environmental Safety, 2001, 48: 255-262.
    74. Hilmy, A.M., Shabana, M.B., Daabees, A.Y. Effects of cadmium toxicity upon the in vivo and in vitro activity of proteins and five enzymes in blood serum and tissue homogenates of Mugil cephalus. Comparative Biochemistry and Physiology Part C 1985, 81: 145-153.
    75. Suresh, A., Sivaramakrishna, B., Victoriamma, P.C., et al. Shifts in protein metabolism in some organs of freshwater fish Cyprinus carpio under mercury stress. Biochemisrty International 1991, 24: 379-389.
    76. Reddy, P.S. Bhagyalakshmi, A. Changes in oxidative metabolism in selected tissues of the crab (Scylla serrata) in response to cadmium toxicity. Ecotoxicology and Environmental Safety, 1994, 29: 255-264.
    77. Karan, V., Vitorovic, S., Tutundzic, V., et al. Functional enzymes activity and gill histology of carp after copper sulfate exposure and recovery. Ecotoxicology and Environmental Safety, 1998, 40:49-55
    78. Levesque, H.M., Dorval, J., Hontela, A., et al. Hormonal, morphological, and physiological responses of yellow perch (Perca flavescens) to chronic environmental metal exposures. Journal of Toxicology & Environmental Health Part A, 2003, 66(7): 657-676.
    79. Berntssen, M.H.G., Lundebye, A.K. Energetics in Atlantic salmon (Salmo salar L.,) parr fed elevated dietary cadmium, Comparative Biochemistry and Physiology Part C, 2001, 128: 311-323.
    80. Gonzalez, A.I.M., Vicario, A., Estomba, A. et al. Inhibition of esterase in the marine gastropod Littirina littorea exposed to cadmium. Ecotoxicology and Environmental safety, 1998, 41: 284-287.
    81.丁磊,黄鹤忠,吴康,等.镉对鲫非特异性免疫力的影响,农业环境科学学报,2004,23(1):64.
    82.董书芸,胡前胜,余贵英,等.水环境镉对鲫鱼免疫毒性的研究,中国公共卫生,2001,17(3):226—228.
    83. Sinha, S., Mandal, C., Allen, A.K., et al. Acute phase response of C-Reactive protein of Labeo rohita to aquatic pollutants is accompanied by the appearance of distinct molecular forms. Archives of Biochemistry and Biophysics, 2001, 396(2): 139-150.
    84. Albergoni, V., Viola, A. Effects of cadmium on lymphocyte proliferation and macrophage activation in catfish, Ictalurus melas. Fish and Shellfish Immunology, 1995, 5: 301-311.
    85. Albergoni, V., Viola, A. Effect of in vitro cadmium exposure on natural killer (NK) cells of catfish, Ictalurus melas. Fish and Shellfish Immunology, 1996, 6: 167-172.
    86.吴静,张琳,程学敏,等.镉对巨噬细胞分泌功能的影响,环境与健康杂志,1999,16(5):332-333.
    87.丘士起,陈成章,董胜璋.镉对小鼠腹腔巨噬细胞吞噬功能影响与PGE_2关系的试验研究,中国公共卫生学报,1996,15(5):278-279.
    88.胡晓磐,周建华,时夕金.水环境镉对鲫鱼淋巴细胞DNA合成的影响预防医学,2004,11(6):1106-1107.
    89.卢次勇,黎大明,董书芸,等.镉免疫毒性的β—肾上腺素能受体机制研究,中华预防医学志,2000,34(3):140-142.
    90.陈映明,邹良秀,铅、镉、铜对鱼类细胞遗传和细胞遗传学效应的研究,河流中金属污染研究,中国环境科学出版社,251-263,1988,
    91.余文斌,李谷,王学会.镉对几种淡水鱼类外周血红细胞微核率的影响,湖北农学院学报,2000,20(4):354-357.
    92. Chandra, P., Khuda-Bukhsh, A.R. Genotoxic effects of cadmium chloride and azadirachtin treated singly and in combination in fish. Ecotoxicology and Environmental Safety, 2004, 58: 194—201.
    93.项黎新,邵健忠,孟真.六种重金属离子胁迫诱导鱼类细胞凋亡的研究,生物化学与生物物理进展,2001,28(6):866-869.
    94. Cohen, M., Lotta, D., Coogan, T., et al. Mechanisms of metal carcinogevesis: The reactions of metals with nucleic acids. In Biological effects of heavy metals (E. C. Foulks, Ed.). CRC, Boca Raton., p 19-75. 1991
    95. Harwig, A., Schlepegrell, R. Interactions by carcinogenic metal compounds with DNA repair processes: toxicological implications. Toxicology Letters, 2002, 127: 47-54
    96. Shugene, L., Hsien-Tsung L. Cadmium inhibits DNA strand break rejoining in methyl methansesulfonate-treated CHOK1 cells. Toxicology and Applied Pharmacology, 1997, 144: 171-176.
    97. Castano, G., Carbonell, M., Carballo, C., et al. Sublethal effects of repeated intraperitoneal cadmium injections on raibow trout (Oncorhychus mykiss). Ecotoxicology and Environmental Safety, 1998, 41: 29-35.
    98. Berntssen, M.H.G., Aspholm, O., Hylland, K., et al. Tissue metallothionein, apoptosis and cell proliferation responses in Atlantic salmon (Salmo slar L.) parr fed elevated dietary cadmium. Comparative biochemistry and physiology Part C, 2001, 128:299-310.
    99. Hidalgo, H A., Koppa, V, Byran S.E. Effect of cadmium on RNA polymerase and protein synthesis in rat liver. FEBS Letters, 1976, 64:159-162
    100. Stuart, G.W., Serale P.F., Palmiter R.D., Identification of multiple metal regulatory elements in mouse metallothionein-Ⅰ promoter by assaying synthetic sequences. Nature, 1985, 317:828-831
    101. Margoshes, M., Vallee, B.L. Journal of American Chemical Society, 1957, 79: 4813-4814.
    102.尤兰兰,周波,姚良同,等.产金属硫蛋白酿酒酵母诱变菌株的生物学功能研究,微生物学杂志,2005,25(1):36-39.
    103. Kelly, J.E., Sandgren, P.E, Trinster, R.L, et al. A pair of adjacent glucocorticoid response elements regulate expression of two mouse metallothionein genes. Proceedings of the National Academy of Sciences of the USA, 1997, 94:10045-10050.
    104. Karin, M., Haslinger, A., Holtgreve, H., et at. Characterization of DNA sequences through which cadmium and glucocorticoid hormones induce human metallothionein-Ⅱ A gene. Nature 1984, 308:513-519.
    105. Scott, G.R., Sloman, K.A., Rouleau, C. et al. Cadmium disrupts behavioral and physiological responses to alarm substance in juvenile rainbow trout (Oncorhynchus rnykiss). Journal of Experimental Biology, 2003, 206(11): 1779-1791.
    106. Kille, P., Stephens, P.E, Kay, J. Elucidation of cDNA sequences for metallothioneins from rainbow trout, stone loach and pike liver using the polymerase chain reaction. Biochimica et Biophysica Acta, 1991,1089: 407-410.
    
    107. Zafarullah, M., Bonham, K., Gedamu, L. Structure of the rainbow trout metallothionein B gene and characterization of its metal-responsive region. Moleular Cell Biology, 1988, 8:4469-4476.
    
    108. Chan K M.PCR-cloning of goldfish and tilapia metallothionein complementary DNAs. Biochemisty Biophysical Research Communication, 1994,205:368~374.
    
    109. Kille, P., Kay, J., Sweeney, G.E. Molecular biology abd environmenatl induction of piscine metallothionein. Marine Environmental Research, 1995, 39(1-4): 107-110.
    
    110. Kaplan, L.A.E., Cleef, K.V., Wirgin, I. Induction of metallothionein mRNA in environmental exposed killifish (Fundulus heteroclitus). Marine Environmental Research, 1995, 39(1-4): 360.
    
    111. Lam, K.L., Ko, P.W., Wong, J.K.Y., et al. Metal toxicity and metallothionein gene expression studies in commono carp carp and tilapia. Marine Environmental Research, 1998,46(1-5): 563-566.
    
    112. Olsson, P.E., Kille, P. Functional comparison of the metal-regulated transcriptional control regions of metallothionein genes from cadmium-sensitive and tolerant fish species. Biochimica et Biophysical Acta, 1997,1350: 325-334.
    
    113. Gorge, S., Hodgson, P., Todd, K., et al. Metallothionein protects against cadmium toxicity-proof from studies developing turbot Larvae. Marine Environmental Research, 1996, 42(1-4): 52.
    
    114. Olsson, P.E., Larsson, A., Haux, C. Influence of seasonal chages in water temperature on cadmium inducibility of hepatic and renal metallothionein in rainbow trout. Marine Environmental Research, 1996, 42(1-4): 41-44
    
    115. Tom, M., Jakubov, E., Rinkevich, B., et al. Monitoring of hepatic metallothionein mRNA Levels in the fish Lithognathus mormyrus -evaluation of transition metal pollution in a mediterranean coast. Marine Pollution Bulletin, 1999, 38(6): 503-508.
    
    116. Lin, H.C., Hsu, S.C., Hwang P.P. Maternal transfer of cadmium tolerance in larval Oreochromis mossambicus. Journal ofFish Biology, 2000, 57: 239-249.
    117. Andrew, P.L. Cheung, T., Lam, H.J. et al. Regulation of Tilapia metallothionein gene expression by heavy metal ions. Marine Environmental Research, 2004, 58: 389-394.
    118. George, G.S., Todd, K., Wright, J. Regulation of metallothionein in teleosts: induction of MT mRNA and protein by cadmium in hepatic and extrahepatic tissues of a marine flatfish, the turbot (Scophthalmus maximus). Comparative Biochemistry and Physiology Part C, 1996, 113(2): 109-115.
    119. Sloman, K.A., Scott, G.R., Diao, Z. et al. Cadmium affects affects the social behaviour of rainbow trout, Oncorhynchus mykiss. Aquatic Toxicology, 2003, 65(2): 171-185.
    120. Gomot, A. Toxic effects of cadmium on reproduction, development and hatching in the freshwater snail Lymnea stagnalis for water quality monitoring. Ecotoxicology and Environmental Safety, 1998, 41: 288-297.
    121. Hatakeyama, S., Yasuno, M. Chronic effects of Cd on the reproduction of the guppy (Poecilia reticulata) through Cd-accumulated midge larvae (Chironomus yoshimatsui). Ecotoxicology and Environmental Safety, 1987, 14:191-207.
    122. Das, R.C. Cadmium toxicity to gonads in freshwater fish, Labeo bata (Hamilton). Archives of Hydrobiology, 1988, 112: 467-474.
    123. Pereira, J.J., Mercaldo-Allen, R., Kuropat, C. Effect of cadmium accumulation on serum vitellogenin levels and hepatosomatic and gonadosomatic indices of winter flounder (Pleuronectes americanus). Archives of Environmental Contamination and Toxicology, 1993, 24:427-431.
    124.王兰,孙海峰,李春源.镉对长江华溪蟹精子发生的影响,动物学报,2002,48(5):677-684.
    125.张彰,王茜.镉对长江华溪蟹精子发生过程中细胞核超微结构的影响,中国水产,2003,2:58—60.
    126. LeGuevel, R., Petit, F.G., LeGoff, P. et al. Inhibition of rainbow trout (Oncorhynchus mykiss) estrogen receptor activity by cadmium. Biolology of Reproductiveness. 2000, 63: 259-266.
    127. Thomas, P. Non-traditional sites of endocrine disruption by chemicals on the hypothalamus-pituitary-gonadal axis: interactions with steroid membrane receptors, monoaminergic pathways, and signal transduction systems. In: Naz, R.K. (Ed.), Endocrine Disruptors: Effects on Male and Female Reproductive Systems. CRC Press, Boca Raton, FL, pp. 18-22, 1999.
    128.马广智,林浩然,张为民.Cd对离体的鲤鱼脑垂体分泌促性腺激素的影响,动物学研究,1995,16(3):255—261.
    129. Singhal, R.L., Nijayvargiya, R., Shukla, G.S. Toxic effects of cadmium and lead on reproductive functions. In: Thomas, J.A., Korach, K.S., McLachlan, J.A. (Eds.), Target Organ Toxicology Series: Endocrine Toxicology. Raven Press, New York, pp. 149-180, 1985.
    130. Piasek, M., Laskey, J.W. Acute cadmium exposure and ovarian steroidogenesis in cycling and pregnant rats. Reproductive Toxicology, 1994, 8: 495-507.
    131. Tilton, S.C. Foran C. M., Benson W. H. Effects of cadmium on the reproductive axis of Japanese medaka, (Oryzias latipes). Comparative Biochemistry and Physiology Part C 2003, 136: 265-276.
    132. Sangalang, G.B., O'Halloran, M.J. Cadmium-induced testicular injury and alterations of androgen synthesis in brook trout. Nature, 1972, 240: 470—471.
    133. Paksy, K., Varga, B., Lazar, P. Cadmium interferes with steroid biosynthesis in rat granusola and luteal cells in vitro. Biometals 1992, 5: 245-250.
    134. Verbost, P.M., Flik, G, Lock, R.A.C., et al. Cadmium inhibits plasma membrane calcium transport, Journal of membrane biology, 1988, 102: 97-104.
    135. Wu, X., Jin, T., Wang, Z., et al. Urinary calcium as a biomarker of renal dysfunction in a general population exposed to cadmium. Journal of Occupational Environment Medicine, 2001, 43: 898-904.
    136.张亚利,王继先.镉对钙代谢的影响及相关机制研究进展,环境与健康杂志,2004,21(4):269-271.
    137.杨学斌,肖萍,仲伟鉴,等.镉经饮水染毒对去卵巢大鼠维生素D3代谢的影 响环境与职业医学,2002,19(2):77-80.
    138.赵升皓.人红细胞的CO2和O2运输,徐州医学院学报,1988,8:21-27.
    139. Akiyama, K., Sutoo, D., Reid, D.G.A. H-NMR comparison of calmodulin activation by calcium and by cadmium. Japanese Journal of Pharmacology, 1990, 53: 393-401.
    140.刘杰.镉的毒性和毒理学研究进展,中华劳动卫生职业病杂志,1998,16(1):2-4.
    141. Prozialeck, W.C. Evidence that E-cadherin may be a target for cadmium toxicity in epithelial cells. Toxicology and Applied Pharmacology, 2000, 164:231-249.
    142. Prozialeck, W.C., Grunwald, G.B., Dey P.M, et al. Cadherins and NCAM as potential targets in metal toxicity. Toxicology and Applied Pharmacology, 2002, 183: 255-265.
    143. Niewenhuis, R.J., Dimitriu, C., Prozialeck, W.C., et al. Ultrastructural characterization of the early changes in intercellular junctions in response to cadmium (Cd2+) exposure in LLC-PK-Ⅰ cell. Toxicology and Applied Pharmacology, 1997, 142:1-12.
    144. Colares, B.C.B., Jepson, M.A., Mcewan, G.T, et al. Junctional uvomonrlin/E-cadherin and phosphotyrosine-modified protein content are correlated with paracelular permeability in Madin-Darby canine kidney(MDCK) epithelia, Histochemistry, 1994, 101: 185-194.
    145. Prozialeck, W.C., Lamar, P.C. Surface binding and uptake of cadmium (Cd2+) by LLC-PKI cells on permeable membrane supports. Archives of Toxicology, 1993, 67:113-119.
    146. Duizer, E., Gide, A.I., Versantvort, C.H., et al. Effects of cadmium chloride on the paracellular barrier function of intestinal epithelial cell lines. Toxicology and Applied Pharmacology, 1999, 155:117-12.
    147. Prozialeck, W.C., Lamar, P.C. Cadmium (Cd2+) disrupts E-cadherin dependent cel-cel junctions in MDCK cels. In Vitro Cell Developmental Biology of Animmal, 1997, 33: 516-526.
    148. Abe, T., Konishi, T., Katoh, T., et al. Induction of heat shock 70 mRNA by cadmium is mediated by glutathione suppressive and non-suppressive triggers. Biochim Biophys Acta, 1994,1201(1): 29-36.
    
    149. Chin, T.A., Templeton, D.M. Protective elevations of glutathione and metallothionein in cadmium-exposed mesangial cells. Toxicology, 1993, 77(1-2): 145-156.
    
    150. Manca, D., Ricard, A.C., Trottier, B., et al. Studies on lipid peroxidation in rat tissues following administration of low and moderate doses of cadmium chloride. Toxicology, 1991, 67(3): 303-323.
    
    151. Briehl, M.M, Baker, A.F. Modulation of the antioxidant defense as a factor in apoptosis. Cell Death & differentiation, 1996, 3: 63-70.
    
    152. Ochi, T., Takahashi, K., Ohsawa, M. Indirect evidence for the induction of a prooxidant state by cadmium chloride in cultured mammalian cells and possible mechanism for the induction. Mutant Research, 1987,180:257-266.
    
    153. Hoffmann, E.O., Cook, J.A., Diluzio, N.R. et al. The effects of acute cadmium administration in the liver and kidney of the rat, light and electron microscopic studies. Laboratory Investigation, 1975, 31:655-664.
    
    154. Toshiaki, K., Toshiki, Y., Hiroaki, S., et al. Potential mechanism of cadmium-induced cytotoxicity in rat hepatocytes inhibitory action of cadmium on mitochondrial respiratory activity. Toxicology, 1994, 92: 115-125.
    
    155. Dorta, D.J., Leite S., DeMarco K.C., et al, A proposed sequence of events for cadmium-induced mitochondrial impairment. Journal of Inorganic Biochemistry, 2003, 97(3): 251-257.
    
    156. Wang, Y.D., Fang, J., Leonard, S.S., et al. Cadmium inhibits the electron transfer chain and induces reatctive oxygen species. Free Radical Biology and Medicine, 2004,36(11): 1434-1443.
    
    157. Al-Nasser, I.A. Cadmium hepatotoxicity and alterations of the mitochondrial function. Journal of toxicology and Clinical toxicology, 2000, 38(4): 407-413.
    
    158. Kang, Y.J., Enger, M.D. Cadmium cytotoxicity correlates with the changes in glutathione content that occur during the logarithmic growth phase A549 cells. Toxicology Letters, 1990, 51:23-28.
    159.徐汉生,奚农葆.“抗氧化物之王”:谷胱甘肽的研究与开发,湖北化工,2000,5:1-3.
    160. Zhang, J.F., Wang, X.R., Guo, H.Y., et al. Effects of water-soluble fractions of diesel oil on the antioxidant defenses of the goldfish, Carassius auratus. Ecotoxicology and Environmental Safety, 2004, 58(1): 110-116.
    161. Casalino, E., Calzaretti, G., Sblano, C., et al. Molecular inhibitory mechanism of antioxidant enzymes in rat liver and kidney by cadmium. Toxicology, 2002, 179: 37-50.
    162. Jie, L., Maria, B., Kadiiska, B., et al. Acute cadmium exposure induces stress related gene expression in wild and metallothionein-Ⅰ/Ⅱ-null mice. Free Radical Biology and Medicine, 2002.6:525-535.
    163.项翠琴,梅兵,吴自荣,等.低剂量镉对肾脏SOD基因表达及其活力的影响,中华劳动卫生职业病杂志,2001,19(2):91-94.
    164. Pruell, R.J., Engelhardt, F.R., Liver cadmium uptake, catalase inhibition and cadmium thionein production in the killifish (Fundulus heteroclitus) induced by experimental cadmium exposure. Marine Environmental Research, 1980, 3:101-111.
    165. Palace, V.P., Majewski, H.S., Klaverkamp, J.F. Interactions among antioxidant defences in liver of rainbow trout (Oncorhynchus mykiss) exposed to cadmium. Canadian Journal of Fisheries and Aquatic Sciences, 1993, 50:156-162.
    166. Orug, E.o., uner, N. Combined effects of 2,4-D and azinphosmethyl on antioxidant enzymes and lipid peroxidation in liver of Orechromis niloticus. Comparative Biochemistry and Physiology Part C, 2000, 127: 291-296.
    167. Prozialeck, W.C., Lamar, P.C. Effects of glutathione depletion on the cytotoxic actions of cadmium in LLC-PK1 cells. Toxicology and Applied pharamacology, 1995, 134: 285-295.
    168.杨巧媛,董胜璋.锌金属硫蛋白对镉致肝肾损伤的修复作用研究,中国公共卫生,2002,18(12):1416-1417.
    169.孙刚,韩建林,徐世文,等.镉对鸡抗氧化系统功能的影响及硒颉抗的效应,中 国畜牧兽医,2004,31(4):34-36.
    170.侯丽萍,马广智.镉与锌对草鱼种的急性毒性和联合毒性研究,淡水渔业,2002,32(3):44-46.
    171.朱荫湄、王家刚、惠d朝.镉对罗非鱼肝组织中GSH代谢的影响,浙江大学学报(农业与生命科学版),2001,27(5):575-578.
    172.张愔,刘红春,刘新郑,等.三种肝病血清黄嘌呤氧化酶的变化,河南科大学学报1998,19(1):10-12.
    173. Basha P., S., Rani. A.U. Cadmium-induced antioxidant defense mechanism in freshwater teleost Oreochromis mossambicus (Tilapia). Ecotoxicology and Environmental Safety, 2003, 56:218-221
    174. Takeda, M., Mori, F., Yoshida, A., et al. Constitutive nitric oxide synthase is associated with retinal vascular permeability in early diabetic rats. Diabetologia, 2001, 44(8): 1043.
    175. 王燕燕,汪义军,王晓,等.糖尿病时血清一氮的变化及其与微血管病变的关系,微循环学杂志,1999,9(1):19
    176. Hassoun, E.A., Stohs, S.J. Cadmium-induced production of superoxide anion and nitric oxide, DNA single strand breaks and lactate dehydrogenase leakage in J774A.1 cell cultures. Toxicology, 1996, 112: 219-226.
    177. Morales, A.I., Vicente-Sanchez, C., Jerkic, M., et al. Effect of quercetin on metallothionein, nitric oxide synthases and cyclooxygenase-2 expression on experimental chronic cadmium nephrotoxicity in rats. Toxicology and Applied Pharmacology, 2006, 210: 128-135.
    178. Ramirez, D. C., Gimenez, M. S. Induction of redox changes, inducible nitric oxide synthase and cyclooxygenase-2 by chronic cadmium exposure in mouse peritoneal macrophages. Toxicology Letters 2003, 145:121-132.
    179. Poliandri, A.H.B., Machiavelli, L.I. Quinteros, A.F., Nitric oxide protects the mitochondria of anterior pituitary cells and prevents cadmium-induced cell death by reducing oxidative stress. Free Radical Biology and Medicine 2006, 40:679-688
    180. Krocova, Z., Macela, A., Kroca, M., et al. The immunomodulatory effect(s) of lead and cadmium on the cells of immune system in vitro. Toxicology, 2000, 14: 33-40.
    181.赵克然,扬毅军,曹道俊,等.氧自由基与临床,北京,中国医药科技出版社,28-45,2000.
    182. IARC, Berylilium, cadmium, mercury and exposures in the glass manufacturing industry, In IARC Monographs on the evaluation of carcinogenic risks to humans, 1993, 58: 41-117.
    183.余日安.镉与DNA损伤、癌基因表达、细胞凋亡,国外医学卫生学分册,2000,27(6):359-363.
    184.张海涛,祝其锋.细胞中特异识别8-羟基鸟嘌呤的修复酶,癌变·畸变·突变,2001,13(1):217-220.
    185. Andrews, G..K., Harding, M.A., Calvet, J.P., et al. The heat shock response in Hela cells accompanied by elevated expression of the c-fos proto-oncogene. Molecular Cell Biology, 1987, 7: 3452-3458.
    186. Jin, P., Ringerta, N.R. Cadmium induces transcription ofproto-oncogenes, c-jun and c-myc in rat L6 myoblast. Journal of Biology and Biochemistry, 1990, 265: 14061-14064.
    187.余日安,陈学敏.硒对镉诱导的大鼠肝细胞原癌基因表达的影响,中华预防医学杂志,2001,35(5):27-31.
    188.雷毅雄,刘玉清.氯化镉诱导细胞c-fos和c-jun原癌基因转录表达,四川大学学报,2003,34(2):260-261.
    189.雷毅雄,Joseph P.,Ong,T.M.镉相关翻译启动因子TIF3致Ras癌基因蛋白的异常表达,环境与健康杂志,2005,22(2):117-119.
    190. Lei, Y.X., Joesph, P., Ong, T.M. Antisense inhibition of translation initiation factor 3 reverse its oncogenic. Tertog Carcinog Mutagen, 2002, 22:403-409.
    191.雷毅雄,Joseph,P.,陈家堃,等.TEF-1δ基因真核细胞稳定表达系统的构建与鉴定,癌变.畸变.突变,2002,14(3):171-174.
    192.雷毅雄,Joesph,P.,吴中亮,等.镉应答新基因TEF-1δ的生物学功能研究,卫生毒理学杂志,2002,16(3):136-138.
    193.雷毅雄,陈学敏,陈家堃.金属镉应答新基因TEF-1δ的致癌力鉴定,中国职业医学,2004,31(5):5-7.
    194.雷毅雄,陈学敏,陈家堃.反义翻译延伸因子TEF-1δ对氯化镉致癌性的逆转作用,癌变.畸变.突变,2005,17(1):1-3.
    195. Dominicza, A.F., Bohr, D.F. Cell membrane abnormalities and regulation of intracellular calcium concentration inhypertension. Clinical Science, 1990, 79: 415.
    196.陈松海,韩启德.胞内游离Ca2+浓度德调节机制,生理科学进展,1993,24(1):10-13.
    197. Blazka, M.E., Shaikh, Z.A. Differences in cadmium and mercury uptakes by hepatocytes: Role of calcium channels. Toxicology and Applied Pharmacology, 1991, 110: 355-363.
    198.姜傥,谭炳德,董秀清.镉致肾小管细胞内Na~+—K~+—ATP酶与钙稳态的变化,中华劳动卫生职业病杂志,1995,13(2):75-78.
    199.吴洁,倪沛洲,凌霞.蛋白激酶的研究进展,中国药物化学杂志,2001,11(3):104-107.
    200. Tang, N., Enger, M.D. Cd2+-induced c-myc NRK-49Fcells is blocked by the protein kinase inhibitor H7 but not HA 1004, indicating that protein kinase C is a mediator of the response. Toxicology, 1993, 81: 155-164.
    201. Matsuoka, M., Call, K.M. Cadmium induced expression of immediate early genes in LLCPKi cells. Kidney International, 1995, 48: 383-389.
    202. Beyersmann, D., Block, C., Malviya, A.N. Effects of cadmium on nuclear protein kinase C. Environmental Health and Perspective, 1994, 102(3): 177-180.
    203. Yu, C.W., Chen, J.H., Lin, L.Y. Metal-induced metallothionein gene expression can be inactivated by proteinkinase C inhibitor. FEBS Letters, 1997, 22, 420(1):69-73.
    204. Rossman, T.G., Roy, N.K. Lin W-C. Is cadmium genotoxic? In cadmium in the human environment: toxicity and carcinogenicity. 1992, 367-375.
    205. Beyersmann, D., Hartwig A. Genotoxic effects of metal compounds. Archives of Toxicological Supplement, 1994, 16: 192-198.
    206. Absire, M.K., Devor, D.E., Diwan, B.A, et al. In vitro exposure malignant progression in vivo. Carcinogensis, 1996, 17:1349-1356.
    207.雷毅雄,Joesph P.,吴中亮,等.镉转化细胞DNA异常甲基化对肿瘤相关基因表达的影响,中华劳动卫生职业病杂志,2003,21(2):114-116.
    208.李金龙,徐世文,熊永忠.镉致鸡脾淋巴细胞凋亡及对p53mRNA表达的影响,中国环境科学,2004,24(4):456-459.
    209. Smith, M.L., Chen, I.T., Zhan. Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen. Science, 1994, 266:1376-1380.
    210. Kim, B.J., Kim. M.S., Kim, K.B., et al. Sensitizing effects of cadmium on TNF-α and TRAIL-mediated apoptosis of NIH3T3 cells with distinct expression patterns of p53. Carcinogensis, 2002, 23(9): 1411-1417.
    211. Zheng, H., Liu J., Choo, K.H.A., et al. Metallothionein-Ⅰ and Ⅱ knock out mice are sensitive to cadmium induced live mRNA expression of c-jun and p53. Toxicology and Applied Pharmacology, 1996, 136: 229-235.
    212. Lag, M., Westly, S., Lerstad, T., et al. Cadmium-induced apoptosis of primary epithelial lung cells: involvement of Bax and p53, but not of oxidative stress. Cell Biology and Toxicology, 2002, 18(1): 29-42.
    213. Achanzar, W.E., Achanzar, K.B., Lewis, J.G., et al. Cadmium induces c-rnyc, p53, and c-jun expression in normal human prostate epithelial cells as preclude to apoptosis. Toxicology and Applied Pharmacology, 2000, 164(3): 291-300.
    214.蔡云清,任香梅,许冬青,等.镉诱导LLC-PK1细胞凋亡与bcl—2、p53蛋白表达关系的研究,卫生研究,2004,33(6):663-665.
    215. Hainaut, P., Milner, J.A. Structural role for metal ions in the "wild-type" conformation of the tumor suppressor protein p53. Cancer Research, 1993, 53:1793-1742.
    216. Meplan, C., Mann, K., Hainaut, P. Cadmium induces conformational modifications of wild-type p53 and suppresses p53 response to DNA damage in cultured cells. Journal of Biological Chemistry, 1999, 274(44): 31663-31670.
    1.吴邦灿,费龙.现代环境监测技术.北京:中国环境科学出版社,1999,252-254.
    2.陈锡涛.镉对花鲢(Aristichthy nobills)仔鱼,鱼苗,鱼种的急性毒性及其安全浓度的评价.环境科学与技术,1991,4:5-8.
    3.隋国斌,杨凤,孙丕海等.铅,镉,汞对皱纹盘鲍幼鲍的急性毒性试验,大连水产学院学报,1999,14(4):43-50.
    1. Woo, P.T.K., Yoke, M.S., Wong, M.K. The effects of short term acute cadmium exposure on blue tilapia, Orcochromus aurues. Environmental Biology of Fishery, 1993, 37: 67-74.
    
    2. Rainbow, P.S. Trace metal accumulation in marine invertebrates. Marine biology or marine chemistry? Oceanographic Literature Review, 1997,44(8): 892
    
    3. Kim, S.G., Jee, J.H., Ju, C.K. Cadmium accumulation and elimination in tissues of juvenil olive flounder, Paralichthus olivaceus after sub-chronic cadmium exposure. Environmental Pollution, 2004,127: 117-123.
    
    4.刘长发,陶澍,龙爱民.金鱼对铅和Cd2+的吸收蓄积,水生生物学报,2001, 25(4):344-349.
    
    5. Schultz, I.R. Peters, E.L., Newman, M.C. Toxicokinetics and disposition of inorganic mercury and cadmium in channel catfish after intravascular administration. Toxicology and Applied Pharmacology, 1996, 140: 39-50
    
    6. Leland, H.V., Kuwabara, J.S. Trace metals. In: Rand GM, Petrocelli SR. Fundamentals of Aquatic Toxicology. Hemisphere Publishing Corporation: New York, 374-415, 1985.
    
    7. Reid, S.D., McDonald, D.G. Metal binding activity of the gills of rainbow trout (Oncorhynchus mykiss). Canadian Journal of Fisheries and Aquatic Sciences, 1991, 48: 1061-1068.
    
    8. Allen, P. Chronic accumulation of cadmium in the edible tissues of Oreochromis aureus (Steindachmer): Modification by mercury and lead. Archives of Environmental Contamination and Toxicology, 1995, 29: 8-14.
    
    9. Gill, T.S., Bianchi, C.P., Epple, A. Trace metal (Cu and Zn) adaptation of organ system of the American eel, Anguilla rostrata, to external concentrations of cadmium. Comparative Biochemistry and Physiology Part C, 1992, 102: 361-371.
    
    10. McGeer, J.C., Szebedinszky, C, McDonald, D.G., et al. Effects of chronic sublethal exposure to waterborne Cu, Cd, or Zn in rainbow trout 2: tissue specific metal accumulation. AquaticToxicology, 2000, 50: 245-256
    
    11. Kraal, M.H., Kraak, M.H.S., Groot, C.J., et al. Uptake and tissue distribution of dietary and aqueous cadmium by carp (Cyprinus carpio). Ecotoxicology and Environmental Safety, 1995, 31: 179-183.
    
    12. Cinier, C.C, Ramel, M.P, Faure, R., et al. Cadmium bioaccumulation in carp (Cyprinus carpio) tissues during long-term high exposure: analysis by inductively coupled plasma-mass spectrometry. Ecotoxicology and Environmental Safety 1997, 38: 137-143.
    
    13. Cinier, C.C., Ramel, M.R, Faure, R., et al. Kinetics of cadmium accumulation and elimination in carp Cyprinus carpio tissues. Comparative Biochemistry and Physiology Part C, 1999, 122: 345-352.
    
    14. Woodworm, J., Evans, A.S., Pascoe, D. The production of cadmium-binding protein in three species of fresh water fish. Toxicololgy Letters, 1983, 15: 289-95.
    
    15. Kim, S.G., Jee, J.H., Ju, C.K. Cadmium accumulation and elimination in tissues of juvenil olive flounder, Paralichthus olivaceus after sub-chronic cadmium exposure. Environmental Pollution. 2004, 127: 117-123.
    
    16. Suresh, A., Sivaramakrishna, B., Radhakrishnaiah, K. Patterns of cadmium accumulation in the organs of fry and fingerlings of freshwater fish Cyprinus carpio following cadmium exposure. Chemosphere, 1993,26: 945-53.
    
    17. Heath, A.G. Water Pollution and Fish Physiology. CRC Press: Boca Raton, pp 245, 1995.
    
    18. Yang, H.N., Chen, H.C. Uptake and elimination of cadmium by Japanese eel Anguillajaponica, at various temperatures. Bulletin of Environmental Contamination and Toxicology, 1996, 56: 670-676.
    
    19. Kuroshima, R., Kimura, S., Date, K., et al. Kinetic analysis of cadmium toxicity to red sea bream, Pagrus major. Ecotoxicology and Environmental Safety, 1993, 25: 300-314.
    
    20. Wicklund, A., Runn, P., Norrgren, L. Cadmium and zinc interaction in fish: Effects of zinc on uptake, organ, distribution and elimination of ~(109)Cd in the zebrafish, Brachydanio rerio. Archives of Environmntal Contamination Toxicology, 1988, 17: 345-354.
    
    21. Sudo, J.I., Hayashi, T., Terui J., et al. Kinetics of Cd~(2+) in plasma, liver and kidneys after single intrave- nous injection of Cd-metallothionein-11. European Journal of Pharmacology, 1994, 270: 229-235.
    1. Selve, H. Stress and the general adaptation syndrome? British Medical Journal, 1950, 17, 1383-1392.
    2. Pickering, A.D. Porringer P. Seasonal and diet changes in plasma cortisol levels of the brown trout, Salmo trutta L. General and Comparative Endocrinology, 1983.49, 232-239.
    3. Bernie, I.Q.J., Peter, R.E. The hypothalamirPituitary-interrenal axis and the control of food intake in teleost fish. Comparative Biochemistry and Physiology, 2001, 1298; 639-644.
    4. Iger, Y., Balm, P.H.M., Jenner, H.A. et al. Cortisol induces stress related changes in the skin of rainbow trout (Oncorhynchus mykiss). General and Comparative Endocrinology, 1995, 97:188-198.
    5. Mallatt, J., Stinson, C. Toxicant extraction efficiency and branchial NaCl fluxes in lampreys exposed to Keponc. Archives of Environmental Contamination and Toxicology, 1990, 19: 307-313.
    6. Mallatt, J. Fish gill structure changes induced by toxicants and other irritants: A statistical reviews. Canadian Journal of Fisheries and Aquatic Sciences, 1985, 42: 630-648.
    7.林浩然.鱼类生理学,广州:广东高等教育出版社,109~145,1999.
    8.蔺玉华,张冰艳,卢健民,等.鱼体汞的甲基化及其甲基汞的吸收和代谢,水产学报,1994,18(4):326-329.
    9. Lee, T.H., Hwang, P.P., Lin, H.C. Morphological changes of integumental chloride cells to ambient cadmium during the early development of the teleost, Oreochromis mossambicus. Environmental Biology of Fishes, 1996, 45: 95-102.
    10. Madsen, S.S., Jensen, M.K., Nohr, J., et al. Expression of Na~+-K~+-ATPase in the brown trout, Salmo trutta:in vivo modulation by hormones and seawater. American Journal of Physiology, 1995, 269:1339-1345.
    11. McCormick, S.D. Hormonal control of gill Na~+-K~+-ATPase and chloride cell function. In Wood, C.M. and Shuttleworth, T.J. eds. Cellular and Molecular Approaches to Fish Ionic Regulation (Fish Physiology, ⅩⅣ). Academic Press, San Diego, CA, pp. 285-315. 1995
    12. WHO. Enviromental Health Criteria: 134Cadmium [M]. World Health Organistaion. Geneva. 1992
    13.冯健,刘永坚,田丽霞,等.草鱼试验性Cd~(2+)中毒的肝,肾病理学研究,中山大学学报(自然科学版),2003,42(2):226-230.
    14.高文伟,任家琰.试验性免疫应激对雏鸡皮质醇的影响,中国兽医科技,2001,31(3):26-28.
    15.刑德君,杜葵琴.大鼠无菌性炎症发热时不同脑区cAMP含量和腺苷酸环化酶活性的变化,中国病理生理杂志,1992,8(3):242-246.
    16. Lowry, O.H., Rosebrough, N.J., Farr, A.L. et al. Protein measurement with a Folin phenol reagent. Journal of Biological Chemistry, 1951, 193: 265-275.
    17. Evans, D.H. The fish gill: site of action and model for toxic effects of environmental pollutants. Environmental Health Perspectives, 1987, 71(5): 54-58.
    18.姜明,范瑞青,刘云,等.褐牙鲆鳃氯细胞的超微结构研究,海洋科学,2003 27(10):1-5.
    19. Flik, G.J.H., van Rijs S.E., Wendelaar, B. Evidence for highaffinity Ca~(2+)-ATPase activity and ATP-driven Ca~(2+)-transport in membrane preparations of the gill epithelium of the cichlid fish orechromis mossabicus. Journal of Experimental Biology, 1985, 119: 335-347.
    20.卢建民,卢玲,蔺玉华,等.低pH值对鲤鱼组织Na~+-K~+-ATPase酶活性的影响水生生物学报,2001,25(1):102-104.
    21. Randi, A.S., Monserrat, J.M., Rodriguez, E.M., et al. Histopathological effects of cadmium on the gills of the freshwater fish, Macropsobrycon uruguayanae Eigenmann (Pisces, Atherinidae). Journal of Fish Diseases, 1996, 19:311-322.
    22. Lionetto, M.G. Giordano, M.E., Vilella, S. et al. Inhibition of eel enzymatic activities by cadmium. Aquatic Toxicology, 2000, 48:561-571.
    23. Vitale, A.M., Monserrat, J.M., Castilho, P., et al. Inhibitory effects of cadmium on carbonic anhydrase activity and ionic regulation of the estuarine crab Chasmagnathus granulata (Decapoda, Grapsidae). Comparative Biochemistry and Physiology Part C, 1999, 122: 21-129.
    24. Lemaire-Gony, S., Lemaire, P., Pulsford, A.L. Effects of cadmium and benzo(a)pyrene on the immune system, gill ATPase and EROD activity of European sea bass, Dicentrarchus labrax. Aquatic Toxicology, 1995, 31:297-313.
    25. Charles, H.J., Patricia, L.S., Brundage, S. Gill Na~+-K~+-ATPase activity in largemouth bass (Micropterus salmoides) from three reservoirs with different levels of mercury contamination. Aquatic Toxicology, 1996, 36:161-176.
    26. McGeer, J.C., Szebedinszky C. McDonald, D.G., et al. Effects of chronic sublethal exposure to waterborne Cu, Cd or Zn in rainbow trout Ⅰ: Iono-regulatory disturbance and metabolic costs. Aquatic Toxicology, 2000, 50:231-243.
    27. McCormick, S.D. Hormonal control of gill Na~+-K~+-ATPase and chloride cell function. In Fish Physiology, vol. 13, (ed. C.M. Wood and T. J. Shuttlewoth), New York: Academic Press. pp. 285-315, 1995.
    28.魏渲辉,汝少国,徐路,等.海水和淡水适应过程中广盐性鱼类鳃氯细胞的形态与功能变化及其激素调节,海洋科学,2001,25(4):16-20.
    29. Suresh, A., Sivaramakrishna, B., Radhakrishnaiah, K. Cadmium induced changes in ion levels and ATPase activities in the muscle of the fry and fingerlings of the freshwater fish, Cyprinus carpio. Chemosphere, 1995, 30(2): 367-375.
    30. Ricard, A.C., Daniel, C., Anderson, P., et al. Effects of subchronic exposure to cadmium chloride on endocrine and metabolic functions in rainbow trout Oncorhynchus mykiss. Archives of Environmental Contamination and Toxicology, 1998, 34(4): 377-381.
    31. Shrimpton, J.M., Mccormick S.D. Responsiveness of gill Na~+/K~+-ATPase to cortisol is related to gill corticosteroid receptor concentration in juvenile rainbow trout. Journal of Experimental Biology, 1999, 987-995.
    32. Giles, M.A. Electrolyte and water balance in plasma and urine of rainbow trout (Salmo gairdneri) during chronic exposure to cadmium. Canadian Journal of Fisheries and Aquatic Sciences, 1984, 41: 1678-1685.
    33. Reid, S.D. McDonald D.G. Effects of cadmium, copper and low pH on ion fluxes in the rainbow trout (Salmo gairdneri). Canadian Journal of Fisheries and Aquatic Sciences, 1988, 45: 244-253.
    34. Fu, H., Steinebach O.M., van den Hamer C.J.A., et al. Involvement of cortisol and metallothionein-like proteins in the physiological responses of tilapia (Oreochromis mossambicus) to sublethal cadmium stress. Aquatic Toxicology, 1990, 16: 257-270.
    35. Lederis, K.P., Ichikawa, T., Richter, D. et al. Molecular analysis of corticotropin-releasing factors and related peptides in teleosts. In Hochachka, P.W. and Mommsen, T.P., eds Biochemistry and Molecular Biology of Fishes. Vol. 2. Molecular Biology Frontiers. Elsevier Science, Amsterdam, New York, pp. 325-338, 1993
    36. Balm, P.H.M., Pottinger, T.G. Corticotrope and melanotrope POMC-derived peptides in relation to interrenal function during stress in rainbow trout (Oncorhynchus mykiss). General and Comparative Endocrinology, 1995, 98: 279-288.
    37. Brodeur, J.C., Daniel, C., Ricard, A.C., et al. In vitro response to ACTH of the interregnal tissue of rainbow trout (Oncorhynchus mykiss) exposed to cadmium. Aquatic toxicology, 1998, 42:103-113.
    38.魏青,杨杏芬,陈铁江,等.重金属的肾上腺皮质代谢与机制研究Ⅱ1 Cd~(2+)对肾上腺皮质激素合成影响的整体实验研究Ⅰ,中国职业医学,1999,26(5):1231.
    39. Geslin, M., Auperin, B. Relationship between changes in mRNAs of the genes encoding steroidogenic acute regulatory protein and P450 cholesterol side chain cleavage in head kidney and plasma levels of cortisol in response to different kinds of acute stress in the rainbow trout (Oncorhynchus mykiss). General and Comparative Endocrinology, 2004, 135: 70-80.
    1. Selye, H. Stress and the general adaptation syndrome. British Medical Journal, 1950, 17: 1383—1392.
    2. McNab, B.K. Energy expenditure and conservation and mixed-diet carnivores. Journal of Mammals, 1996, 76(1):206-222.
    3. Mishra, R., Shuklal, S.P. Impact of endosulfan on lactate dehydrogenase from the freshwater catfish Clarias batrachus. Pesticide Biochemistry and Physiology, 1997, 57: 220-234.
    4. Pickering, A.D. Introduction: the concept of biological stress In: Stress and Fish, New York, Academic Press, 1-9, 1981.
    5.王镜岩,朱圣庚,徐长法.生物化学(第三版,下册)[M].北京:高等教育出版社,2001,42.
    6.杜传书.红细胞磷酸果糖激酶测定及中国人正常值,中华血液学杂志,1985,6:237-239.
    7.李健武,肖能庚,余瑞元,等.生物化学试验原理和方法,北京大学出版社,1994,341-343,352-354.
    8.高学军,李庆章.猪囊尾蚴体内发育过程中能量代谢变化规律的研究,东北农业大学学报,2000,35(3):334-337.
    9. Cohen, A., Nugegoda, D. Gagnon, M.M. Metabolic responses of fish following exposure to two different oil spill remediation techniques, Ecotoxicology and Environmental Safety, 2001, 48:306-310.
    10.岳平,傅世英,黄永麟,等.再灌注损伤心肌线粒体呼吸酶系的变化,中华心血管病杂志,1991,19(1):36-38.
    11. Riddle, D.R., Forbes, M.E. Regulation of cytochrome oxidase activity in the rat forebrain throughout adulthood, Neurobiology of Aging, 2005, 26:1035-105.
    12.叶元土.茚三酮法测定蛋白质饲料中水溶蛋白质成份,饲料工业,1993,14(9):18-20.
    13. Lowry, O.H., Rosebrough, N.J., Farr, A.L, et al. Protein measurement with a Folin phenol reagent. Biological Chemistry, 1951,193: 265-275.
    
    14. Flameng, W., Borgers, M., Daenen, W., et al. Ultrastructure and cytochemical correlates of myocardial protection by cardiac hypothermia in man. Journal of Thoracic Cardiovascular Surgery, 1980, 79(3): 413-424.
    
    15. Cattani, O., Serra, R., Isani, G., et al. Correlation between metallothionein and energy metabolism in sea bass Dicentrarchus labrax, exposed to cadmium. Comparative Biochemistry and Physiology Part C 1996, 113: 193-199.
    
    16. Hassinen, I.E., Nuutinen, E.M., Lto, K., et al. Mechanism of the efect exogenous fructose- 1,6-diphosphate on myocardial energy metabolism. Circulation, 1991, 83:584.
    
    17. Rao, M, V., Shama, P.S. Protective effect of vitamin E against mercuric chloride reproductive toxicity in male mice. Reproductive Toxicology, 2001, 15(6): 705-712.
    
    18. Piasecka, M., Wenda-Rozewicka, L., Ogonski, T. Computerized analysis of cytochemical reaction for dehydrogenases and oxygraphic studies as methods to evaluate the function of the mitochondrial sheat in rat spermatozoa. Andrologia, 2001, 33(1): 1-12.
    
    19. Vaglio, A., Landriscina, C. Changes in liver enzyme activity in the teleost Sparus aurata in the response to cadmium intoxication. Ecotoxicology and Environmental Safety, 1999,43,111-116.
    
    20.马卓,陈万芳.Cd2+对小鼠肝线粒体膜流动性及呼吸活性的影响,中国兽医学报.1996,16(6):585—590.
    
    21. Jie, L., Maria, B., Kadiiska, B., et al. Acute cadmium exposure induces stress related gene expression in wild and metallothionein-I/II-null mice. Free Radical Biology and Medicine, 2002, 6: 525-535.
    
    22. Livingstone, D.R., Garcia, M.P, Michel, X., et al. Oxyradical production as a pollution mediated mechanism of toxicity in the common mussel Mytilus edulis and other mollusks. Functional Ecology, 1990, 4: 415-424.
    
    23. Casalino, E., Calzaretti, G., Sblano, C, et al. Molecular inhibitory mechanism of antioxidant enzymes in rat liver and kidney by cadmium. Journal of Toxicology, 2002, 179:37-50
    
    24. Lowe-Jinde, L., Niimi, A.J. Short-term and long term effects of cadmium on glycogen reserves and liver size in rainbow trout (Salmo gairdneri Richardson). Archives of Environmental Contamination and Toxicology, 1984, 13: 759-764.
    
    25. Vijayan, M.M., Moon, T.W. Acute handling stress alters hepatic glycogen metabolism in food-deprived-rainbow trout (Oncorhynchus mykiss). Canadian Journal of Fisheries and Aquatic Sciences, 1992,49: 2260-2266.
    
    26. Sheridan, M.A., Mommsen, T.P. Effects of nutritional state on in vivo lipid and carbohydrate metabolism of coho salmon, Onchorhynchus kisutch. General and Comparative Endocrinology, 1991, 81: 473-483.
    
    27. Vijayan, M., Meatheriand, I.J.F. Effecl of stocking density on growth and stress response in brook charr. Aquacuhure, 1985, 75:159-170.
    
    28. Levesque, H.M., Moon, T.W., Campbell, P.G.C., et al. Seasonal variation in Carbonhydrate and lipid metabolism of yellow perch (Perca flavescens) chronically exposed to metals in the field. Aquatic toxicology, 2002, 60(3-4):257-267.
    
    29. Smet, H.D., Blust, R., Stress responses and changes in protein metabolism in carp Cyprinus carpio during cadmium exposure. Ecotoxicology and Environmental Safety, 2001,48:255-262.
    
    30. Hilmy, A.M., Shabana, M.B., Daabees, A.Y. Effects of cadmium toxicity upon the in vivo and in vitro activity of proteins and five enzymes in blood serum and tissue homogenates of Mugil cephalus. Comparative Biochemistry and Physiology Part C 1985,81: 145-153.
    
    31. Suresh, A., Sivaramakrishna, B., Victoriamma, P. C., et al. Shifts in protein metabolism in some organs of freshwater fish Cyprinus carpio under mercury stress. Biochemistry International, 1991, 24:379-389.
    32. Reddy, P.S., Bhagyalakshmi, A. Changes in oxidative metabolism in selected tissues of the crab (Scylla serrata) in response to cadmium toxicity. Ecotoxicology Environmental Safety, 1994, 29: 255-264.
    33. Karan, V., Vitorovic, S., Tutundzic, V., et al. Functional enzymes activity and gill histology of carp after copper sulfate exposure and recovery. Ecotoxicology and. Environmental Safety, 1998, 40: 49-55.
    34.胡世莲,王卫东,徐维平,等.非小细胞肺癌患者血清游离氨基酸含量变化的研究,中国临床保健杂志,2004,17(3):164-166.
    35. Kito, H., Ose, Y., Mizuhira, V., et al. Separation and puri"cation of (Cd, Cu, Zn)-metallothionein in carp hepato-pancreas. Comparative Biochemistry and Physiology Part C, 1982, 73: 121~127.
    36. Roesijadi, G. Metallothionein and its role in toxic metal regulation. Comparative Biochemistry Physiology Part C 1996, 113:117-123.
    37.贾秀英,陈志伟.Cd2+对鲫鱼组织转氨酶和过氧化氢酶活性的影响,环境污染与防治,1997,19(6):4-7.
    38. Blasco, J., Puppo, J., Effect of heavy metals (Cu, Cd and Pb) on aspartate and alanine aminotransferase in Ruditapes philippinarum (Mollusca: Bivalvia). Comparative Biochemistry and Physiology Part C 1999, 122: 253-263.
    39. Koya, D., King, G.L. Protein kinase C activation and the development of diabetic complications. Diabetes, 1998, 47(6): 859-866.
    40. Jones, R.D., Hancock, J.T., Morice, A.H. NADPH oxidase: a universal sensor? Free Radical Biology and Medicine, 2000, 29(5): 416-42.
    41. Asahina, T., Kashiwagi, A., Nishio, Y., et al. Impaired activation of glucose oxidation and NADPH supply in human endothelial cells exposed to H_2O_2 in high-glucose medium. Diabetes, 1995, 44(5): 520-526.
    1. Zyadah, M.A., Abdel-Baky, T.E. Toxicity and bioaccumulation of copper, zinc and cadmium in some aquatic organisms. Bulletin of Environmental Contamination and Toxicology, 2000, 64: 740-747.
    2. Sultan, SM, Habeebu, Jie L., et al. Cadmium-induced apoptosis in mouse liver. Toxicology and Applied Pharmacology, 1998, 149(2): 203-209
    3. Risso-de F.C., Devaux, A., Lafaurie M., et al. Cadmium induces apoptosis and genotoxicity in rainbow trout hepatocytes through generation of reactive oxygene species. Aquatic Toxicology, 2001, 53: 65-76.
    4.冯健,刘永坚,田丽霞,等.草鱼实验性镉中毒对肝胰脏、肾脏和骨骼的影响.水产学报,28(2):195-198.
    5. Abe, T., Konishi, T., Katoh, T., et al. Induction of heat shock 70 mRNA by cadmium is mediated by glutathione suppressive and non-suppressive triggers. Biochim Biophys Acta, 1994, 1201(1):29-36
    6. Chin, T. A., Templeton, D.M. Protective elevations of glutathione and metallothionein in cadmium-exposed mesangial cells. Toxicology, 1993, 77(1-2): 145-156
    7. Manca, D., Ricard, A.C., Trottier, B., et al. Studies on lipid peroxidation in rat tissues following administration of low and moderate doses of cadmium chloride. Toxicology, 1991, 67(3): 303-323.
    8. Briehl, M.M., Baker, A.F. Modulation of the antioxidant defense as a factor in apoptosis. Cell Death and Differentiation, 1996, 3: 63-70.
    9. Pedrajas, J.R, Peinado, J., Lopez-Barea, J. Oxidative stress in fish exposed to model xenobiotics.Oxidatively modified forms of Cu,Zn-superoxide dismutase as potential biomarkers. Chemico-Biological Interactions. 1995, 98:267-282.
    10.徐汉生,奚农葆.“抗氧化物之王:”谷胱甘肽的研究与开发.湖北化工,2000,5:1-3
    11. Livingstone, D.R. Contaminant-stimulated reactive oxygen species production in aquatic organisms. Marine Pollution Bulletin, 2001, 42(8): 656-666.
    12. Ochi, T., Yakahashi, K., Ohsawa, M. Indirect evidence for the induction of a prooxidant state by cadmium chloride in cultured mammalian cells and possible mechanism for the induction. Mutant Research, 1987, 180: 257-266.
    13.洪峰.镉与氧化损伤研究进展,国外医学(医学地理分册),2002,23(3):97-103.
    14. Romeo, M., Bennani, N., Gnassia-Barelli. Cadmium and copper display different responses towards oxidative stress in the kidney of the sea bass Dicentrarchus labrax. Aquatic Toxicology, 2000, 48: 185-194.
    15. Casalino, E. Sblano, C., Landriscina C. Enzyme activity alteration by cadmium administration to rats: the possibility of iron involvement in lipid peroxidation. Archives of Biochemistry and Biophysics, 1997, 346(2): 171-179.
    16. Dorta, D.J., Leite S., DeMarco K.C., et al. A proposed sequence of events for cadmium-induced mitochondrial impairment. Journal of Inorganic Biochemistry, 2003, 251-257.
    17. Wang, Y.D., Fang, J., Leonard, S.S., et al. Cadmium inhibits the electron transfer chain and induces reatctive oxygen species. Free Radical Biology and Medicine, 2004, 36(11): 1434-1443.
    18. Al-Nasser, I.A. Cadmium hepatotoxicity and alterations of the mitochondrial function. Journal of Toxicology and Clinical Toxicology, 2000, 38(4): 407-413.
    19. Kang, Y.J., Enger, M.D. Cadmium cytotoxicity correlates with the changes in glutathione content that occur during the logarithmic growth phase A549 cells. Toxicology Letter, 1990, 51: 23-28.
    20.程元恺.谷胱甘肽的解毒作用与毒性代谢物,生物化学与生物物理进展,1994,21(5):395-396.
    21.郑云郎.谷胱甘肽的生物学功能,生物学通报,1995,30(5):22-24.
    22. Jollow, D.J., Mitchell, J.R., Zsmpaglione, N., et al. Bmmnbenune-induced liver necrosis. Pruteotive role of glmathione and evidence for 3,4-bromobenzene oxide as the hepatotaxie metabolite. Pharmacology, 1974, 11: 151-169.
    23.夏亦明,朱莲珍.血和组织中谷胱甘肽过氧化物酶活力的测定方法Ⅰ DTNB直接比色法。卫生研究,1987,16(4):29-33.
    24. Habig, W.H., Pabst, M.J., Jakoby, W.B. Glutathione S-transferase: the first enzymatic step in mercapturic acid formation. Journal of Biololgy and Chemistry, 1974,249:7130-7139.
    
    25.庞战军,周玫,陈媛.自由基医学研究方法北京:人民卫生出版社,2000,183.185,152-154
    
    26. Seeling, G.F., Meister, A. Glutathione biosynthesis: γ-glutamyl cysteine synthetase from rat kidney. Methods Enzymology, 1985.113:79-400.
    
    27. Sunny F., Lakshmy P.S., Oommen O. V. Rapid action of cortisol and testosterone on lipogenic enzymes in a fresh water fish Oreochromis mossambicus: short-term in vivo and in vitro study. Comparative Biochemistry and Physiology Part B, 2002, 131: 297-304.
    
    28. Almeida, J.A., Diniz, Y.S., Marques, S.F.G, et al. The use of the oxidative stress responses as biomarkers in Nile Tilapia (Oreochromis niloticus) exposed to in vivo cadmium contamination. Environmental International, 2002, 27: 673-679.
    
    29. Lange, A., Ausseil, O., Segener, H. Alterations of tissue glutahthione levels and metallothionein mRNA rainbow trout during single and combined exposure to cadmium and zinc. Comparative Biochemistry and Physiology Part C, 2002, 131: 231-243.
    
    30. Bagchi, D., Joshi, S.S., Bagchi, M., et al. Cadmium and chromium-induced oxidative stress, DNA damage, and apoptotic cell death in cultured human chronic myelogenous leukemic K562 cells, promyelocytic leukemic HL-60 cells, and normal human peripheral blood mononuclear cells. Journal of Biochemistry and Molecuolar Toxicology, 2000, 14: 33-41.
    
    31. Potter, D.W., Tran, T.B. Apparent rates of glutathione turnover in rat tissues. Toxicology and Applied Pharmacology, 1993, 120:186-192.
    
    32. Giguere, A., Peter, G.C., Campbell, L.H., et al. Metal bioaccumulation and oxidative stress in yellow perch (Perca flavescens) collected from eight lakes along a metal contamination gradient (Cd, Cu, Zn, Ni). Canadian Journal of Fisheries and Aquatic Sciences, 2005, 62(3): 563-577.
    
    33. Basha, P.S., Rani, A.U. Cadmium-induced antioxidant defense mechanism in freshwater teleost Oreochromis mossambicus (Tialpia). Ecotoxicology and Environmental Safety, 2003, 56:218-221.
    
    34. Gargiulo, G., Arcamone, N., Girolamo, P.D., et al. Histochemical study of the effects of cadmium uptake on oxidative enzymes of intermediary metabolism in kidney of goldfish Carassius auratus. Comparative Biochemistry and Physiology Part C, 1996, 113:177-183.
    
    35. OruC, E.O., uner, N. Combined effects of 2, 4-D and azinphosmethyl on antioxidant enzymes and lipid peroxidation in liver of Oreochromis niloticus. Comparative Biochemistry and Physiology Part C 2000,127:291-296.
    
    36. Kaplowitz, N., Fernandez-Checa, J.C., Kannan, R., et al. GSH transporters: molecular characterization and role in GSH homeostasis. Biological Chemistry Hoppe-Seyler. 1996, 377: 267-273.
    
    37. Keppler, D., Leier, I., Jedlitschky, G. Transport of glutathione conjugates and glucuronides by the multidrug resistance proteins MRP1 and MRP2. Biological Chemistry, 1997, 378: 787-791.
    
    38. Kretzschmar, M. Regulation of hepatic glutathione metabolism and its role in hepatotoxicity. Experimental Toxicology and Pathology, 1996,48:439-446.
    
    39. Shi, M.M., Kugelman, A., Iwamoto, T., et al. Quinone-induced oxidative stress elevates glutathione and induces γ-glutamylcysteine synthetase activity in rat lung epithelial L2 cells. Journal of Biological Chemistry, 1994, 269: 26512-26517.
    
    40. Mulcahy, R.T., Wartman, M.A., Bailey, H.H., et al. Constitutive and b-naphthoflavone-induced expression of the human g-glutamylcysteine synthetase heavy subunit gene is regulated by a distal antioxidant response element/TRE sequence. Journal of Biological Chemistry, 1997, 272: 7445-7454.
    
    41. Sekhar, R., Meredith, M.J., Kerr, L.D. Expression of glutathione and g-glutamylcysteine synthetase mRNA is Jun dependent. Biochemical and Biophysical Research Communications, 1997,234: 588-593.
    
    42. Tomonari, A., Nishio, K., Kurokawa, H. Identification of cis-acting DNA elements of the human gglutamylcysteine synthetase heavy subunit gene. Biochemical and Biophysical Research Communications, 1997,232: 522-527.
    43. Sekhar, R., Meredith, M.J., Kerr, L.D. Expression of glutathione and g-glutamylcysteine synthetase mRNA is Jun dependent. Biochemical and Biophysical Research Communications, 1997, 234:588-593.
    44. Tort, L., Kargacin, B., Torres, P., et al. The effect of cadmium exposure and stress on plasm cortisol, metallothionein levels and oxidative status in rainbow trout (Oncorhynchus mykiss) liver. Comparative Biochemistry and Physiology Part C, 1996, 114: 29-34.
    45. Thomas, P., Wofford, H.W., Neff, J.M., 1982. Effect of cadmium on glutathione content of mullet (Mugil cephalus) tissues. In: Vernberg, W.B., Calabrese, A., Thurberg, F.B., Vernebrg, F.J. (Eds.), Mechanisms of Marine Pollutant Toxicity and Physiology. Academic Press, New York, pp. 109-125.
    46. Schlenk, D., Rice, C.D. Effect of zinc and cadmium treatment on hydrogen peroxide-induced mortaslity and expression of glutathione and metallothionein in teleost hepatoma cell line. Aquatic Toxicology, 1998, 43:121-129.
    47. Lange, A., Ausseil, O., Segener, H. Alterations of tissue glutahthione levels and metallothionein mRNA rainbow trout during single and combined exposure to cadmium and zinc. Comparative Biochemistry and Physiology Part C, 2002, 131: 231-243.
    48. Lima, P.L., Benassi, J.C., Pedrosa, R.C., et al. Time course variations of DNA damage and biomarkers of oxidative stress in tilapia (Orechromis niloticus) exposed to effluents from a swine industry. Archives of Environmental Contamination and Toxicology. 2006, 50(3): 23-30.
    49. Zhang, J.F., Liu, H., Sun, Y.Y., et al. Responses of the antioxidant defenses of the Goldfish Carassius auratus, exposed to 2,4-dichlorophenol. Environmental Toxicology and Pharmcology, 2005, 19:185-190.
    50.惠天朝,王家刚,朱荫湄.镉对罗非鱼肝组织中GSH代谢的影响,浙江大学学报 (农业与生命科学版),2001,27(5):575-578.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700