高效废水处理生物反应器中优势功能菌的分子识别与鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微生物分子生态学发展的一个重要的方面是对尚未得到纯培养的微生物的分类地位与其功能进行关联,从而得到这些微生物的功能信息。随着分子生物学的发展,通过对16S rRNA基因等具有进化标记的基因的克隆和测序,越来越多的不可培养的微生物被发现,同时,大量研究发现微生物区系的组成和功能通常会随着环境的变化而同时发生变化。我们可以根据这一模式深入了解微生物区系的结构与功能动态变化情况,并鉴定主要的功能菌。
     随着人们环保意识增强,可持续发展观念的理解深入,人们对难降解有机物在环境中的降解、迁移及危害越来越关注并开发出了很多高效的去除这些有机物的方法。然而,在很多生物处理的工艺中,人们对处理过程的生物降解机理并不是很清楚,对处理过程的微生物的区系结构及主要的功能菌也知之甚少。在本研究中,首先对处理含有高浓度喹啉废水的反应器进行了解析,喹啉是一种主要的含氮杂环化合物,是存在于一些水体和某些土壤中的主要的污染有机物之一,在工业废水处理过程中,喹啉是一种常见的难降解的复杂有机物之一。实验中反硝化生物膜反应器和一个平行的厌氧反应器是从同一份种子污泥出发驯化建立的。两个反应器的其它条件完全一致,只是在反硝化反应器中加入了一定量的硝酸根。经过六个星期的驯化,两个反应器均达到了稳定运行状态。经过五天的连续监测,在反硝化反应器中喹啉的平均去除率为90.2%,COD的平均去除率为81.1%,而厌氧反应器中为喹啉平均去除率为53.6%,COD的平均去除率60.4%。
     为了找出反硝化条件下及厌氧条件下的主要功能菌,我们对种子污泥、反硝化反应器和厌氧反应器中生物膜样品的微生物种群进行了对比分析。首先通过16S rRNA v3区基因的PCR-DGGE分析,对种子污泥和两个反应器中的微生物组成进行了对比。通过对比发现样品的微生物区系组成有很大的差异,表明种子污泥在含喹啉的合成废水中进行驯化时,其微生物组成发生了很大的变化,其中那些能在反硝化和厌氧条件下降解喹啉的微生物被富集。对其中的优势条带进行割胶,克隆测序分析表明在反硝化反应器中的最优势的条带所代表的序列与Thauera和Azoarcus属的微生物具有很近的亲缘关系。而在厌氧反应器中变形菌纲Gamma亚纲与Desulfobacter postgatei种的微生物是优势的条带。同时我们还构建了16S rDNA的全长序列的克隆文库。根据Kemp,P.F.等人的方法对所建文库的有效性进行了验证,结果表明三个文库均已足够大。通过两个统计学参数Shannon Wiener index (H)和reciprocal of Simpson’s index (1/D)分析表明三个文库的多样性顺序为SS>DR>AR。说明在驯化过程中微生物的多样性降低了。通过对克隆文库进行进化地位分析表明,在反硝化反应器中,所有的Phylotype均属于变形菌纲Beta亚纲,而种子污泥中的克隆分属于8个纲。其中反硝化反应器中73.6%的克隆与Thauera和Azoarcus属的微生物具有最高的同源性。而在种子污泥中,与这两个属同源性最高的微生物只有4%,在厌氧反应器的克隆文库中没有发现属于这两个属的微生物。厌氧反应器中变形菌纲Gamma亚纲与Desulfobacter postgatei种的微生物显著增加,这种动态变化表明这些细菌可能是在反硝化和厌氧条件下对喹啉的降解起关键作用的微生物。
     为了进一步定量的验证所得到的结果,我们应用实时荧光定量PCR(Real-time quantitative PCR, RTQ-PCR)的方法,选取了专一性的针对Thauera和Azoarcus属微生物的引物。对降解喹啉的反硝化反应器的种子污泥样品和稳定运行后的生物膜样品进行了定量分析。结果表明在每微克湿重的污泥中待检测的基因片段的拷贝数在种子污泥中为为3.70±0.16×105,在反硝化反应器中为3.69±0.97×106。这表明在驯化过程中,Thauera和Azoarcus属微生物的细胞数增加了一个数量级。也进一步表明了,这两个属的微生物很有可能是在反硝化条件下的去除复杂有机物的重要的功能菌。
     用类似的方法我们分析了以焦化废水为底物的两个反应器,系统运行稳定后,GC/MS分析表明,苯酚、甲苯、嘧啶在DR中的去除效率较高,而咔唑和苯胺在AR中具有更高的去除效率。反硝化装置中的平均COD去除率为51.4%,厌氧反应器中为18.3%。PCR-DGGE分析和克隆文库分析都表明,两个反应器中发生了不同的微生物区系变化,在反硝化反应器内,Thauera属的微生物发展成为优势菌群。这与喹啉部分的实验结果吻合。在厌氧反应器中最优势的微生物与一个未鉴定的硫酸盐还原菌具有最高的同源性。
     在本研究中,通过对系统中的微生物区系结构进行动态监测,与反应器的整体功能变化相关联,在分子水平上鉴定了厌氧和反硝化条件下降解喹啉及焦化废水的优势功能菌类群。
An important object of microbial ecology is to linking bacterial phylogenetics with the biological functionality. With the development of the molecular techniques, more and more 16S rRNA genes were sequenced and submitted to the gene sequence databases. These sequences provide enormous information about the uncultured bacteria. But the functions and the environmental roles of most of these bacteria are unknown. At the same time, many studies are finding that the microbial community composition and function often shift together in response to environmental stimuli. Utilizing this paradigm, functional important strains can be identified through functionally monitoring and dissecting the microbial communities.
     In this study, the biofilm reactors treating quinoline-containing wastewater were set up using the same seed sludge. The microbial communities were analyzed by the molecular techniques. An 18L tank was used as the quinoline reactor and the hydraulic retention time (HRT) was kept at 24h. All conditions were same except the nitrate was added to the denitrifying reactor. After 6 weeks acclimations, the reactor reached the stable stage. The average quinoline removal efficiency was 90.2% and the average COD removal efficiency was 81.1% in the denitrifying reactor. In the anaerobic reactor the average quinoline removal efficiency was 53.6% and the average COD removal efficiency was 60.4% in the denitrifying reactor. The DGGE profiling indicated that dramatic microbial community structure shift was occurred in the two reactors. The dominant bands in the gel were excised and sequenced, the most dominant band in the denitrifying reactor was affiliated with the genera Thauera and Azoarcus. While in the anaerobic reactor Gamma Proteobacteria and Desulfobacter postgatei were the most dominant band sequences. 16S rRNA gene libraries were constructed for the three samples. Both of the two estimators reached an asymptote for the libraries. This indicated that the libraries were large enough to yield stable phylotype richness estimates. Two statistic indices, the Shannon Wiener index (H) and the reciprocal of Simpson’s index (1/D), were calculated for the three libraries and indicated that the order of the phylotype richness is SS>DR>AR. Phylogenetic analyses indicated that all clones from the DR belonged to theβsubclass of Proteobacteria, while eight classes were identified in the SS. Clones affiliated with the genera Thauera and Azoarcus were 74% in DR and only 4% in SS. The Gamma Proteobacteria and Desulfobacter postgatei become dominant during the acclimation period in the anaerobic reactor.
     In order to verify the population level changes of the microorganisms belong to genus Thauera and Azoarcus. Real-time quantitative PCR (RTQ-PCR) was performed to the seeding sludge sample and the biofilm sample in the quinoline-containing denitrifying reactor. The copy number of a Thauera and Azoarcus specific gene fragment were 3.70±0.16×105 and 3.69±0.97×106 per microgram of wet weight of biofilm samples in SS and DR, respectively. This indicated that the cell number of the genera Thauera and Azoarcus increased by about one order of magnitude during the acclimation. The greater abundance of Thauera and Azoarcus in association with higher efficiency after acclimation confirmed that these phylotypes might play an important role for quinoline and COD removal under denitrifying conditions.
     Using the similar methods, two reactors treating coking wastewater were analyzed. The COD removal efficiencies in the anaerobic and the denitrifying reactors were 18.3% and 51.4%, respectively. GC/MS analysis showed that phenol, toluene and pyridine were more efficiently removed in denitrifying reactor than in anaerobic reactor, while carbazole and aniline had higher removal efficiency in anaerobic reactor. DGGE and 16S rDNA library analysis indicated distinct microbial communities formed under the anaerobic and denitrifying conditions. Phylogenetic analysis of the 16S rRNA gene libraries indicated that the most dominant population is Thauera in denitrifying reactor and an unclassified sulfate-reducing bacterium in anaerobic reactor.
     In this study,the microbial community structure changes were monitored by the molecular techniques, through linking the bacterial phylogenetics with the overall functionality of the reactors, the dominant functional members were identified.
引文
1. Whitman, W.B., D.C. Coleman, and W.J. Wiebe, Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A, 1998. 95(12): p. 6578-83.
    2. Wagner, M., et al., Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Appl Environ Microbiol, 1993. 59(5): p. 1520-5.
    3. Soddell, J.A. and R.J.Seviour, Microbiology of foaming in activated sludge plants. J. Appl. Bacteriol., 1990. 69: p. 145-176.
    4. Amann, R., B.M. Fuchs, and S. Behrens, The identification of microorganisms by fluorescence in situ hybridisation. Curr Opin Biotechnol, 2001. 12(3): p. 231-6.
    5. Amann, R., et al., In situ visualization of high genetic diversity in a natural microbial community. J Bacteriol, 1996. 178(12): p. 3496-500.
    6. Amann, R.I., W. Ludwig, and K.H. Schleifer, Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev, 1995. 59(1): p. 143-69.
    7. Zhang, y., et al., Microarrays and Their Application to Environmental Microorganisms. Acta Microbiologica Sinica, 2003. 44(3): p. 406-410.
    8. Loy, A., et al., 16S rRNA gene-based oligonucleotide microarray for environmental monitoring of the betaproteobacterial order "Rhodocyclales". Appl Environ Microbiol, 2005. 71(3): p. 1373-86.
    9. Muyzer, G., E.C. de Waal, and A.G. Uitterlinden, Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol, 1993. 59(3): p. 695-700.
    10. Muyzer, G., et al., Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch Microbiol, 1995. 164(3): p. 165-72.
    11. Dubnau, D., et al., Gene conservation in Bacillus species. I. Conserved genetic and nucleic acid base sequence homologies. Proc Natl Acad Sci U S A, 1965. 54(2): p. 491-8.
    12. Woese, C.R., A proposal concerning the origin of life on the planet earth. J Mol Evol, 1979. 13(2): p. 95-101.
    13. Woese, C.R., Bacterial evolution. Microbiol Rev, 1987. 51(2): p. 221-71.
    14. Woese, C.R., et al., A phylogenetic definition of the major eubacterial taxa. Syst Appl Microbiol, 1985. 6: p. 143-51.
    15. Xiang, S., et al., 16S rRNA sequences and differences in bacteria isolated from the Muztag Ata glacier at increasing depths. Appl Environ Microbiol, 2005. 71(8): p. 4619-27.
    16. Bottger, E.C., Rapid determination of bacterial ribosomal RNA sequences by direct sequencing of enzymatically amplified DNA. FEMS Microbiol Lett, 1989. 53(1-2): p.171-6.
    17. Kolbert, C.P. and D.H. Persing, Ribosomal DNA sequencing as a tool for identification of bacterial pathogens. Curr Opin Microbiol, 1999. 2(3): p. 299-305.
    18. Palys, T., L.K. Nakamura, and F.M. Cohan, Discovery and classification of ecological diversity in the bacterial world: the role of DNA sequence data. Int J Syst Bacteriol, 1997. 47(4): p. 1145-56.
    19. Pace, N.R., A molecular view of microbial diversity and the biosphere. Science, 1997. 276(5313): p. 734-40.
    20. Layton, A.C., et al., Quantification of Hyphomicrobium populations in activated sludge from an industrial wastewater treatment system as determined by 16S rRNA analysis. Appl Environ Microbiol, 2000. 66(3): p. 1167-74.
    21. Jurtshuk, R.J., et al., Rapid in situ hybridization technique using 16S rRNA segments for detecting and differentiating the closely related gram-positive organisms Bacillus polymyxa and Bacillus macerans. Appl Environ Microbiol, 1992. 58(8): p. 2571-8.
    22. Timke, M., et al., Community structure and diversity of biofilms from a beer bottling plant as revealed using 16S rRNA gene clone libraries. Appl Environ Microbiol, 2005. 71(10): p. 6446-52.
    23. Ben-Amor, K., et al., Genetic diversity of viable, injured, and dead fecal bacteria assessed by fluorescence-activated cell sorting and 16S rRNA gene analysis. Appl Environ Microbiol, 2005. 71(8): p. 4679-89.
    24. Zhou, J., M.A. Bruns, and J.M. Tiedje, DNA recovery from soils of diverse composition. Appl Environ Microbiol, 1996. 62(2): p. 316-22.
    25. Wei, G.F., et al., ERIC-PCR fingerprinting-based community DNA hybridization to pinpoint genome-specific fragments as molecular markers to identify and track populations common to healthy human guts. J. Microbiological Methods, 2004.
    26. Lee, S.Y., et al., Estimation of the abundance of an uncultured soil bacterial strain by a competitive quantitative PCR method. Appl Environ Microbiol, 1996. 62(10): p. 3787-93.
    27. Lipski, A., U. Friedrich, and K. Altendorf, Application of rRNA-targeted oligonucleotide probes in biotechnology. Appl Microbiol Biotechnol, 2001. 56(1-2): p. 40-57.
    28. Theron, J. and T.E. Cloete, Molecular techniques for determining microbial diversity and community structure in natural environments. Crit Rev Microbiol, 2000. 26(1): p. 37-57.
    29. Thorne, J.L., H. Kishino, and I.S. Painter, Estimating the rate of evolution of the rate of molecular evolution. Mol Biol Evol, 1998. 15(12): p. 1647-57.
    30. Clarridge, J.E., 3rd, Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev, 2004. 17(4): p. 840-62, table of contents.
    31. Cole, J.R., et al., The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res, 2003. 31(1): p. 442-3.
    32. Pichard, S.L., L. Campbell, and J.H. Paul, Diversity of the ribulose bisphosphate carboxylase/oxygenase form I gene (rbcL) in natural phytoplankton communities. Appl Environ Microbiol, 1997. 63(9): p. 3600-6.
    33. Rotthauwe, J.H., K.P. Witzel, and W. Liesack, The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol, 1997. 63(12): p. 4704-12.
    34. Ueda, T., et al., Remarkable N2-fixing bacterial diversity detected in rice roots by molecular evolutionary analysis of nifH gene sequences. J Bacteriol, 1995. 177(5): p. 1414-7.
    35. Braker, G., et al., Nitrite reductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in pacific northwest marine sediment communities. Appl Environ Microbiol, 2000. 66(5): p. 2096-104.
    36. Norton, J.M., J.M. Low, and M.G. Klotz, The gene encoding ammonia monooxygenase subunit A exists in three nearly identical copies in Nitrosospira sp. NpAV. FEMSMicrobiol Lett, 1996. 139(2-3): p. 181-8.
    37. Bothe, H., et al., Molecular analysis of ammonia oxidation and denitrification in natural environments. FEMS Microbiol Rev, 2000. 24(5): p. 673-90.
    38. Sinigalliano, C.D., D.N. Kuhn, and R.D. Jones, Amplification of the amoA gene from diverse species of ammonium-oxidizing bacteria and from an indigenous bacterial population from seawater. Appl Environ Microbiol, 1995. 61(7): p. 2702-6.
    39. Silyn-Roberts, G. and G. Lewis, In situ analysis of Nitrosomonas spp. in wastewater treatment wetland biofilms. Water Res, 2001. 35(11): p. 2731-9.
    40. Wouters, J., B. Bergman, and S. Janson, Cloning and expression of a putative cyclodextrin glucosyltransferase from the symbiotically competent cyanobacterium Nostoc sp. PCC 9229. FEMS Microbiol Lett, 2003. 219(2): p. 181-5.
    41. Boldrick, J.C., et al., Stereotyped and specific gene expression programs in human innate immune responses to bacteria. Proc Natl Acad Sci U S A, 2002. 99(2): p. 972-7.
    42. Hall, S.J., et al., The development and use of real-time PCR for the quantification of nitrifiers in activated sludge. Water Sci Technol, 2002. 46(1-2): p. 267-72.
    43. Klein, D., Quantification using real-time PCR technology: applications and limitations. Trends Mol Med, 2002. 8(6): p. 257-60.
    44. Meckenstock, R., et al., Quantification of bacterial mRNA involved in degradation of 1,2,4-trichlorobenzene by Pseudomonas sp. strain P51 from liquid culture and from river sediment by reverse transcriptase PCR (RT/PCR). FEMS Microbiol Lett, 1998. 167(2): p. 123-9.
    45. Araki, N., et al., Quantification of amoA gene abundance and their amoA mRNA levels in activated sludge by real-time PCR. Water Sci Technol, 2004. 50(8): p. 1-8.
    46. Tang, J.I. and A. Katayama, Application of quinone profile analysis for the characterization of microbial ecology in environment. Chin J Appl Envi ron Biol, 2004. 10: p. 530-536.
    47. Madigan MT, Martinko J M, and P.J. . Brock-Biology of microorganisms. 9th edition ed. 1999, London: Prentice Hall.
    48. Tunlid A, Baird B H, and Trexler M B, Determination of phospholipid ester-linked fatty acid and poly B-hydroxybutyrate for the stimulation of bacterial biomass and activity in the rhizosphere of the rape plant Brassica napus. Can. J. M icrobiol., 1985. 31: p. 1113-1119.
    49. T Pennanen, A.F., H Fritze and E Baath Phospholipid Fatty Acid Composition and Heavy Metal Tolerance of Soil Microbial Communities along Two Heavy Metal-Polluted Gradients in Coniferous Forests. Appl. Environ. Microbiol., 1996. 62(2): p. 420-428.
    50. Hanson, J.R., et al., Linking toluene degradation with specific microbial populations in soil. Appl Environ Microbiol, 1999. 65(12): p. 5403-8.
    51. 胡洪营,童中华, 微生物醌指纹法在环境微生物群体组成研究中的应用. 微生物学通报, 2002. 29(4): p. 95-98.
    52. Collins, M.D. and D. Jones, Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev, 1981. 45(2): p. 316-54.
    53. Katayama, A., H. Hu, and M. Nozawa, Long-term changes in microbial community structure in soil subjected to different ferilizing practices revealed by quinone profile analysis. Soil Sci Plant Nutr, 1998. 44(4): p. 559-569.
    54. Hiraishi, A., K. Masamune, and H. Kitamura, Characterization of the bacterial population structure in an anaerobic-aerobic activated sludge system on the basis of respiratory quinone profiles. Appl Environ Microbiol, 1989. 55(4): p. 897-901.
    55. Lorenz, P., et al., Screening for novel enzymes for biocatalytic processes: accessing the metagenome as a resource of novel functional sequence space. Curr Opin Biotechnol, 2002. 13(6): p. 572-7.
    56. Schloss, P.D. and J. Handelsman, Biotechnological prospects from metagenomics. Curr Opin Biotechnol, 2003. 14(3): p. 303-10.
    57. Handelsman, J., Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev, 2004. 68(4): p. 669-85.
    58. Pace, N.R., D.A.Stahl, D.J.Lane, G.J.Olsen, Analyzing natural microbial populations byrRNA sequences. ASM News, 1985. 51: p. 4-12.
    59. Schmidt, T.M., E.F. DeLong, and N.R. Pace, Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J Bacteriol, 1991. 173(14): p. 4371-8.
    60. Healy, F.G., et al., Direct isolation of functional genes encoding cellulases from the microbial consortia in a thermophilic, anaerobic digester maintained on lignocellulose. Appl Microbiol Biotechnol, 1995. 43(4): p. 667-74.
    61. Stein, J.L., et al., Characterization of uncultivated prokaryotes: isolation and analysis of a 40-kilobase-pair genome fragment from a planktonic marine archaeon. J Bacteriol, 1996. 178(3): p. 591-9.
    62. Tyson, G.W., et al., Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature, 2004. 428(6978): p. 37-43.
    63. Torsvik, V., L. Ovreas, and T.F. Thingstad, Prokaryotic diversity--magnitude, dynamics, and controlling factors. Science, 2002. 296(5570): p. 1064-6.
    64. Barns, S.M., et al., Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc Natl Acad Sci U S A, 1994. 91(5): p. 1609-13.
    65. Britschgi, T.B. and S.J. Giovannoni, Phylogenetic analysis of a natural marine bacterioplankton population by rRNA gene cloning and sequencing. Appl Environ Microbiol, 1991. 57(6): p. 1707-13.
    66. Snaidr, J., et al., Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl Environ Microbiol, 1997. 63(7): p. 2884-96.
    67. Sullivan, C.W. and A.C. Palmisano., Sea ice microbial communities:distribution, abundance, and diversity of ice bacteria in McMurdo Sound,Antarctica, in 1980. Appl. Environ. Microbiol., 1984. 47: p. 788-795.
    68. Bowman, J.P., et al., Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl Environ Microbiol, 1997. 63(8): p. 3068-78.
    69. Rheims, H. and E. Stackebrandt, Application of nested polymerase chain reaction for the detection of as yet uncultured organisms of the class Actinobacteria inenvironmental samples. Environ Microbiol, 1999. 1(2): p. 137-43.
    70. Glockner, F.O., B.M. Fuchs, and R. Amann, Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl Environ Microbiol, 1999. 65(8): p. 3721-6.
    71. Gonzalez, J.M. and M.A. Moran, Numerical dominance of a group of marine bacteria in the alpha-subclass of the class Proteobacteria in coastal seawater. Appl Environ Microbiol, 1997. 63(11): p. 4237-42.
    72. Obbard, J.P. and K.C. Jones, The effect of heavy metals on dinitrogen fixation by Rhizobium-white clover in a range of long-term sewage sludge amended and metal-contaminated soils. Environ Pollut, 1993. 79(2): p. 105-12.
    73. Stephen, J.R., et al., Effect of toxic metals on indigenous soil beta-subgroup proteobacterium ammonia oxidizer community structure and protection against toxicity by inoculated metal-resistant bacteria. Appl Environ Microbiol, 1999. 65(1): p. 95-101.
    74. Girvan, M.S., et al., Responses of active bacterial and fungal communities in soils under winter wheat to different fertilizer and pesticide regimens. Appl Environ Microbiol, 2004. 70(5): p. 2692-701.
    75. Ulrich, A. and T. Muller, Heterogeneity of plant-associated streptococci as characterized by phenotypic features and restriction analysis of PCR-amplified 16S rDNA. J Appl Microbiol, 1998. 84(2): p. 293-303.
    76. Crane, S.R. and J.A. Moore., A management strategy to reduce bacterial pollution in shellfish areas: a case study. Environ. Manag., 1986. 10: p. 41-51.
    77. Fiksdal, L., et al., Survival and detection of Bacteroides spp., prospective indicator bacteria. Appl Environ Microbiol, 1985. 49(1): p. 148-50.
    78. Resnick, I.G. and M.A. Levin, Assessment of bifidobacteria as indicators of human fecal pollution. Appl Environ Microbiol, 1981. 42(3): p. 433-8.
    79. Bernhard, A.E. and K.G. Field, Identification of nonpoint sources of fecal pollution in coastal waters by using host-specific 16S ribosomal DNA genetic markers from fecal anaerobes. Appl Environ Microbiol, 2000. 66(4): p. 1587-94.
    80. Giovannoni, S.J., et al., Genetic diversity in Sargasso Sea bacterioplankton. Nature, 1990. 345(6270): p. 60-3.
    81. Mehmann, B., I. Brunner, and G.H. Braus, Nucleotide sequence variation of chitin synthase genes among ectomycorrhizal fungi and its potential use in taxonomy. Appl Environ Microbiol, 1994. 60(9): p. 3105-11.
    82. Bond, P.L., et al., Bacterial community structures of phosphate-removing and non-phosphate-removing activated sludges from sequencing batch reactors. Appl Environ Microbiol, 1995. 61(5): p. 1910-6.
    83. Toerien, D.F., et al., Enhanced biological phosphorus removal in activated sludge systems. Adv.Microb.Ecol, 1990. 11: p. 173-230.
    84. Gerber, A., et al., Interactions between phosphate, nitrate and organic substrate in biological nutrient removal processes. Water Sci. Technol. , 1987. 19(1-6): p. 183-194.
    85. Lotter, L.H. and A.P. Pitman., Improved biological phosphorus removal resulting from the enrichment of reactor feed with fermentation products. Water Sci. Technol., 1992. 26(5-6): p. 943-953.
    86. Winter, C.T., The role of acetate in denitrification and biological phosphate removal in modified bardenpho systems. Water Sci. Technol., 1989. 21(4-9): p. 375-385.
    87. Fuhs, G.W. and M. Chen., Microbiological basis of phosphate removal in the activated sludge process for the treatment of wastewater. Microb.Ecol., 1975. 2: p. 119-138.
    88. Buchan, L., Possible biological mechanism of phosphorus removal. Water Sci. Technol., 1983. 15(3-4): p. 87-103.
    89. Wentzel, M.C., et al., Enhanced polyphosphate organism cultures in activated sludge systems. Part1. Enhanced culture development. Water S. A. (Pretoria) 1988. 14: p. 81-92.
    90. Lotter, L.H., The role of bacterial phosphate metabolism in enhanced phosphorus removal from the activated sludge process. Water Sci. Technol., 1985. 17(2): p. 127-138.
    91. Carr, E.L., et al., Seven novel species of Acinetobacter isolated from activated sludge.Int J Syst Evol Microbiol, 2003. 53: p. 953-963
    92. Ohtake, H., et al., Uptake and release of phosphate by a pure culture of Acinetobacter calcoaceticus. Water Res. , 1985. 19: p. 1587-1594.
    93. Deinema, M.H., M.v. Loosdrecht, and A. Scholten, Some physiological characteristics of Acinetobacter spp. accumulating large amounts of phosphate. Water Sci. Technol., 1985. 17(12): p. 119-125.
    94. Beacham, A.M., R.J. Seviour, and K.C. Lindrea., Polyphosphate accumulating abilities of Acinetobacter isolates from a biological nutrient removal pilot plant Water Res., 1992. 26(121-122).
    95. Krumholz, L.R., U. Esser, and R.D. Simoni, Characterization of the genes coding for the F1F0 subunits of the sodium dependent ATPase of Propionigenium modestum. FEMS Microbiol Lett, 1992. 70(1): p. 37-41.
    96. Bonting, C.F.C., et al., Additional characteristics of the polyphosphate-accumulating Acinetobacter strain 210A and its identification as Acinetobacter johnsonii. FEMS Microbiol. Ecol., 1992. 102: p. 57-64.
    97. Groenestijn, v., et al., Influence of environmental parameters on polyphosphate accumulation in Acinetobacter sp. Antonie van Leeuwenhoek, 1989. 55: p. 67-82.
    98. Wagner, M., et al., In situ analysis of microbial consortia in activated sludge using fluorescently labelled, rRNA-targeted oligonucleotide probes and confocal scanning laser microscopy. J Microsc, 1994. 176 ( Pt 3): p. 181-7.
    99. Chouari, R., et al., Molecular evidence for novel planctomycete diversity in a municipal wastewater treatment plant. Appl Environ Microbiol, 2003. 69(12): p. 7354-63.
    100. Crocetti, G.R., et al., Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation. Appl Environ Microbiol, 2000. 66(3): p. 1175-82.
    101. Watanabe, K. and S. Hino, Identification of a functionally important population in phenol-digesting activated sludge with antisera raised against isolated bacterial strains. Appl Environ Microbiol, 1996. 62(10): p. 3901-4.
    102. Harlow, E. and D. Lane., Immunizations. In Antibodies: a laboratory manual. . 1988, N.Y.: Cold Spring Harbor Laboratory, Cold Spring Harbor,. 53-138.
    103. Watanabe, K., et al., Molecular detection, isolation, and physiological characterization of functionally dominant phenol-degrading bacteria in activated sludge. Appl Environ Microbiol, 1998. 64(11): p. 4396-402.
    104. Jiang, H.L., et al., Bacterial diversity and function of aerobic granules engineered in a sequencing batch reactor for phenol degradation. Appl Environ Microbiol, 2004. 70(11): p. 6767-75.
    105. Schwieger, F. and C.C. Tebbe, A new approach to utilize PCR-single-strand-conformation polymorphism for 16S rRNA gene-based microbial community analysis. Appl Environ Microbiol, 1998. 64(12): p. 4870-6.
    106. Vaneechoutte, M., et al., Rapid identification of bacteria of the Comamonadaceae with amplified ribosomal DNA-restriction analysis (ARDRA). FEMS Microbiol Lett, 1992. 72(3): p. 227-33.
    107. Peters, S., et al., Succession of microbial communities during hot composting as detected by PCR-single-strand-conformation polymorphism-based genetic profiles of small-subunit rRNA genes. Appl Environ Microbiol, 2000. 66(3): p. 930-6.
    108. Ginige, M.P., et al., Use of stable-isotope probing, full-cycle rRNA analysis, and fluorescence in situ hybridization-microautoradiography to study a methanol-fed denitrifying microbial community. Appl Environ Microbiol, 2004. 70(1): p. 588-96.
    109. Song, B., et al., Taxonomic characterization of denitrifying bacteria that degrade aromatic compounds and description of Azoarcus toluvorans sp. nov. and Azorcus toluclasticus sp. nov. . Int. J. Syst. Bacteriol, 1999. 49: p. 1129-1140.
    110. Zhou, J., et al., Phylogenetic analyses of a new group of denitrifiers capable of anaerobic growth of toluene and description of Azoarcus tolulyticus sp. nov. Int J Syst Bacteriol, 1995. 45(3): p. 500-6.
    111. Ball, H.A., et al., Initial reactions in anaerobic ethylbenzene oxidation by a denitrifying bacterium, strain EB1. . J. Bacteriol., 1996. 178: p. 5755-5761.
    112. Fries, M.R., et al., Isolation, characterization, and distribution of denitrifying toluene degraders from a variety of habitats. Appl Environ Microbiol, 1994. 60(8): p. 2802-10.
    113. Rabus, R., et al., Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. Appl Environ Microbiol, 1993. 59(5): p. 1444-51.
    114. Hess, A., et al., In situ analysis of denitrifying toluene- and m-xylene-degrading bacteria in a diesel fuel-contaminated laboratory aquifer column. Appl Environ Microbiol, 1997. 63(6): p. 2136-41.
    115. Anders, H.J., et al., Taxonomic position of aromatic-degrading denitrifying pseudomonad strains K 172 and KB 740 and their description as new members of the genera Thauera, as Thauera aromatica sp. nov., and Azoarcus, as Azoarcus evansii sp. nov., respectively, members of the beta subclass of the Proteobacteria. Int J Syst Bacteriol, 1995. 45(2): p. 327-33.
    116. Mechichi, T., et al., Phylogenetic and metabolic diversity of bacteria degrading aromatic compounds under denitrifying conditions, and description of Thauera phenylacetica sp. nov., Thauera aminoaromaticasp. nov., and Azoarcus buckelii sp. nov. Arch Microbiol, 2002. 178(1): p. 26-35.
    117. Song, B., et al., Characterization of halobenzoate-degrading, denitrifying Azoarcus and Thauera isolates and description of Thauera chlorobenzoica sp. nov. Int J Syst Evol Microbiol, 2001. 51(Pt 2): p. 589-602.
    118. Springer, N., et al., Azoarcus anaerobius sp. nov., a resorcinol-degrading, strictly anaerobic, denitrifying bacterium. Int J Syst Bacteriol, 1998. 48 Pt 3: p. 953-6.
    119. Kasai, Y., et al., RNA-Based Stable Isotope Probing and Isolation of Anaerobic Benzene-Degrading Bacteria from Gasoline-Contaminated Groundwater. Appl Environ Microbiol, 2006. 72(5): p. 3586-92.
    120. Seitzinger, S., Denitrification and N2O production in near-shore marine sediments. Geochamica et Cosmochimica Acta, 1980. 44(1853-1860).
    121. D.B.Nedwelletal, Nutrients in estuaries. Advances in Ecologiccal Research, 1999. 29: p. 44-92.
    122. Trimmer, M., Nitrogen Fluxes Through The Lower Estuary of the Great Ouse,England:The Role of the Bottom Sediments. Marine Ecology Progress Series,, 1998. 163: p. 109-124.
    123. Ogilvie, B., High Nitrate, Muddy Estuaries as Nitrogen Sinks: the Nitrogen Budget of the River Colne Estuary (UK). Marine Ecology Progress Series,, 1997. 150: p. 217-228.
    124. Stockenberg, A., Benthic denitrification in the Gulf of Bothnia. Estuarine,coastal and Shelf Science, 1997. 45: p. 835-843.
    125. Zumft, W.G., The denitrifying prokaryotes, in The prokaryotes: an evolving electronic resource for the microbiological community, S.F. In M. Dworkin, E. Rosenberg, K.-H. Schleifer, and E. Stackebrandt Editor. 1999, [Online.] Springer-Verlag: New York, N.Y.
    126. Shoun, H. and T. Tanimoto, Denitrification by the fungus Fusarium oxysporum and involvement of cytochrome P-450 in the respiratory nitrite reduction. J Biol Chem, 1991. 266(17): p. 11078-82.
    127. Zumft, W.G., Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev, 1997. 61(4): p. 533-616.
    128. Kobayashi, M., et al., Denitrification, a novel type of respiratory metabolism in fungal mitochondrion. J Biol Chem, 1996. 271(27): p. 16263-7.
    129. Davies, T.R., Isolation of bacteria capable of utilizing methane as a hydrogen donor in the process of denitrification. Water Res, 1973. 7: p. 575-579.
    130. Youatt, J.B., Denitrification of nitrite by a species of Achromobacter. Nature, 1954. 173(4409): p. 826-7.
    131. Iwasaki, H. and T. Matsubara, A nitrite reductase from Achromobacter cycloclastes. J Biochem (Tokyo), 1972. 71(4): p. 645-52.
    132. Gamble, T.N., M.R. Betlach, and J.M. Tiedje, Numerically dominant denitrifying bacteria from world soils. Appl Environ Microbiol, 1977. 33(4): p. 926-39.
    133. Kniemeyer, O., et al., Anaerobic mineralization of quaternary carbon atoms: isolation of denitrifying bacteria on dimethylmalonate. Appl Environ Microbiol, 1999. 65(8): p.3319-24.
    134. Shinoda, Y., et al., Isolation and characterization of a new denitrifying spirillum capable of anaerobic degradation of phenol. Appl Environ Microbiol, 2000. 66(4): p. 1286-91.
    135. Enwall, K., L. Philippot, and S. Hallin, Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization. Appl Environ Microbiol, 2005. 71(12): p. 8335-43.
    136. Nielsen, J.L. and P.H. Nielsen, Enumeration of acetate-consuming bacteria by microautoradiography under oxygen and nitrate respiring conditions in activated sludge. Water Research, 2002. 36(2): p. 421-428.
    137. Etchebehere, C., et al., Community analysis of a denitrifying reactor treating landfill leachate. FEMS Microbiology Ecology, 2002. 40(2): p. 97-106.
    138. Fernandez, A.S., et al., Flexible community structure correlates with stable community function in methanogenic bioreactor communities perturbed by glucose. Appl Environ Microbiol, 2000. 66(9): p. 4058-67.
    139. Dabert, P., et al., Characterisation of the microbial 16S rDNA diversity of an aerobic phosphorus-removal ecosystem and monitoring of its transition to nitrate respiration. Appl Microbiol Biotechnol, 2001. 55(4): p. 500-9.
    140. Rosch, C., A. Mergel, and H. Bothe, Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil. Appl Environ Microbiol, 2002. 68(8): p. 3818-29.
    141. Scala, D.J. and L.J. Kerkhof, Diversity of nitrous oxide reductase (nosZ) genes in continental shelf sediments. Appl Environ Microbiol, 1999. 65(4): p. 1681-7.
    142. Braker, G., A. Fesefeldt, and K.P. Witzel, Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Appl Environ Microbiol, 1998. 64(10): p. 3769-75.
    143. Brittain, T., et al., Bacterial nitrite-reducing enzymes. Eur J Biochem, 1992. 209(3): p. 793-802.
    144. Hochstein, L.I. and G.A. Tomlinson, The enzymes associated with denitrification. Annu Rev Microbiol, 1988. 42: p. 231-61.
    145. Hallin, S. and P.E. Lindgren, PCR detection of genes encoding nitrite reductase in denitrifying bacteria. Appl Environ Microbiol, 1999. 65(4): p. 1652-7.
    146. Avrahami, S., R. Conrad, and G. Braker, Effect of soil ammonium concentration on N2O release and on the community structure of ammonia oxidizers and denitrifiers. Appl Environ Microbiol, 2002. 68(11): p. 5685-92.
    147. Braker, G., et al., Community structure of denitrifiers, bacteria, and archaea along redox gradients in Pacific Northwest marine sediments by terminal restriction fragment length polymorphism analysis of amplified nitrite reductase (nirS) and 16S rRNA genes. Appl Environ Microbiol, 2001. 67(4): p. 1893-901.
    148. Scala, D.J. and L.J. Kerkhof, Horizontal heterogeneity of denitrifying bacterial communities in marine sediments by terminal restriction fragment length polymorphism analysis. Appl Environ Microbiol, 2000. 66(5): p. 1980-6.
    149. Rich, J.J., et al., Community composition and functioning of denitrifying bacteria from adjacent meadow and forest soils. Appl Environ Microbiol, 2003. 69(10): p. 5974-82.
    150. Meiberg, J., P. Bruinenberg, and W. Harder, Effect of dissolved oxygen tension on the metabolism of methylated amines in Hyphomicrobium X in the absence and presence of nitrate:evidence for aerobic denitrification. J.Gen.Microbiol, 1980. 120: p. 453-463.
    151. Lukow, T. and H. Diekmann, Aerobic denitrification by a newly isolated heterotrophic bacterium strain TL1 Biotechnology Letters 1997. 19(11): p. 1157-1159.
    152. Rorbertson, L. and J. Kuenen, Thiosphaera pantotropha gen.Nov.sp.Nov.,a facultatively anaerobic facultatively autotrophic sulphur bacterium. J.Gen.Microbiol, 1983. 129: p. 2847-2855.
    153. Rorbertson, L. and J. Kuenen, Heterotrophic nitrification in Thiosphaera pantotropha:oxygen uptake and enzyme studies. J.Gen.Microbiol, 1988. 134: p. 857-863.
    154. BellLC and FergusonSJ.J]., 273:423-427., Nitric and nitrous oxide reductase are active under aerobic conditions in cells of Thiosphaera pantotropha. Biochem.J, 1991. 273: p. 423-427.
    155. Su, J.J., et al., Isolation of an aerobic denitrifying bacterial strain NS-2 from the activated sludge of piggery wastewater treatment systems in Taiwan possessing denitrification under 92% oxygen atmosphere. J Appl Microbiol, 2001. 91(5): p. 853-60.
    156. Su, J.J., B.Y. Liu, and C.Y. Liu, Comparison of aerobic denitrification under high oxygen atmosphere by Thiosphaera pantotropha ATCC 35512 and Pseudomonas stutzeri SU2 newly isolated from the activated sludge of a piggery wastewater treatment system. J Appl Microbiol, 2001. 90(3): p. 457-62.
    157. Kshirsagar, M., A. Gupta, and S. Gupta, Aerobic denitrification studies on activated sludge mixed with Thiosphaera pantotropha. EnviromentalTechnology, 1995. 16: p. 35-43.
    158. Huang, H.K. and S.K. Tseng, Nitrate reduction by Citrobacter diversus under aerobic environment. Appl Microbiol Biotechnol, 2001. 55(1): p. 90-4.
    159. Lloyd Jones, M., et al., Mechanisms of dinitrogen gas formation in anaerobic lagoons. Advances in Environmental Research, 2000. 4(2).
    160. Davidsson, T.E. and L.G. Leonardson, Effects of nitrate and organic carbon additions on denitrification in two artificially flooded soils. Ecological Engineering, 1996. 7(2): p. 139-149.
    161. Nijburg, J.W., et al., Effects of Nitrate Availability and the Presence of Glyceria maxima on the Composition and Activity of the Dissimilatory Nitrate-Reducing Bacterial Community. Appl Environ Microbiol, 1997. 63(3): p. 931-937.
    162. Gmez, M.A., Gonzlez-LpezJ, and Hontoria-GarcaE, Influence of carbon source on nitrate removal of contaminated ground water in a denitrifying submerged filter. Journalof Hazardous Materials, 2000. 80: p. 69-80.
    163. Michal, V., B. Shimshon, and AbeliovichAharon, Biological denitrification of drinking water using newspaper. Water Research, 1996. 30(4): p. 965-971.
    164. Michal, V., A. Aharon, and InesM, Denitrification of groundwater using cotton as energy source. Water Science and Technology,, 1996. 34: p. 379-385.
    165. Khan, S.T., et al., Members of the family Comamonadaceae as primary poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-degrading denitrifiers in activated sludge as revealed by a polyphasic approach. Appl Environ Microbiol, 2002. 68(7): p. 3206-14.
    166. Tabrez Khan, S. and A. Hiraishi, Isolation and characterization of a new poly(3-hydroxybutyrate)-degrading, denitrifying bacterium from activated sludge. FEMS Microbiology Letters, 2001. 205(2): p. 253-257.
    167. Probian, C., A. Wulfing, and J. Harder, Anaerobic mineralization of quaternary carbon atoms: isolation of denitrifying bacteria on pivalic acid (2,2-dimethylpropionic acid). Appl Environ Microbiol, 2003. 69(3): p. 1866-70.
    168. Scholten, E., et al., Thauera mechernichensis sp. nov., an aerobic denitrifier from a leachate treatment plant. Int J Syst Bacteriol, 1999. 49 Pt 3: p. 1045-51.
    169. Fetzner, S., Bacterial dehalogenation. Appl Microbiol Biotechnol, 1998. 50(6): p. 633-57.
    170. Haggblom, M.M., Microbial breakdown of halogenated aromatic pesticides and related compounds. FEMS Microbiol Rev, 1992. 9(1): p. 29-71.
    171. Song, B., N.J. Palleroni, and M.M. Haggblom, Isolation and characterization of diverse halobenzoate-degrading denitrifying bacteria from soils and sediments. Appl Environ Microbiol, 2000. 66(8): p. 3446-53.
    1. Pace, N.R., A molecular view of microbial diversity and the biosphere. Science, 1997. 276(5313): p. 734-40.
    2. Torsvik, V. and L. Ovreas, Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol, 2002. 5(3): p. 240-5.
    3. Fernandez, A.S., et al., Flexible community structure correlates with stable community function in methanogenic bioreactor communities perturbed by glucose. Appl Environ Microbiol, 2000. 66(9): p. 4058-67.
    4. Norman, R.S., et al., Effect of pyocyanin on a crude-oil-degrading microbial community. Appl Environ Microbiol, 2004. 70(7): p. 4004-11.
    5. Kaplan, C.W. and C.L. Kitts, Bacterial succession in a petroleum land treatment unit. Appl Environ Microbiol, 2004. 70(3): p. 1777-86.
    6. Moffat, A.S., Global Nitrogen Overload Problem Grows Critical. Science, 1998. 279(5353): p. 988-989.
    7. Shoun, H. and T. Tanimoto, Denitrification by the fungus Fusarium oxysporum and involvement of cytochrome P-450 in the respiratory nitrite reduction. J Biol Chem, 1991. 266(17): p. 11078-82.
    8. Zumft, W.G., Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev, 1997. 61(4): p. 533-616.
    9. Kniemeyer, O., et al., Anaerobic mineralization of quaternary carbon atoms: isolation ofdenitrifying bacteria on dimethylmalonate. Appl Environ Microbiol, 1999. 65(8): p. 3319-24.
    10. Harder, J. and C. Probian, Anaerobic mineralization of cholesterol by a novel type of denitrifying bacterium. Arch Microbiol, 1997. 167(5): p. 269-74.
    11. Foss, S. and J. Harder, Thauera linaloolentis sp. nov. and Thauera terpenica sp. nov., isolated on oxygen-containing monoterpenes (linalool, menthol, and eucalyptol) nitrate. Syst Appl Microbiol, 1998. 21(3): p. 365-73.
    12. Probian, C., A. Wulfing, and J. Harder, Anaerobic mineralization of quaternary carbon atoms: isolation of denitrifying bacteria on pivalic acid (2,2-dimethylpropionic acid). Appl Environ Microbiol, 2003. 69(3): p. 1866-70.
    13. Mechichi, T., et al., Phylogenetic and metabolic diversity of bacteria degrading aromatic compounds under denitrifying conditions, and description of Thauera phenylacetica sp. nov., Thauera aminoaromaticasp. nov., and Azoarcus buckelii sp. nov. Arch Microbiol, 2002. 178(1): p. 26-35.
    14. Shinoda, Y., et al., Aerobic and anaerobic toluene degradation by a newly isolated denitrifying bacterium, Thauera sp. strain DNT-1. Appl Environ Microbiol, 2004. 70(3): p. 1385-92.
    15. Rockne, K.J., et al., Anaerobic naphthalene degradation by microbial pure cultures under nitrate-reducing conditions. Appl Environ Microbiol, 2000. 66(4): p. 1595-601.
    16. McNally, D.L., J.R. Mihelcic, and D.R. Lueking, Biodegradation of Three- and Four-Ring Polycyclic Aromatic Hydrocarbons under Aerobic and Denitrifying Conditions. Environ. Sci. Technol, 1998. 32(17): p. 2633 -2639.
    17. Mihelcic, J.R. and R.G. Luthy, Degradation of polycyclic aromatic hydrocarbon compounds under various redox conditions in soil-water systems. Appl Environ Microbiol, 1988. 54(5): p. 1182-7.
    18. Haggblom, M.M. and L.Y. Young, Anaerobic degradation of 3-halobenzoates by a denitrifying bacterium. Arch Microbiol, 1999. 171(4): p. 230-6.
    19. Song, B., N.J. Palleroni, and M.M. Haggblom, Isolation and characterization of diversehalobenzoate-degrading denitrifying bacteria from soils and sediments. Appl Environ Microbiol, 2000. 66(8): p. 3446-53.
    20. Song, B., et al., Characterization of halobenzoate-degrading, denitrifying Azoarcus and Thauera isolates and description of Thauera chlorobenzoica sp. nov. Int J Syst Evol Microbiol, 2001. 51(Pt 2): p. 589-602.
    21. Wagner, M., et al., Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Appl Environ Microbiol, 1993. 59(5): p. 1520-5.
    22. Kaeberlein, T., K. Lewis, and S.S. Epstein, Isolating "uncultivable" microorganisms in pure culture in a simulated natural environment. Science, 2002. 296(5570): p. 1127-9.
    23. Etchebehere, C., et al., Evaluation of the denitrifying microbiota of anoxic reactors. FEMS Microbiol.Ecol, 2001. 35: p. 259-265.
    24. Merzouki, M., et al., Polyphosphate-accumulating and denitrifying bacteria isolated from anaerobic-anoxic and anaerobic-aerobic sequencing batch reactors. Curr.Microbiol, 1999. 38: p. 9-17.
    25. Khan, S.T., et al., Members of the family Comamonadaceae as primary poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-degrading denitrifiers in activated sludge as revealed by a polyphasic approach. Appl Environ Microbiol, 2002. 68(7): p. 3206-14.
    26. Etchebehere, C., et al., Community analysis of a denitrifying reactor treating landfill leachate. FEMS Microbiology Ecology, 2002. 40(2): p. 97-106.
    27. Zoh, K.-D., et al., Treatment of hydrolysates of the high explosive hexahydro-1,3,5-trinitro-1,3,5-triazine and octahydro-1.3.5.7-tetranitro-1,3,5,7-tetrazocine using biological denitrification. J Wat Pollut Control Fed, 1999. 71: p. 148-155.
    28. van Schie, P.M. and L.Y. Young, Isolation and characterization of phenol-degrading denitrifying bacteria. Appl Environ Microbiol, 1998. 64(7): p. 2432-8.
    29. Egland, P.G., et al., A cluster of bacterial genes for anaerobic benzene ringbiodegradation. Proc Natl Acad Sci U S A, 1997. 94(12): p. 6484-9.
    30. Heider, J., et al., Anaerobic bacterial metabolism of hydrocarbons. Fems Microbiology Reviews, 1998. 22: p. 459-473.
    31. Evans, P.J., et al., Anaerobic degradation of toluene by a denitrifying bacterium. Appl Environ Microbiol, 1991. 57(4): p. 1139-45.
    32. Schocher, R.J., et al., Anaerobic degradation of toluene by pure cultures of denitrifying bacteria. Arch Microbiol, 1991. 157(1): p. 7-12.
    33. Altenschmidt, U. and G. Fuchs, Anaerobic degradation of toluene in denitrifying Pseudomonas sp.: indication for toluene methylhydroxylation and benzoyl-CoA as central aromatic intermediate. Arch Microbiol, 1991. 156(2): p. 152-8.
    34. Coschigano, P.W., M.M. Haggblom, and L.Y. Young, Metabolism of both 4-chlorobenzoate and toluene under denitrifying conditions by a constructed bacterial strain. Appl Environ Microbiol, 1994. 60(3): p. 989-95.
    35. 戴镇生等, 厌氧-好氧活性污泥法的应用前景. 中国给水排水, 1994. 10(4): p. 35-37.
    36. 凌代文, 厌氧微生物研究的新进展. 微生物学通报, 1995. 22(4): p. 245-252.
    37. Minako, N., et al., Mutagenicities of quinoline and its derivatives. Mutation Res, 1977. 42: p. 335- 42.
    38. Azhar, N. and D. Stuckey, The influence of chemical structure on the anaerobic catabolism of refractory compounds: a case study of instant coffee wastes. Wat Sci Technol, 1994. 30: p. 223- 32.
    39. O'Loughlin, E.J., S.R. Kehrmeyer, and G.K. Sims, Isolation, Characterization, and Substrate Utilization of a Quinoline-Degrading Bacteria. International Biodeterioration & Biodegradation, 1996: p. 107-118.
    40. Stuermer, D.H., D.J. Ng, and C.J. Morris, Organic contaminants in groundwater near an underground coal gasification site in northeastern Wyoming. Environ.Sci.Technol, 1982. 16: p. 582-587.
    41. Li, Y., et al., Anoxic degradation of nitrogenous heterocyclic compounds by acclimated activated sludge. Process Biochemistry, 2001. 37(1): p. 81-86.
    42. Johanson, S.S., et al., Degradation pathway of quinoline in a biofilm system under denitrifying conditions. Environmental Toxicology and Chemistry, 1997. 16(9): p. 1821-1828.
    43. Holland, P.M., et al., Detection of specific polymerase chain reaction product by utilizing the 5'-3' exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci U S A, 1991. 88(16): p. 7276-80.
    44. Heid, C.A., et al., Real time quantitative PCR. Genome Res, 1996. 6(10): p. 986-94.
    45. Gibson, U.E., C.A. Heid, and P.M. Williams, A novel method for real time quantitative RT-PCR. Genome Res, 1996. 6(10): p. 995-1001.
    46. Wawrik, B., J.H. Paul, and F.R. Tabita, Real-time PCR quantification of rbcL (ribulose-1,5-bisphosphate carboxylase/oxygenase) mRNA in diatoms and pelagophytes. Appl Environ Microbiol, 2002. 68(8): p. 3771-9.
    47. Higuchi, R., et al., Simultaneous amplification and detection of specific DNA sequences. Biotechnology (N Y), 1992. 10(4): p. 413-7.
    48. Bach, H.J., et al., Enumeration of total bacteria and bacteria with genes for proteolytic activity in pure cultures and in environmental samples by quantitative PCR mediated amplification. J Microbiol Methods, 2002. 49(3): p. 235-45.
    49. Suzuki, M.T., L.T. Taylor, and E.F. DeLong, Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5'-nuclease assays. Appl Environ Microbiol, 2000. 66(11): p. 4605-14.
    50. Gruntzig, V., et al., Pseudomonas stutzeri nitrite reductase gene abundance in environmental samples measured by real-time PCR. Appl Environ Microbiol, 2001. 67(2): p. 760-8.
    51. Bowers, H.A., et al., Development of real-time PCR assays for rapid detection of Pfiesteria piscicida and related dinoflagellates. Appl Environ Microbiol, 2000. 66(11): p. 4641-8.
    52. Gerard, C.J., et al., Improved quantitation of minimal residual disease in multiple myeloma using real-time polymerase chain reaction and plasmid-DNA complementaritydetermining region III standards. Cancer Res, 1998. 58(17): p. 3957-64.
    53. Ginzinger, D.G., Gene quantification using real-time quantitative PCR: an emerging technology hits the mainstream. Exp Hematol, 2002. 30(6): p. 503-12.
    54. Hall, S.J., et al., The development and use of real-time PCR for the quantification of nitrifiers in activated sludge. Water Sci Technol, 2002. 46(1-2): p. 267-72.
    55. Harms, G., et al., Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant. Environ Sci Technol, 2003. 37(2): p. 343-51.
    56. Hermansson, A. and P.E. Lindgren, Quantification of ammonia-oxidizing bacteria in arable soil by real-time PCR. Appl Environ Microbiol, 2001. 67(2): p. 972-6.
    57. Hristova, K.R., C.M. Lutenegger, and K.M. Scow, Detection and quantification of methyl tert-butyl ether-degrading strain PM1 by real-time TaqMan PCR. Appl Environ Microbiol, 2001. 67(11): p. 5154-60.
    58. Stults, J.R., et al., Application of the 5' fluorogenic exonuclease assay (TaqMan) for quantitative ribosomal DNA and rRNA analysis in sediments. Appl Environ Microbiol, 2001. 67(6): p. 2781-9.
    59. Greenberg, A.E., L.S. Clesceri, and A.D. Eaton, Standard methods for the examination of water and wastewater, 18th ed. American Public Health Association, American Water Works Association, and Water Environment Federation,Washington D.C., 1992.
    60. 张峰, 硝酸盐还原菌处理焦化废水中难降解有机物的研究[硕士论文]. 华东理工大学, 2004.
    61. Muyzer, G., E.C. de Waal, and A.G. Uitterlinden, Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol, 1993. 59(3): p. 695-700.
    62. Zoetendal, E.G., A.D. Akkermans, and W.M. De Vos, Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol, 1998. 64(10): p. 3854-9.
    63. Weisburg, W.G., et al., 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol, 1991. 173(2): p. 697-703.
    64. Di Cello, F., et al., Biodiversity of a Burkholderia cepacia population isolated from the maize rhizosphere at different plant growth stages. Appl Environ Microbiol, 1997. 63(11): p. 4485-93.
    65. Grifoni, A., et al., Identification of Azospirillum strains by restriction fragment length polymorphism of the 16S rDNA and of the histidine operon. FEMS Microbiol Lett, 1995. 127(1-2): p. 85-91.
    66. Thompson, J.D., et al., The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 1997. 25(24): p. 4876-82.
    67. Cole, J.R., et al., The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res, 2003. 31(1): p. 442-3.
    68. Kemp, P.F. and J.Y. Aller, Bacterial diversity in aquatic an other environments: what
    16S rDNA libraries can tell us. FEMS Microbiol.Ecol, 2004. 47: p. 161-177.
    69. Kemp, P.F. and J.Y. Aller, Estimating prokaryotic diversity: When are 16S rDNA libraries large enough? Limnol. Oceanogr. Methods, 2004. 2: p. 114-125.
    70. Chao, A., Estimating the population size for capture-recapture data with unequal catchability. Biometrics, 1987. 43: p. 783-791.
    71. Chao, A., Nonparametric estimation of the number of classes in a population. Scand. J. Stat., 1984. 11: p. 265-270.
    72. Chao, A., M.-C. Ma, and M.C.K. Yang, Stopping rules and estimation for recapture debugging with unequal failure rates. biometrika, 1993. 80: p. 193-201.
    73. Krebs, C.J., Ecological Methodology. 1989, New York: Harper Collins Inc. 654.
    74. Simpson, E.H., Measurement of diversity. Nature, 1949. 163: p. 688.
    75. Singleton, D.R., et al., Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples. Appl Environ Microbiol, 2001. 67(9): p. 4374-6.
    76. Good, I.J., The population frequencies of species and the estimation of population parameters. Biometrica, 1953. 40: p. 237-264.
    77. Pettitt, N.A., Cramer-von Mises test statistic,p220-221. In S.Kotz and N.L.Johnson ed. 1982, New York,N.Y.: Encyclopedia of statistical science. Wiley-interscience. 220-221.
    78. Kumar, S., et al., MEGA2: molecular evolutionary genetics analysis software. Bioinformatics, 2001. 17(12): p. 1244-5.
    79. Gomes, N.C.M., et al., Bacterial diversity of the rhizosphere of maize (Zea mays) grown in tropical soil studied by temperature gradient gel electrophoresis. Plant and Soil, 2001. 232: p. 167-180.
    80. Loy, A., et al., 16S rRNA gene-based oligonucleotide microarray for environmental monitoring of the betaproteobacterial order "Rhodocyclales". Appl Environ Microbiol, 2005. 71(3): p. 1373-86.
    81. Spring, S., P. Kampfer, and K.H. Schleifer, Limnobacter thiooxidans gen. nov., sp. nov., a novel thiosulfate-oxidizing bacterium isolated from freshwater lake sediment. Int J Syst Evol Microbiol, 2001. 51(Pt 4): p. 1463-70.
    82. Tarlera, S. and E.B. Denner, Sterolibacterium denitrificans gen. nov., sp. nov., a novel cholesterol-oxidizing, denitrifying member of the beta-Proteobacteria. Int J Syst Evol Microbiol, 2003. 53(Pt 4): p. 1085-91.
    83. Ulrich, A.C. and E.A. Edwards, Physiological and molecular characterization of anaerobic benzene-degrading mixed cultures. Environ Microbiol, 2003. 5(2): p. 92-102.
    84. Coates, J.D., et al., Ubiquity and diversity of dissimilatory (per)chlorate-reducing bacteria. Appl Environ Microbiol, 1999. 65(12): p. 5234-41.
    85. Watanabe, K., et al., Molecular detection, isolation, and physiological characterization of functionally dominant phenol-degrading bacteria in activated sludge. Appl Environ Microbiol, 1998. 64(11): p. 4396-402.
    86. Lazarova, V. and J. Manem, Biofilm characterization and activity analysis in water and wastewater treatment. Water Research, 1995. 29(10): p. 2227-2245.
    87. Wagner, M., et al., Microbial community composition and function in wastewatertreatment plants. Antonie Van Leeuwenhoek, 2002. 81(1-4): p. 665-80.
    88. Cole, A.C., M.J. Semmens, and T.M. LaPara, Stratification of activity and bacterial community structure in biofilms grown on membranes transferring oxygen. Appl Environ Microbiol, 2004. 70(4): p. 1982-9.
    89. Chouari, R., et al., Molecular evidence for novel planctomycete diversity in a municipal wastewater treatment plant. Appl Environ Microbiol, 2003. 69(12): p. 7354-63.
    90. Snaidr, J., et al., Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl Environ Microbiol, 1997. 63(7): p. 2884-96.
    91. Whiteley, A.S. and M.J. Bailey, Bacterial community structure and physiological state within an industrial phenol bioremediation system. Appl Environ Microbiol, 2000. 66(6): p. 2400-7.
    92. Wattiau, P., et al., A PCR test to identify bacillus subtilis and closely related species and its application to the monitoring of wastewater biotreatment. Appl Microbiol Biotechnol, 2001. 56(5-6): p. 816-9.
    93. Dionisi, H.M., et al., Quantification of Nitrosomonas oligotropha-like ammonia-oxidizing bacteria and Nitrospira spp. from full-scale wastewater treatment plants by competitive PCR. Appl Environ Microbiol, 2002. 68(1): p. 245-53.
    94. LaPara, T.M., et al., Stability of the bacterial communities supported by a seven-stage biological process treating pharmaceutical wastewater as revealed by PCR-DGGE. Water Res, 2002. 36(3): p. 638-46.
    95. Ito, T., et al., Successional development of sulfate-reducing bacterial populations and their activities in a wastewater biofilm growing under microaerophilic conditions. Appl Environ Microbiol, 2002. 68(3): p. 1392-402.
    96. Noda, N., et al., PCR-DGGE analysis of denitrifying bacteria in a metallurgic wastewater treatment process. Water Sci Technol, 2002. 46(1-2): p. 333-6.
    97. Qiu, X., et al., Evaluation of PCR-generated chimeras, mutations, and heteroduplexes with 16S rRNA gene-based cloning. Appl Environ Microbiol, 2001. 67(2): p. 880-7.
    98. Wintzingerode, F.V., U.B.Gobel, and E.Stackebrandt, Determination of microbialdiversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol.Rev., 1997. 21: p. 213-229.
    99. Stach, J.E., et al., Statistical approaches for estimating actinobacterial diversity in marine sediments. Appl Environ Microbiol, 2003. 69(10): p. 6189-200.
    100. Keswani, J. and W.B. Whitman, Relationship of 16S rRNA sequence similarity to DNA hybridization in prokaryotes. Int J Syst Evol Microbiol, 2001. 51(Pt 2): p. 667-78.
    101. Hughes, J.B., et al., Counting the uncountable: statistical approaches to estimating microbial diversity. Appl Environ Microbiol, 2001. 67(10): p. 4399-406.
    102. Curtis, T.P., W.T. Sloan, and J.W. Scannell, Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci U S A, 2002. 99(16): p. 10494-9.
    103. Skovhus, T.L., et al., Real-time quantitative PCR for assessment of abundance of Pseudoalteromonas species in marine samples. Appl Environ Microbiol, 2004. 70(4): p. 2373-82.
    104. Guilbaud, M., et al., Quantitative detection of Listeria monocytogenes in biofilms by real-time PCR. Appl Environ Microbiol, 2005. 71(4): p. 2190-4.
    105. Hein, I., et al., Comparison of different approaches to quantify Staphylococcus aureus cells by real-time quantitative PCR and application of this technique for examination of cheese. Appl Environ Microbiol, 2001. 67(7): p. 3122-6.
    106. Panicker, G., M.L. Myers, and A.K. Bej, Rapid detection of Vibrio vulnificus in shellfish and Gulf of Mexico water by real-time PCR. Appl Environ Microbiol, 2004. 70(1): p. 498-507.
    107. Klappenbach, J.A., et al., rrndb: the Ribosomal RNA Operon Copy Number Database. Nucleic Acids Res, 2001. 29(1): p. 181-4.
    108. 钱易等, 水体颗粒物和难降解有机物的特性与控制技术原理. 2000, 北京: 中国环境科学出版社.
    109. Harayama, S. and K.N. Timmis, Aerobic biodegradation of aromatic hydrocarbons by bacteria., in Metal ions in biological systems, H. Sigel and A. Sigel Editors. 1992, Marcel Dekker, Inc: New York, N.Y. p. 99-156.
    110. van der Meer J R, et al., Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol Rev., 1992. 56: p. 677-694.
    111. Dagley, S., Catabolism of aromatic compounds by micro-organisms Adv.Microb.Physiol, 1971. 6: p. 1-46.
    112. Caroline, S.H. and E.P. Rebecca, The β-ketoadipate pathway and the biology of selg-identity. Annual Review of Microbiology, 1996. 50: p. 553-590.
    113. Cain, R., The uptake and catabolism of lignin-related aromatic compounds and their regulation in microorganisms. In Lignin Degradation: Microbiology, Chemistry, and Potential Applications, ed. K. TK, H. T , and C. H. 1980, Boca Raton, Florida: CRC Press.
    114. Neidle, E. and L. Ornston, Benzoate and muconate, structurally dissimilar metabolites, induce expression of catA in Acinetobacter calcoaceticus. J. Bacteriol, 1987. 169: p. 414-415.
    115. Parke, D., Characterization of PcaQ, a LysR-type transcriptional activator required for catabolism of phenolic compounds, from Agrobacterium tumefaciens. J. Bacteriol., 1996. 178: p. 266-272.
    116. Rann, D. and R. Cain, Regulation of the enzymes of aromatic ring fission in the genus Nocardia. Biochem. Soc. Trans, 1973. 1: p. 658-661.
    117. Parke, D., F. Rynne, and A. Glenn, Regulation of phenolic catabolism in Rhizobium leguminosarum biovar trifolii. J. Bacteriol, 1991. 173: p. 5546-5556.
    118. Cook, K. and R. Cain, Regulation of aromatic metabolism in the fungi: metabolic control of the 3-oxoadipate pathway in the yeast Rhodotorula mucilaginosa. J. Gen. Microbiol, 1974. 85: p. 37-50.
    119. Mazur, P., et al., 3-Carboxy- cis,cis-muconate lactonizing enzyme from Neurospora crassa: an alternate cycloisomerase motif. J. Bacteriol, 1994. 176: p. 1718-1728.
    120. Buvinger, W., L. Stone, and H. Heath, Biochemical genetics of tryptophan synthesis in Pseudomonas acidovorans. J. Bacteriol, 1981. 147: p. 62-68.
    121. Ornston, M.K. and L.N. Ornston, The regulation of the -ketoadipate pathway inPseudomonas acidovorans and Pseudomonas testosteroni. Journal of General Microbiology, 1972. 73(3): p. 455-64.
    122. Ornston, L., The conversion of catechol and protocatechuate to β-ketoadipate by Pseudomonas putida. II. Enzymes of the protocatechuate pathway. J. Biol. Chem, 1966. 241: p. 3787-3789.
    123. Diaz, E., et al., Biodegradation of aromatic compounds by Escherichia coli. Microbiol Mol Biol Rev, 2001. 65(4): p. 523-69, table of contents.
    124. Evans, W.C., Biochemistry of the bacterial catabolism of aromatic compounds in anaerobic environments. Nature, 1977. 270(5632): p. 17-22.
    125. Dutton, P.L. and W.C. Evans, The metabolism of aromatic compounds by Rhodopseudomonas palustris. Biochem.J., 1968. 113: p. 525-535.
    126. Evans, W.C. and G. Fuchs, Anaerobic degradation of aromatic compounds. Annu Rev Microbiol, 1988. 42: p. 289-317.
    127. Harwood, C.S. and J. Gibson, Anaerobic and aerobic metabolism of diverse aromatic compounds by the photosynthetic bacterium Rhodopseudomonas palustris. Appl Environ Microbiol, 1988. 54(3): p. 712-7.
    128. Nozawa, T. and Y. Maruyama, Anaerobic metabolism of phthalate and other aromatic compounds by a denitrifying bacterium. J Bacteriol, 1988. 170(12): p. 5778-84.
    129. Anders, H.J., et al., Taxonomic position of aromatic-degrading denitrifying pseudomonad strains K 172 and KB 740 and their description as new members of the genera Thauera, as Thauera aromatica sp. nov., and Azoarcus, as Azoarcus evansii sp. nov., respectively, members of the beta subclass of the Proteobacteria. Int J Syst Bacteriol, 1995. 45(2): p. 327-33.
    130. Springer, N., et al., Azoarcus anaerobius sp. nov., a resorcinol-degrading, strictly anaerobic, denitrifying bacterium. Int J Syst Bacteriol, 1998. 48 Pt 3: p. 953-6.
    131. Song, B., L.Y. Young, and N.J. Palleroni, Identification of denitrifier strain T1 as Thauera aromatica and proposal for emendation of the genus Thauera definition. Int J Syst Bacteriol, 1998. 48 Pt 3: p. 889-94.
    132. Rhee, S.K., et al., Anaerobic and aerobic degradation of pyridine by a newly isolated denitrifying bacterium. Appl Environ Microbiol, 1997. 63(7): p. 2578-85.
    133. Zhou, J., et al., Phylogenetic analyses of a new group of denitrifiers capable of anaerobic growth of toluene and description of Azoarcus tolulyticus sp. nov. Int J Syst Bacteriol, 1995. 45(3): p. 500-6.
    134. Blake, C.K. and D.G. Hegeman, Plasmid pCBI carries genes for anaerobic benzoate catabolism in Alcaligenes xylosoxidans subsp. denitrificans PN-1. J. Bacteriol., 1987. 169: p. 4878-4883.
    135. Bak, F. and F. Widdel, Anaerobic degradation of phenol and phenol derivatives by Desulfobacterium phenolicum gen. nov., sp. nov. . Arch. Microbiol., 1986. 146: p. 177-180.
    136. Szewzyk, U. and N. Pfennig, Complete oxidation of catechol by the strictly anaerobic sulfate-reducing Desulfobacterium catecholicum sp. nov. Arch. Microbiol., 1987. 147: p. 163-168.
    137. Gorny, N. and B. Schink, Anaerobic degradation of catechol by Desulfobacterium sp. strain Cat2 proceeds via carboxylation to protocatechuate. Appl Environ Microbiol, 1994. 60(9): p. 3396-400.
    138. Rabus, R., et al., Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. Appl Environ Microbiol, 1993. 59(5): p. 1444-51.
    139. Lovley, D.R., et al., Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol, 1993. 159: p. 336-344.
    140. Lovley, D.R. and D.J. Lonergan, Anaerobic Oxidation of Toluene, Phenol, and p-Cresol by the Dissimilatory Iron-Reducing Organism, GS-15. Appl Environ Microbiol, 1990. 56(6): p. 1858-1864.
    141. Perrotta, J.A. and C.S. Harwood, Anaerobic Metabolism of Cyclohex-1-Ene-1-Carboxylate, a Proposed Intermediate of Benzoate Degradation, by Rhodopseudomonas palustris. Appl Environ Microbiol, 1994. 60(6): p. 1775-1782.
    142. Pelletier, D.A. and C.S. Harwood, 2-Ketocyclohexanecarboxyl coenzyme A hydrolase, the ring cleavage enzyme required for anaerobic benzoate degradation by Rhodopseudomonas palustris. J. Bacteriol, 1998. 180: p. 2330-2336.
    143. Collin, G. and H. H, Indole, in Ullmann's encyclopedia of industrial chemistry, B. Elvers, et al., Editors. 1989, VCH: Weinheim. p. 167-170.
    144. Collin, G. and H. Hoke, Quinoline and isoquinoline, in Ullmann's encyclopedia of industrial chemistry, B. Elvers, et al., Editors. 1993, VCH: Weinheim. p. 465-469.
    145. Collin, G. and H. H, Tar and pitch, in Ullmann's encyclopedia of industrial chemistry, B. Elvers, S. Hawkins, and W. Russey, Editors. 1995, VCH: Weinheim. p. 91-127.
    146. Hale, R. and K. Aneiro, Determination of coal tar and creosote constituents in the aquatic environment. J Chromatogr A, 1997. 774: p. 79-95.
    147. Mayer, A., et al., Fate and effects of pollutants.Groundwater quality. . Water Environ Res, 1997. 69: p. 777-844.
    148. Canter, L. and D. Sabatini, Contamination of public ground water supplies by Superfund sites. Int J Environ Stud, 1994. 46: p. 25-57.
    149. Pereira, W., et al., Fate and movement of azaarenes and their anaerobic biotransformation products in an aquifer contaminated by wood-treatment chemicals. Environ Toxicol Chem 1987. 6: p. 163-176.
    150. Johansen, S., et al., Identification of heteroaromatic and other organic compounds in ground water at creosote-contaminated sites in Denmark. Ground Water Monit Rem 1997. 17: p. 106-115.
    151. Hirao, K., et al., Carcinogenic activity of quinoline on rat liver. Cancer Res, 1976. 36: p. 329-335.
    152. Willems, M., et al., Comparison of the mutagenicity of quinoline and all monohydroxyquinolines with a series of arene oxide, trans-dihydrodiol, diol epoxide, N-oxide and arene hydrate derivatives of quinoline in the Ames/Salmonella microsome test. Mutat Res, 1992. 278: p. 227-236.
    153. Santodonato, J. and P. Howard, Azaarenes: sources, distribution, environmental impact,and health effects, in Hazard assessment of chemicals, J. Saxena and F. Fisher, Editors. 1981, Academic Press: New York. p. 421-441.
    154. Sainsbury, M., The quinoline alkaloids, in Rodd's chemistry of carbon compounds, S. Coffey, Editor. 1978, G. Elsevier: Amsterdam. p. 171-255.
    155. Sainsbury, M., The quinoline alkaloids, in Rodd's chemistry of carbon compounds, A. MF, Editor. 1987, G. Elsevier: Amsterdam. p. 209-244.
    156. Alvarez, M., M. Salas, and J. JA, Marine, nitrogen-containing heterocyclic natural products. Structures and syntheses of compounds containing quinoline and/or isoquinoline units. Heterocycles 1991. 32: p. 759-794.
    157. Bohlendorf, B., et al., Antibiotics from gliding bacteria. LXXIII. Indole and quinoline derivatives as metabolites of tryptophan in myxobacteria. Liebigs Ann 1996, 1996: p. 49-53.
    158. Orjala, J. and W. Gerwick, Two quinoline alkoloids from the Caribbean cyanobacterium Lyngbya majuscula. Phytochemistry, 1997. 45: p. 1087-1090.
    159. Schwarz, G. and F. Lingens, Bacterial degradation of N-heterocyclic compounds, in Biochemistry of microbial degradation, C. Ratledge, Editor. 1994, Kluwer: London New York. p. 495-486.
    160. Fetzner, S., et al., Bacterial degradation of quinoline and -derivatives -pathways and their biocatalysts. Angew. Chem. Int. . 37: p. 4000-4021.
    161. Hund, H., A.d. Beyer, and F. Lingens, Degradation of quinaldine by Arthrobacter sp. Biol Chem Hoppe-Seyler, 1990. 371: p. 1005-1008.
    162. Bott, G., et al., Degradation of 1H-4-oxoquinoline by Pseudomonas putida Biol Chem Hoppe-Seyler, 1990. 371: p. 999-1003.
    163. Shukla, O.P., Microbial transformation of quinoline by a Pseudomonas sp. Appl Environ Microbiol, 1986. 51(6): p. 1332-42.
    164. Shukla, O.P., Microbiological degradation of quinoline by Pseudomonas stutzeri: the coumarin pathway of quinoline catabolism. Microbios, 1989. 59(238): p. 47-63.
    165. Schwarz, G., et al., Degradation of quinoline by Pseudomonas fluorescens 3,Pseudomonas putida 86 and Rhodococcus spec. B1. Biol Chem Hoppe-Seyler, 1989. 370: p. 1183-1189.
    166. Schach, S., et al., Degradation of 3-methylquinoline by Comamonas testosteroni 63. Biol Chem Hoppe-Seyler, 1993. 374: p. 175-181.
    167. Schach, S., et al., Quinoline 2-oxidoreductase and 2-oxo-1,2-dihydroquinoline 5,6-dioxygenase from Comamonas testosteroni 63. The first two enzymes in quinoline and 3-methylquinoline degradation. Eur J Biochem, 1995. 232: p. 536-544.
    168. Ruger, A., G. Schwarz, and F. Lingens, Degradation of 4-methylquinoline and quinoline by Pseudomonas putida K1. Biol Chem Hoppe-Seyler, 1993. 374: p. 479-488.
    169. Bauer, I., et al., A novel type of oxygenolytic ring cleavage: 2,4-oxygenation and decarbonylation of 1H-3-hydroxy-4-oxoquinaldine and 1H-3-hydroxy-4-oxoquinolin. FEMS Microbiol Lett, 1994. 117: p. 299-304.
    170. Liu, S. and C. Kuo, Microbial potential for the anaerobic transformation of simple homocyclic and heterocyclic compounds in sediments of the Tsengwen River,Taiwan. Chem Ecol 1996. 12: p. 41-56.
    171. Licht, D., B. Ahring, and E. Arvin, Effects of electron acceptors,reducing agents, and toxic metabolites on anaerobic degradation of heterocyclic compounds. Biodegradation, 1996. 7: p. 83-90.
    172. Licht, D., et al., Transformation of indole and quinoline by Desulfobacterium indolicum (DSM3383). Appl Microbiol Biotechnol, 1997. 47: p. 167-172.
    173. Johansen, S., et al., Metabolic pathways of quinoline, indole and their methylated analogs by Desulfobacterium indolicum (DSM 3383). Appl Microbiol Biotechnol, 1997. 47: p. 292-300.
    174. Johansen, S., et al., Degradation pathway of quinolines in a biofilm system under denitrifying conditions. Environ Toxicol Chem, 1997. 16: p. 1821-1828.
    175. Johnson, B.T. and W.Lulves, Biodegradtion of di-n-butyl phthalate and di-2-ethylhexyl phthalate in freshwater hydrosoil. J.Fish.Res.Board.Can, 1975. 32: p. 333-339.
    176. Aftring, R.P., B.E. Chalker, and B.F. Taylor, Degradation of Phthalic Acids byDenitrifying, Mixed Cultures of Bacteria. Appl Environ Microbiol, 1981. 41(5): p. 1177-1183.
    177. Braun, K. and D.T. Gibson, Anaerobic degradation of 2-aminobenzoate (anthranilic acid) by denitrifying bacteria. Appl Environ Microbiol, 1984. 48(1): p. 102-7.
    178. Tschech, A. and G. Fuchs, Anaerobic degradation of phenol by pure cultures of newly isolated denitrifying pseudomonads. Arch Microbiol, 1987. 148(3): p. 213-7.
    179. Hofle, M.G., Rapid genotyping of pseudomonas by using low-molecular-weight RNA profiles, in Pseudomonas: molecular biology and biotechnology, E.Galli, S.silver, and b.Witholt, Editors. 1992, American Society for Microbiology: Washington D.C. p. 116-126.
    180. Scholten, E., et al., Thauera mechernichensis sp. nov., an aerobic denitrifier from a leachate treatment plant. Int J Syst Bacteriol, 1999. 49 Pt 3: p. 1045-51.
    181. Hess, A., et al., In situ analysis of denitrifying toluene- and m-xylene-degrading bacteria in a diesel fuel-contaminated laboratory aquifer column. Appl Environ Microbiol, 1997. 63(6): p. 2136-41.
    182. Shinoda, Y., et al., Anaerobic degradation of aromatic compounds by magnetospirillum strains: isolation and degradation genes. Biosci Biotechnol Biochem, 2005. 69(8): p. 1483-91.
    183. Boschker, H.T.S. and J.J. Middelburg, Stable isotopes and biomarkers in microbial ecology. FEMS Microbiol. Ecol, 2002. 1334(1-12).
    184. Boschker, H.T.S., et al., Direct linking of microbial populations to specific biogeochemical processes by 13C-labelling of biomarkers. Nature, 1998. 392: p. 801-804.
    185. Manefield, M., et al., RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl Environ Microbiol, 2002. 68(11): p. 5367-73.
    186. An, Y., et al., Microbial characterization of toluene-degrading denitrifying consortia obtained from terrestrial and marine ecosystems Applied Microbiology and Biotechnology 2004. 65(5): p. 611-619.
    187. Braker, G., et al., Nitrite reductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in pacific northwest marine sediment communities. Appl Environ Microbiol, 2000. 66(5): p. 2096-104.
    188. Nold, S.C., et al., Marine sediment nitrifying communities of the Pacific Northwest contain -proteobacteria. Appl. Environ. Microbiol, 2000. 66: p. 4532-4535.
    189. Song, B. and B. Ward, Nitrite reductase genes in halobenzoate degrading denitrifying bacteria Fems Microbiology Ecology, 2003. 43(3): p. 349-357.
    190. Rosch, C., A. Mergel, and H. Bothe, Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil. Appl Environ Microbiol, 2002. 68(8): p. 3818-29.
    191. Scala, D.J. and L.J. Kerkhof, Diversity of nitrous oxide reductase (nosZ) genes in continental shelf sediments. Appl Environ Microbiol, 1999. 65(4): p. 1681-7.
    192. Brittain, T., et al., Bacterial nitrite-reducing enzymes. Eur J Biochem, 1992. 209(3): p. 793-802.
    193. Hochstein, L.I. and G.A. Tomlinson, The enzymes associated with denitrification. Annu Rev Microbiol, 1988. 42: p. 231-61.
    194. Gerben, J.Z., K. Eungbin, and A. K.Goyal, comparative molecular analysis of genes for polycyclic aromatic hydrocarbon degradation Genetic engineering, 1997. 19: p. 257-269.
    195. Caroline, S.H., et al., Anaerobic metabolism of aromatic compounds via the bezoyl-CoA pathway. Fems Microbiology Reviews, 1999. 22: p. 439-458.
    196. Etchebehere, C. and J. Tiedje, Presence of two different active nirS nitrite reductase genes in a denitrifying Thauera sp. from a high-nitrate-removal-rate reactor. Appl Environ Microbiol, 2005. 71(9): p. 5642-5.
    197. Schennen, U., K. Braun, and H.J. Knackmuss, Anaerobic degradation of 2-fluorobenzoate by benzoate-degrading, denitrifying bacteria. J Bacteriol, 1985. 161(1): p. 321-5.
    198. Song, B. and B.B. Ward, Genetic diversity of benzoyl coenzyme A reductase genes detected in denitrifying isolates and estuarine sediment communities. Appl EnvironMicrobiol, 2005. 71(4): p. 2036-45.
    199. Ginige, M.P., et al., Use of stable-isotope probing, full-cycle rRNA analysis, and fluorescence in situ hybridization-microautoradiography to study a methanol-fed denitrifying microbial community. Appl Environ Microbiol, 2004. 70(1): p. 588-96.
    200. Mounier, E., et al., Influence of maize mucilage on the diversity and activity of the denitrifying community. Environ Microbiol, 2004. 6(3): p. 301-12.
    1. Wagner, M., et al., Microbial community composition and function in wastewater treatment plants. Antonie Van Leeuwenhoek, 2002. 81(1-4): p. 665-80.
    2. Lazarova, V. and J. Manem, Biofilm characterization and activity analysis in water and wastewater treatment. Water Research, 1995. 29(10): p. 2227-2245.
    3. McNally, D.L., J.R. Mihelcic, and D.R. Lueking, Biodegradation of Three- and Four-Ring Polycyclic Aromatic Hydrocarbons under Aerobic and Denitrifying Conditions. Environ. Sci. Technol, 1998. 32(17): p. 2633 -2639.
    4. Mihelcic, J.R. and R.G. Luthy, Degradation of polycyclic aromatic hydrocarbon compounds under various redox conditions in soil-water systems. Appl Environ Microbiol, 1988. 54(5): p. 1182-7.
    5. Cho, J.C. and S.J. Kim, Viable, but non-culturable, state of a green fluorescence protein-tagged environmental isolate of Salmonella typhi in groundwater and pondwater. FEMS Microbiol Lett, 1999. 170(1): p. 257-64.
    6. Wagner, M., et al., Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Appl Environ Microbiol, 1993. 59(5): p. 1520-5.
    7. Kaeberlein, T., K. Lewis, and S.S. Epstein, Isolating "uncultivable" microorganisms in pure culture in a simulated natural environment. Science, 2002. 296(5570): p. 1127-9.
    8. Pace, N.R., A molecular view of microbial diversity and the biosphere. Science, 1997. 276(5313): p. 734-40.
    9. Embley, T.M. and E. Stackebrandt., The use of 16S rRNA sequences in microbial ecology, in Molecular approaches in environmental microbiology, a.J.R.S. W. Pickup, Editor. 1996: Ellis Horwood, London, United Kingdom. . p. 39-62.
    10. Head, I.M., J.R. Saunders, and R.W. Pickup, Microbial Evolution, Diversity, and Ecology: A Decade of Ribosomal RNA Analysis of Uncultivated Microorganisms. Microb Ecol, 1998. 35(1): p. 1-21.
    11. Amann, R., et al., In situ visualization of high genetic diversity in a natural microbial community. J Bacteriol, 1996. 178(12): p. 3496-500.
    12. Amann, R.I., W. Ludwig, and K.H. Schleifer, Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev, 1995. 59(1): p. 143-69.
    13. Noda, N., et al., PCR-DGGE analysis of denitrifying bacteria in a metallurgic wastewater treatment process. Water Sci Technol, 2002. 46(1-2): p. 333-6.
    14. Kowalchuk, G.A., et al., Analysis of ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Appl Environ Microbiol, 1997. 63(4): p. 1489-97.
    15. Muyzer, G., E.C. de Waal, and A.G. Uitterlinden, Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol, 1993. 59(3): p.695-700.
    16. Eichner, C.A., et al., Thermal gradient gel electrophoresis analysis of bioprotection from pollutant shocks in the activated sludge microbial community. Appl Environ Microbiol, 1999. 65(1): p. 102-9.
    17. Felske, A., A.D. Akkermans, and W.M. De Vos, Quantification of 16S rRNAs in complex bacterial communities by multiple competitive reverse transcription-PCR in temperature gradient gel electrophoresis fingerprints. Appl Environ Microbiol, 1998. 64(11): p. 4581-7.
    18. Lee, D.H., Y.G. Zo, and S.J. Kim, Nonradioactive method to study genetic profiles of natural bacterial communities by PCR-single-strand-conformation polymorphism. Appl Environ Microbiol, 1996. 62(9): p. 3112-20.
    19. Schwieger, F. and C.C. Tebbe, A new approach to utilize PCR-single-strand-conformation polymorphism for 16S rRNA gene-based microbial community analysis. Appl Environ Microbiol, 1998. 64(12): p. 4870-6.
    20. Martinez-Murcis, A., S.G. Acinas, and F. Rodriguez-Valeria, Evaluation of prokaryotic diversity by restrictase digestion of 16S rDNA directly amplified from hypersaline environments. FEMS Microbiol. Ecol, 1995 14: p. 219-232.
    21. Clement, B.G., et al., Terminal restriction fragment patterns (TRFPs), a rapid, PCR-based method for the comparison of complex bacterial communities. J. Microbiol. Methods, 1998. 31: p. 135-142.
    22. Felske, A., et al., Phylogeny of the main bacterial 16S rRNA sequences in Drentse A grassland soils (The Netherlands). Appl Environ Microbiol, 1998. 64(3): p. 871-9.
    23. McCaig, A.E., L.A. Glover, and J.I. Prosser, Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures. Appl Environ Microbiol, 1999. 65(4): p. 1721-30.
    24. Wise, M.G., J.V. McArthur, and L.J. Shimkets, Bacterial diversity of a Carolina bay as determined by 16S rRNA gene analysis: confirmation of novel taxa. Appl. Environ. Microbiol, 1997. 63: p. 1505-1514.
    25. Fernandez, A.S., et al., Flexible community structure correlates with stable community function in methanogenic bioreactor communities perturbed by glucose. Appl Environ Microbiol, 2000. 66(9): p. 4058-67.
    26. Norman, R.S., et al., Effect of pyocyanin on a crude-oil-degrading microbial community. Appl Environ Microbiol, 2004. 70(7): p. 4004-11.
    27. Kaplan, C.W. and C.L. Kitts, Bacterial succession in a petroleum land treatment unit. Appl Environ Microbiol, 2004. 70(3): p. 1777-86.
    28. Paddick, J.S., et al., Effect of the environment on genotypic diversity of Actinomyces naeslundii and Streptococcus oralis in the oral biofilm. Appl Environ Microbiol, 2003. 69(11): p. 6475-80.
    29. Wang, J., et al., Bioaugmentation as a tool to enhance the removal of refractory compound in coke plant wastewater. Process Biochemistry, 2002. 38: p. 777-781.
    30. Li, Y., et al., Anoxic degradation of nitrogenous heterocyclic compounds by acclimated activated sludge. Process Biochemistry, 2001. 37(1): p. 81-86.
    31. Azhar, N. and D. Stuckey, The influence of chemical structure on the anaerobic catabolism of refractory compounds: a case study of instant coffee wastes. Wat Sci Technol, 1994. 30: p. 223- 32.
    32. Zhang, M., et al., Coke plant wastewater treatment by fixed biofilm system for COD and NH3 -N removal. Wat Res, 1998. 32: p. 519-27.
    33. Tiedje, J.M., et al., Denitrification: ecological niches, competition and survival. Antonie Van Leeuwenhoek, 1982. 48(6): p. 569-83.
    34. Greenberg, A.E., L.S. Clesceri, and A.D. Eaton, Standard methods for the examination of water and wastewater, 18th ed. American Public Health Association, American Water Works Association, and Water Environment Federation,Washington D.C., 1992.
    35. Weisburg, W.G., et al., 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol, 1991. 173(2): p. 697-703.
    36. Di Cello, F., et al., Biodiversity of a Burkholderia cepacia population isolated from the maize rhizosphere at different plant growth stages. Appl Environ Microbiol, 1997.63(11): p. 4485-93.
    37. Grifoni, A., et al., Identification of Azospirillum strains by restriction fragment length polymorphism of the 16S rDNA and of the histidine operon. FEMS Microbiol Lett, 1995. 127(1-2): p. 85-91.
    38. Thompson, J.D., et al., The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 1997. 25(24): p. 4876-82.
    39. Krebs, C.J., Ecological Methodology. 1989, New York: Harper Collins Inc. 654.
    40. Schloss, P.D., B.R. Larget, and J. Handelsman, Integration of microbial ecology and statistics: a test to compare gene libraries. Appl Environ Microbiol, 2004. 70(9): p. 5485-92.
    41. Singleton, D.R., et al., Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples. Appl Environ Microbiol, 2001. 67(9): p. 4374-6.
    42. Good, I.J., The population frequencies of species and the estimation of population parameters. Biometrica, 1953. 40: p. 237-264.
    43. Kumar, S., et al., MEGA2: molecular evolutionary genetics analysis software. Bioinformatics, 2001. 17(12): p. 1244-5.
    44. Beller, H.R., et al., Isolation and characterization of a novel toluene-degrading, sulfate-reducing bacterium. Appl Environ Microbiol, 1996. 62(4): p. 1188-96.
    45. Mechichi, T., et al., Phylogenetic and metabolic diversity of bacteria degrading aromatic compounds under denitrifying conditions, and description of Thauera phenylacetica sp. nov., Thauera aminoaromaticasp. nov., and Azoarcus buckelii sp. nov. Arch Microbiol, 2002. 178(1): p. 26-35.
    46. Etchebehere, C., et al., Community analysis of a denitrifying reactor treating landfill leachate. FEMS Microbiology Ecology, 2002. 40(2): p. 97-106.
    47. Wang, J., et al., Kinetics of co-metabolism of quinoline and glucose by Burkholderia pickettii. Process Biochemistry, 2001. 37: p. 831-836.
    48. 齐荣, 余兆祥, 焦化废水生物处理技术的发展. 现代化工, 2005. 25: p. 57-60.
    49. 翟亚琴, 王增长, 王小英, 焦化废水的处理技术. 科技情报开发与经济, 2005. 15(24): p. 111-113.
    50. Modell, M., Processing methods for the oxidation of organics in supercritical water[P].U.S.Patent.4543190.Sept24.1985. .
    51. Nauflett, F., Farnocomb.Kumar.Supercritical water oxidation reaction with corrosion resistant lining. NTIS,Report:PAT-APPL-8-329 417 Department of the Navy.Washington DC.27 Oct1994. .
    52. Haroldsen, B., et al., Transpiring wall supercritical water oxidation test reactor design report.NTIS.Report:SAND-96-8213.Sandia national Lads.Livermore.CA.Feb 1996. .
    53. 郭建平, 刘北平, 郭军, 焦化废水处理研究. 天津化工, 2005. 19(6): p. 19-22.
    54. 高华, 刘坤, 张克凌, 紫外光催化氧化处理焦化废水中有机毒物的研究. 青岛医学院学报, 1996. 32(3): p. 203-206.
    55. 彭贤玉, 董君英, 多相光催化氧化法处理焦化废水的研究. 南华大学学报(自然科学版), 2005. 19(1): p. 64-68.
    56. 徐长城, 高原, TiO2 光催化降解焦化废水的研究. 云南化工, 2003. 30(4): p. 1-3.
    57. levec, J., Catalytic oxidation of toxic organics in aqueous solution. Applied Catalysis, 1990. 63: p. 1.
    58. Kulkarni, U. and S. Dixit, Destruction of Phenol from Wastewater by Oxidation with SO32--O2. Ind.Eng.Chen.Res., 1991. 30.
    59. 谭亚军等, 有机污染物催化湿式氧化降解中 Cu 系列催化剂的稳定性. 环境科学, 2000. 21(4): p. 82-85.
    60. 刑素青,王增长, 焦化废水处理技术的研究进展. 科技情报开发与经济, 2005. 15(23): p. 141-143.
    61. Pignatello, J.J., Dark and photoassisted Fe-Catalyze Degradation of Chlorophenoxy Herbicidesby Hydrogen Peroxide. Environ.Sci.Technol, 1999. 26(5): p. 944-951.
    62. 刘勇弟,徐寿昌, 及种类 Fenton 试剂的氧化特性及在工业废水处理的应用. 化工环保, 1997. 17(2): p. 90-95.
    63. 李生彬等, Fenton 试剂氧化处理二苯胺废水. 兰州交通大学学报(自然科学版), 2004.23(6): p. 12-14.
    64. 邵林广等, 水解(酸化)-缺氧-好氧固定床生物膜系统处理焦化废水的试验研究. 环境科学, 1994. 15(6): p. 51-53.
    65. 左玉芬等, 厌氧生物-水生植物-好氧生物法处理印染废水. 化工环保, 1998. 18(5): p. 311-314.
    66. 邹峰, A/O 工艺处理饮料废水的探讨. 河南化工, 2003. 2: p. 28-29.
    67. 邵林广等, A1-A2/O 与 A2/O 系统处理焦化废水的比较研究. 工业给排水, 1995. 8: p. 16-19.
    68. Watanabe, K., et al., Molecular detection, isolation, and physiological characterization of functionally dominant phenol-degrading bacteria in activated sludge. Appl Environ Microbiol, 1998. 64(11): p. 4396-402.
    69. Bond, P.L., et al., Bacterial community structures of phosphate-removing and non-phosphate-removing activated sludges from sequencing batch reactors. Appl Environ Microbiol, 1995. 61(5): p. 1910-6.
    70. Etchebehere, C., et al., Evaluation of the denitrifying microbiota of anoxic reactors. FEMS Microbiol.Ecol, 2001. 35: p. 259-265.
    71. Manefield, M., et al., RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl Environ Microbiol, 2002. 68(11): p. 5367-73.
    72. Ginige, M.P., et al., Use of stable-isotope probing, full-cycle rRNA analysis, and fluorescence in situ hybridization-microautoradiography to study a methanol-fed denitrifying microbial community. Appl Environ Microbiol, 2004. 70(1): p. 588-96.
    73. Mounier, E., et al., Influence of maize mucilage on the diversity and activity of the denitrifying community. Environ Microbiol, 2004. 6(3): p. 301-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700