丛枝菌根真菌的资源和竞争侵染及土壤微生物的量热研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丛枝菌根存在于80%以上的维管植物中,为真菌与植物的严格共生体,具有促进磷等营养元素吸收、抗逆抗病和维护植物群落稳定性等重要作用。本论文主要以丛枝菌根真菌(AMF)为研究对象,对湖北等地区的AM真菌菌株资源进行收集、筛选及田间应用试验;运用nested-PCR技术和AM真菌特异性引物,进行了多种AM真菌在植物根部竞争性侵染的研究;运用量热技术探讨了生产活动对土壤微生物活动的影响。为深入研究或开发AM真菌生物资源,追踪土壤微生物的动态活动,发展可持续农业管理模式提供了有用的科学依据。论文在以下几个方面开展工作并取得相应研究结果。
     以玉米和紫云英为宿主植物,对来自于湖北农业耕作土壤地区的80多份土样中的AM真菌进行分离,获得完全纯化的AM真菌菌株25株,其中绝大部分为为Glomus属成员。基于孢子形态学和PCR分子鉴定手段的检测,15株纯化的AM真菌鉴定为我国新记录种,17株被国际丛枝菌根真菌保藏中心(IBG)收藏。
     通过盆栽试验筛选具有显著促长作用的菌株HAU-01(G. constrictum Trappe)和HAU-E4(G. etunicatum Becker & Gerdemann)进行田间试验,并将AM真菌的预接种技术和农业生产上的营养钵育苗技术相结合,对玉米籽粒产量和籽粒淀粉的含量有显著增加效果。其中HAU-01促进玉米籽粒产量增加10.84%,籽粒淀粉含量增加4.23%;HAU-E4促进玉米籽粒产量增加5.06%,籽粒淀粉含量增加3.54%。
     运用nested-PCR技术和AM真菌特异性引物,建立了用新鲜植物根段直接检测AM真菌的分子生物学方法。追踪了多种AM真菌的竞争侵染动态及相互关系,解决了单纯的形态学研究难以解决的难题。对混合接种AM真菌的根样进行DNA的粗提,以真核生物通用引物进行第1次扩增,再分别以不同真菌的种特异性引物进行第2次扩增。结果显示:(1)G. intraradices和G. mosseae双接种时,前者的侵染率明显高于后者,在新的侵染区域差异更明显。(2)混合接种时,3种真菌可在1cm长的根段中同时侵染。(3)混合接种时,3种真菌的侵染率随取样时间的改变而发生变化,G. intraradices和G. mosseae存在着明显的竞争关系,而A.laevis与其它真菌的相互作用不明显。三者发挥菌根效应的时期各有特点,G. intraradices持续时间长,G. mosseae次之,A. laevis最晚。
     此外,运用特异性分子探针和nested-PCR技术,从田间接种AM真菌G.intraradices和G.mosseae的玉米根样中成功检测到特定的接种AM真菌。该工作从分子水平为评价高效AM真菌的应用潜力,研究AM真菌之间及其与其它微生物之间的相互关系奠定了基础。
     采用量热技术对武汉地区几种农业用地的土壤微生物的代谢活动进行了研究。结果表明,(1)所有土样的热输出曲线均表现为典型的生长曲线,明显区分为森林和农田来源的两大类群;(2)绝大多数土样中微生物的生长速率与细菌数量呈高度正相关(r=0.85,p<0.05);(3)土样F1中的微生物表现出最高热发散值,是微生物生长的胁迫环境,也表明植被是影响土壤微生物活性的重要因素;(4)热输出总量和植被的丰度相一致,可能与微生物的多样性有关。上述研究证明,土壤中微生物的代谢活动受人类生产活动的影响很大,量热技术可以灵敏、快速、定量地进行检测,为人类合理可持续开发利用农业用地提供了科学依据。
The absolute symbiosis between majority of land plants and arbuscular mycorrhizalfungi (AMF) is probably the most abundant and wide spread mutualism on earth.AMF not only enhance plant productivity and plant nutrition, AMF can also promoteplant disease suppression, drought resistance and influence plant community structure,plant diversity and ecosystem functioning. The aim of this studies are (1) to isolateAM fungal species from Hubei cultivated soil, screen efficient isolates for inoculationin agricultural practice, and detect AM fungi in fields at molecular level; (2) toinvestigate the competitive behavior of several AM fungi using nested PCR withspecies-specific primers, which cannot be distinguished based on fungal structures; (3)to investigate the influence of agricultural practices on soil microbial activitymeasured by calorimetry.
     25 AM fungal isolates were obtained from more than 80 soil samples. The majorityof them were the members of Glomus. 15 isolates were identified as new species inChina and 17 species were registered in International Bank for the Glomeromycota(IBG).
     High efficient isolates HAU-01 (Glomus constrictum) and HAU-E4 (G. etunicatum)were screened as species for filed trial by pot culture in glasshouse conditions. Thefield trials were carried out by means of producing pre-inoculated seedlings prior totransplanting. The yield of the maize inoculated with HAU-01 and HAU-E4 wassignificantly enhanced 10.84% and 5.06%, respectively. The content of starch ingrains was also increased 4.23% and 3.54%, respectively.
     Three species of AM fungi, G. intraradices, G. mosseae and Acaulospora laeviswere detected in fresh root fragments by means of nested PCR with species-specificprimers. The competitive behavior of three AM fungi cannot be distinguished basedon fungal structures within same root system was monitored in this work. Roughlyextracted DNA from fresh root was amplified by using universal eukaryotic primers.The PCR products were diluted and used as template for the second PCRamplification using species specific primers respectively. The results showed below.(1) The infection rate of G. intraradices was higher than the rate of G. mosseae whenthey were co-inoculated plant, the difference was larger especially in new colonizedroots. (2) Three AM fungi were detected within same root fragment 1 cm in length. (3)The infection rate of three fungi was changed at different harvested stage. Thecompetitive interaction between G. intraradices and G. mosseae was observed, but the interaction between fungus of A. laevis and other fungi was not tight when three fungico-existed in root system. In addition, the ability of mycorrhizal effect of these fungiis different. The effect of G. intraradices is persistent compared with slow increaseshowed by other fungi.
     Two introduced species of AM fungi, G. intraradices and G. mosseae weresuccessfully detected in the plant roots from fields using nested PCR technique. Thisstudy hasmade it possible to assess potential ability of introduced efficient species ofAM fungi at molecular level and understand the interactions between AM fungi andother microorganisms in fields.
     To investigate the influence of different agricultural practices and vegetations onsoil microbial activity, soil samples from different land were studied by calorimetry.All power-time curves presented typical changes of microbial activity. The curves ofsoil samples could be divided into two groups differing in agricultural practices andvegetations. The most soil samples showed a significant positive correlation betweenthe values of microbial growth rate and the number of bacteria. A very highdissipative metabolism for sample F1 was observed, which suggest F1 is degradingorganic matter under stress. The values of total heat agreed with vegetation abundanceand probably with microbial diversity. In conclusion, microbial activity of the soilsamples determined by calorimetry reflected differences in soil due to agriculturalmanagement.
引文
1.陈保东、冯固、李晓林、崔建宇,2000.玻璃珠分室培养AM真菌方法的建立.菌物系统,19(2):212-216
    2.成杭新,杨忠芳,赵传冬等,2004.区域生态地球化学预警:问题与讨论,地学前缘,11(2):607-615
    3.方宇澄、刘延荣、方格,1986.烟草内生菌根真菌的分离鉴定.真菌学报,5(3):185-190.
    4.姜德峰、蒋家慧、李敏、刘润进、李晓林,1998.AM菌对玉米某些生理特性和籽粒产量的影响.中国农业科学,31(1):15-20.
    5.李晓林、冯固,2001.丛枝菌根生态生理,北京:华文出版社
    6.刘润进、李晓林,2000.丛枝菌根及其应用,北京:科学出版社
    7.南京农业大学主编,1988.土壤农化分析.北京:农业出版社,1-388.
    8.潘幸来、张贵云、王永杰、吴慎杰,1996.黄土高原的VA菌根真菌(П)硬囊霉属的四个种.山西大学学报,19(1):88-93
    9.唐翔宇,吕伯升,吴文华,1999.水生生态系统中的微生物—金属相互作用,环境科学研究,12(3):28-30.
    10.滕应,黄昌勇,骆永明,李振高,2005.重金属复合污染下红壤微生物活性及其群落结构的变化,土壤学报,42(5):819-833
    11.汪福顺,刘从强,梁小兵,2003.湖泊沉积物—水界面铁的微生物地球化学循环及其与微量金属元素的关系,地质地球化学,31(3):63-69
    12.汪洪钢、吴观以、李慧茎,1992.一个我国内囊霉科实果内囊霉属新纪录的一种一弯曲波纹状实果内囊霉.真菌学报,11(1):78-79.
    13.王平、胡正嘉,1989.棉花VA菌根真菌的分离鉴定.华中农业大学学报,8(1):36-44.
    14.王幼珊、张美庆、王克宁、邢礼军,1998.我国东南沿海地区的VA菌根真菌Ⅳ四个我国新记录种.菌物系统,17(4):301-303.
    15.王幼珊、张美庆、王克宁、邢礼军,1996.我国东南沿海地区的VA菌根真菌Ⅰ四种硬囊霉.真菌学报,15(3):161-165.
    16.吴铁航、郝文英、林先贵、施亚琴,1994.我国VA菌根真菌的两个新记录种.真菌学报,13(4):331-332.
    17.吴铁航、郝文英、林先贵、施亚琴,1995.红壤中VA菌根真菌(球囊霉目)的种类和生态分布.真菌学报,14(2):81-85.
    18.杨茂秋、冯固、白灯莎,1992.VA菌根对玉米吸收利用磷肥的影响.土壤肥料,(4):36-41.
    19.杨茂秋、冯固、白灯莎,1994.VA菌根对棉花和玉米吸收氮素的影响.郝文英主编.中国菌根研究.土壤学报,31(增刊):188-194.
    20.杨苏声、周俊初主编.2004.微生物生物学.北京:科学出版社.
    21.张福锁、李晓林,1992.石灰性土壤磷的活化途径.见:土壤与植物营养研究新动态(第一卷),张福锁主编.北京农业大学出版社.
    22.张景钺、梁家骥,1966.植物系统学,北京:高等教育出版社,4-5
    23.张俊伶、李晓林、左元梅、杨志福,1998.三叶草根间菌丝桥传递衰亡根系中磷的作用.生态学报,18(6):17-22
    24.张美庆、王幼珊、黄磊,1992.我国北部的八种VA菌根真菌.真菌学报,11(4):258-267.
    25.张美庆、王幼珊、张弛,1994.我国北部VA菌根真菌某些属和种的生态分布.真菌学报,13(3):166-172
    26.张美庆、王幼珊、刑礼军,王克宁,1996.我国东南沿海地区的VA菌根真菌Ⅱ球囊霉属四个种.真菌学报,154:241-246.
    27.张美庆、王幼珊、刑礼军,1997.球囊霉目一新种长孢球囊霉.菌物系统,16(4):241-243.
    28.张美庆、王幼珊、刑礼军,王克宁,1998a.我国东南沿海地区的VA菌根真菌Ⅲ无梗囊霉属7个我国新记录种.菌物系统,17(1):15-18.
    29.张美庆、王幼珊、刑礼军,1998b.我国东南沿海地区AM真菌群落生态分布研究.菌物系统,17(3)274-277.
    30.张美庆、王幼珊、刑礼军,1999a.环境因子和AM真菌分布的关系.菌物系统,18(1):25-29.
    31.张美庆、王幼珊、刑礼军,1999b.AM真菌在我国东南沿海各土壤气候的分布.菌物系统,18(2):145-148.
    32.张美庆,2000.我国AM菌根应用研究近况.见:菌根生物多样性及其应用研究,弓明钦等编著,中国林业出版社 pp:176-177
    33.赵斌、何绍江主编,2002.微生物学实验.北京:科学出版社.
    34.赵仁铬主编,1979.田间试验方法.北京:农业出版社.p40-63.
    35.朱永官,陈保东,林爱军,叶志鸿,黄铭洪,2005.珠江三角洲地区重金属污染控制与修复研究的若干思考.环境科学学报,25(12):1575—1579
    36. Abbott LK, 1982. Comparative anatomy of vesicular-arbuscular mycorhizas formed on subterranean clover. Australian Journal of Botany, 30:485-499
    37. Abbott LK & Robson AD, 1981. Infectivity and effectiveness of five endomycorrhzal fungi: competition with indigenous fungi in field soils. Aust. J. Agric. Res., 32:621-630
    38. Amijee F, Tinker PB, Stribley DP, 1989. The development of endomycorrhizal root systems. VII. A detailed study of effects soil phosphorus on colonization. New phytol, 111:435-446
    39. Asmah AE, 1995. Effect of phosphorus source and rate of application on VAM fungal infection and growth of maize. Mycorrhiza, 5:223-228
    40. Bagyaraj DJ, 1994. Vesicular-arbuscular: Application in Agriculture. In Norris JR, DJ Read and AK Varma (ed.) Techniques for mycorrhizal research Method in Microbiology, Academic Press London pp818-833
    41. Balaji B, Ba AM, Larue TA, Tepfer D and Piche Y, 1994. Pisum sativum mutants insensitive to invasion in vitro by the mycorrhizal fungus, Gigspora margarita. Plant Science 102:195-203
    42. Baltruschat H and Schonbeck F, 1972. Influence of endotrophic mycorrhza on chlamydospore production of Thielaviopsis basicola in tobacco roots. Phytopathol. Z.,74:358
    43. Bansal M & Mukerji KG, 1994. Positive correlation between VAM-induced changes in root exudations and mycorrhizosphere mycoflora. Mycorrhiza 5: 39-44.
    44. Barros N, Feijoo S and Balsa R, 1997. Comparative study of the microbial activity in different soil by the microcalorimetric method. Thermochim. Acta, 296, 53-58.
    45. Barros N, Feijoo S, Simoni JA, Prado AGS, Barboza FD and Airoldi C, 1999. Microcalorimetric study of some Amazonian soils. Thermochim. Acta, 328, 99-103.
    46. Barros N and Feijoo S, 2003. A combined mass and energy balance to provide bioindicators of soil microbiological quality. Biophys. Chem., 104, 561-572.
    47. Becard G, Taylor LP, Douds DD, Pfeffer PE and Doner LW,1995. Flavonoids are not necessary plant signal compounds in arbuscular mycorrhizal symbioses. Molecular Plant-Microbe Interaction 8: 252-258
    48. Bianciotto V, Bandi C, Minerdi D, Sironi M, Tichy HV and Bonfante P, 1996. An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria. Applied and Environmental Microbiology, 62(8): 3005-3010
    49. Blee KA and Anderson AJ, 1996. Defense-related transcript accumulation in Phaseolus vulgaris L. colonized by the arbuscular mycorrhizal fungus Glomus intraradices, Schenck & Smith. Plant Phys., 110:675-688
    50. Boddington CL and Dodd JC, 1999. Evidence that differences in phosphate metabolism in mycorrhizas formed by species of Glomus and Gigspora may be related to their life-cycle strategies. New phytologist, 142(4):531-538.
    51. Bolan NS, 1991. A critical review on the role of mycorrhizal fungi on the uptake of phosphorus by plants. Plant and Soil 134: 202-207
    52. Bonfante P, Bergero R, Uribe X, Romera C, Rigau J and Puidomenech P, 1996. Transcriptional of a maize a-tubulin gene in mycorrhizal maize and transgenic tobacco plants. Plant J., 9:737-743
    53. Bradley R, burt AJ and Read DJ,1982. The biology of mycorrhiza in the Ericaceae VIII the role of mycorrhiza infection in heavy metal resistance. New Phytologist, 91:197-209
    54. Brundrett M, Bougher N, Dell B, Grove T and Malajczuk N, 1996. Working with Mycorrhizas in Forestry and Agriculture. Australian Centre for International Agricultural Research, Canberra.
    55. Bruns TD, Vilgalys R, Barns SM et al, 1992. Evolutionary relationships within the fungi: analysis of nuclear small subunit rRNA sequences. Molecular Phylogenetics Evolution, 1:231-241
    56. Burleigh SH and Harrison MJ, 1997. A novel gene whose expression in Medicago truncatula roots is suppressed in response to colonization by vesicular-arbuscular mycorrhizal (VAM) fungi and to phosphate nutrition. Plant Molecualr Biology, 34: 199-208
    57. Burleigh SH and Harrison MJ, 1998. A cDNA from the arbuscular mycorrhizal fungus Glomus versiforme with homology to a Cruciform DNA-binding protein from Ustilago maydis. Mycorrhiza, 7:301-306
    58. Burleigh S, 2000. Cloning arbuscule-related genes from mycorrhizas. Plant and Soil, 226: 287-292
    59. Cazares E and Smith JE, 1996. Occurrence of vesicular-arbuscular mycorrhizae in Pseudotsuga menziesii and Tsuga heterophylla seedlings grown in Oregon Coast Range soils. Mycorrhiza 6:61-67
    60. Clapp JP, Young JPW, Merryweather JW, Fitter AH, 1995. Diversity of fungal symbionts in arbuscular mycorrhizas from a natural community. New Phytologist, 130:259-265
    61. Clapp JP, Fitter AH and Young JPW, 1999. Ribosomal small sununit sequence variation within spores of an arbuscular mycorrhizal fungus, Scutellospora sp.. Molecular Ecology, 8:915-921
    62. Clapp JP, Rodriguez A, Dodd JC , 2001. Inetr- and intro-isolate rRNA large subunit variation in Glomus coronatum spores. New phytol, 149: 539-554
    63. Cooper KM,1981. Mycorrhizal fungi act as deterrents to soil-borne root pathogens. In: Proc. N. Z. Microbiol. Soc. Annu. Conf., Auckland
    64. Cox G and Tinker PB, 1976. Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas. I. The arbuscule and phosphorus transfer: a quantitative ultrastructural study, New phytol, 77:371
    65. Critter SAM, Freitas SS and Airoldi C, 2002a. Comparison between microorganism counting and a calorimetric method applied to tropical soils. Thermochim. Acta, 394, 133-144.
    66. Critter SAM, Freitas SS, Airoldi C, 2002b. Microbial biomass and microcalorimetric methods in tropical soils, Thermochim. Acta, 394:145-154
    67. Critter SAM, Freitas SS, and Airoldi C, 2004a. Comparison of microbial activity in some Brazilian soils by microcalorimetric and respirometric methods. Thermochim. Acta, 410,35-46.
    68. Critter SAM, Freitas SS, and Airoldi C, 2004b. Microcalorimetric measurements of the metabolic activity by bacteria and fungi in some Brazilian soils amended with different organic matter. Thermochim. Acta, 417, 275-281.
    69. Crosset RN and Loughman BC, 1996. The absorption and translocation of phousphorus by seedlings of Hordeum vulgare L. New Phytologist, 65:459-468
    70. Davis RM, Menge JA and Erwin D, 1979. Influence of Glomus fasciculatus and soil phosphorus on Verticillium wilt of cotton. Phytopathology, 69:453-456
    71. Degens BP, Sparling GP & Abbott LK. 1994. The contribution from hyphae, roots and organic carbon constituents to the aggregation of a sandy loam under long-term clover-based and grass pastures. European Journal of Soil Science 45: 459-468.
    72. Dehne HW and Schonbeck F,1975. The influence of the endotrophic mycorrhiza on the fusarial wilt of tomato. Z. Pflanzenkr. Pflanzenschutz, 82:630
    73. Diaz G, Azcon-Anuilar C and Honrubia M, 1996. Influence of arbuscular mycorrhizas on heavy metal (Zn and Pb) uptake and growth of Legeum spartum and Anthyllis cytisoides. Plant Soil, 180:241-249
    74. Diaz-Ravina M, Carballas T, and Acea MJ, 1988. Microbial biomass and its metabolic activity in four acid soils. Soil Biol. Biochem., 20, 817-823.
    75. Di Bonito R, Elliot MLand Des Jardin EA, 1995. Detection of arbuscular mycorrhizal fungus in roots of different plant species with PCR. Appl. Environ. Microbiol., 61:2809-2810
    76. Dodd JC, Boddington CL, Rodriguez A, Gonzalez-Chavez C, Mansur I, 2000. Mycelium of arbuscular mycorrhizal fungi (AMF) from different genera: form, function and detection. Plant and Soil, 226:131-151
    77. Douds DD, Galvez L, Becard G and Kapulnik Y, 1998. Regulation of arbuscular mycorrhizal development by plant host and fungus species in alfalfa. New Phytologist 138:31-35
    78. Edwards SG, Filter HA and Young JPW, 1997. Identification of an arbuscular mycorrhizal fungus, Glomus moseae, within plant roots by competitive polymerase chain reaction. Mycol. Res., 101:1440-1444
    79. Fang YC, Mcgraw AC, Hendrix JW, 1983. A procedure for isolation of single spore culture of certain endomycorrhizal fungi. New Phytologist, 93:107-144
    80. Frank AB, 1885. Uber die auf Wurzelsymbiose beruhende Ernahrung gewisser Baume durche unterirdische Pilze Brr Deutsch. Bot Gessell 3:128-145
    81. Franken P and Gianinazzi-Pearson V, 1996. Construction of genomic phage, libraries of the arbuscular mycorrhizal fungi Glomus mosseae and Scutellospora Castanea and isolation of ribosomal RNA genes. Mycorrhiza, 6:167-173
    82. Genre A and Bonfante P, 1998. Actin versus tubulin configuration in arbuscule-containing cells from mycorrhizal tobacco roots. New Phytol., 140: 745-752
    83. Gerdemann JW, 1961. A species from Endogone from corn causing vesicular-arbuscular mycorrhiza, Mycologia, 53: 254
    84. Gerdemann JW, 1968. Vesicular-arbuscular mycorrhiza and plant growth. Annu. Rev. Phytopath, 6:397-418
    85. Gianinazzi-Pearson V, 1996. Plant cell responses to arbuscular mycorrhizal fungi: getting to the roots of symbiosis. The plant cell, 8:1871-1883
    86. Gianinazzi-Pearson V, Gianinazzi S, Guillemin JP, Trouvelot A, and Duc G, 1991. Genetic and cellular analysis of resistance to vesicular-arbuscular (VA) mycorrhizal fungi in pea mutants. In: Advances in Molecular Genetics of Plant- Microbe interactions, H. Hennecke and D.P.S. Verma eds. London: Kluwer Academic Publishers, pp336-342
    87. Gianinazzi-Pearson V, Arnould C, Moriau L and Boutry M, 1998. Activitation of plasma membrane H~+ -ATPase genes by arbuscule formation in tobacco. In Second International Conference on Mycorrihiza. Eds. U Ahonen-Jonnarth, E Danell, P Fransson, O Karen, B Lindahl, I Rangel and R Finlay. Uppsala, Sweden.
    88. Gianinazzi S, Gianinazzi-Pearson V and Dexheimer J, 1979. Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhiza. 3. Ultrastructural location of acid and alkaline Phosphatase activity in onion roots infected by Glomus mossesae (Nicol. & Gerd.) New phytologists 82:127-132
    89. Gildon A and Tinker PB, 1981. A heavy metal-tolerant strain of a mycorrhizal fungus. Trans Br Mycol Soc,77:648-649
    90. Giovannetti M & Sbrana C, 1998. Meeting a non-host: the behaviour of AM fungi. Mycorhiza, 8:123-130
    91. Giovannetti M and Gianinazzi-Pearson V, 1994. Biodiversity in arbuscular mycorrhizal fungi. Mycol. Res. 98, 705-715.
    92. Grham JH, Miller RM, 2005. Mycorrhizas: Gene to function. Plant and Soil, 274: 79-100
    93. Griffiths RI, Bailey MJ, Mcnamara NP, and Whiteley AS, 2006. The functions and components of the Sourhope soil micrbiota. Appl. Soil Ecol., 33,114-126.
    94. Grime JP, Kackey JML, Hillier SH and Read DJ, 1987. Floristic diversity in a model system using experimental microcosms. Nature, 328:420-422
    95. Harrison MJ and Dix RA, 1994. Spatial patters of expression of flavonoid/isoflavonoid pathway genes during interactions between the roots of Medicago truncatula and the the mycorrhizal fungus Glomus versiforme. Plant J., 6: 9-20
    96. Harrison MJ and van Buuren MJ, 1995. A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature, 378:626-629
    97. Harrison MJ,1996. A sugar transporter from Medicago truncatula altered expression pattern in roots during vesicular-arbuscular mycorrhizal associations. Plant Journal 9(4): 491-503
    98. Harrison MJ, 1998. Development of the arbuscular mycorrhizal symbiosis. Current opinion in plant biology, 1:360-365
    99. Hawker LE and Linton AH, 1979. Microorganisms, function, form and environment, 2nd Eds., Arnold, London.
    100.Hayman DS, 1987. VA mycorrhizas in field crop systems. In: Safir G ed. Ecophysiology of VA Mycorrhizal Plants. CRC press, Inc., Boca Raton, Florida. 171-192 101.Helgason T, daniell TJ, Husband R, Fitter AH and Young JPW, 1998. Ploughing up the wood-wide web. Nature, 394-431
    102.Holzel R, Motzkus C, 1994. Lamprechet I., Kinetic investigation of microbial metabolism. Thermochimica Acta, 239:17-32
    103.Hosny M, van Tuinen D, Jacquin F, Fuller P, Zhao B, Gianinazzi-Pearson V and Franken P, 1999. Arbuscular mycorrhizal fungi and bacteria: how to construct prokaryotic DNA-free genomic libraries from the Glomales. FEMS Microbiology Letters, 170:425-430
    104.Hussey RS, and Roncadori RW, 1982. Vesicular-arbuscular mycorrhizae may limit nematode activity and improve plant growth. Plant Disease, 66:9-14
    105.IBG, 2004- www page URL: http://www.ukc.ac.uk/bio/beg/
    106.INVAM, 2004 -www page URL: http://invam.caf.wvu.edu/
    107.Jacquot E, van Tuinen D, Gianinazzi S et al, 2000. Monitoring species of arbuscular mycorrhizal fungi in planta and in soil by nested PCR: application to the study of the impact of sewage sludge. Plant and Soil, 226:179-188
    108 Janos DP,1981. Vesicular-arbuscular mycorrhizae increase productivity and diversity of tropical tree communities. Fifth American Conference on Mycorrhizae Quebec Canada p18
    109.Johnson NC& Pfleger FL, 1992. Vesicular-arbuscular mycorrhizae and cultural stresses. In: Bethlenfalvay GB, Linderman RG ed. Mycorrhizae in sustainable agriculture. American Society of Agronomy, Madison, Wis., pp1-27
    110 Jungk A and Claassen N, 1989. Availability in soil and acquisition by plants as the basis for phosphorus and potassium supply to plants. Z Pflanzenernahr Bondenk 152:151-157
    111.Kaldorf M, Zimmer W, Bothe H, 1994. Genetic evidence for the occurrence of assimilarity nitrate reductase in arbuscular mycorrhizal and other fungi. Mycoorrhiza, 5:23-28
    112.Kaldorf M, Schmelzer E and Bothe H, 1998. Expression of maize and fungal nitrate reductase genes in arbuscular mycorrhiza. Molecular Plant-Microbe Interaction, 11: 439-448
    113.Klutte A, 1986. Methods of Soil Analysis, American Society of Agronomy, Madison, WI.
    114.Koske RE, Friese CF, Olexia PD and Hauke RL, 1985. Vesicular-arbuscular mycorrhizae in Equisetum. Transactions of the British Mycological Society, 85: 350-353
    115.Kothari SK, Marschner H and Geoge E, 1990. Effect of VA mycorrhizal fungi and rhizosphere microorganisms on root and shoot morphology growth and water relations in maize. New phytologist 116:303-311
    116.Kuhn G, Hijri M, Sanders IR, 2001. Evidence for the evolution of multiple genomes in Arbuscular Mycorrhizal Fungi. Nature 414 (6865): 745-748
    117.Liu RJ, 1994. A new method to quantify the inoculum potential of arbuscular mycorrhizal fungi. New Phytologists, 128:89-92
    118.Liyanage HD, 1989. Effects of phosphorus nutrition and host species on root colonization and sporulation by vesicular-arbuscular mycorrhizal fungi in sand -vermiculite medium. M.S. Thesis, University of Florida, Gainesville.
    119.Longato S and Bonfante P, 1997. Molecular identification of mycorrhizal fungi by direct amplification of microsatellite regions. Mycol. Res., 101(4):425-432
    120.Madigan MT, Martinko JM and Parker J, 2000. Brock Biology of microorganisms, 9th Eds., Prentice Hall International, pp. 642-662.
    121.Marschner H,1995. Mineral Nutrition of Higher Plants (second edition). Academic Press San Diego
    122.Martin-Laurent F, Arnould C, Chatagnier O, van Tuinen D, Franken P, Gianinazzi S and Gianinazzi-Pearson V, 1998. Cellular localization of a plant protein PSAM1 in arbuscular mycorrhizas of Pisam sativum. Planta, 207:153-157
    123.Marx C, Dexheimer J, Gianinazzi-Pearson V, Gianinazzi S, 1982. Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhizas. IV. Ultracytoenzymological evidence (ATPase) for active transfer processes in the host arbuscule interface. New Phytologist, 90:37.
    124.Matsubara Y, Tamura H and Harada T, 1995. Growth enhancement and verticillium wilt control by vesicular-arbuscular mycorrhizal fungus inoculation in eggplant. J Japan Soc Hort Sci, 64(3):555-561.
    125.Mcgulnness SM, Barisas BG, 1991. Acute toxic measurements on aquatic pollutants using microcalorimetry on tissue-cultured cells, Environ. Sci. Technol., 25, 1092- 1096.
    126.Mehlich A, 1984. Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Soil Science and Plant Analysis, 15,1409-1416.
    127.Menge JA, Johnson ELV and Platt RG, 1978. Mycorrhizal dependency of several citrus cultivars under three nutrient regimes. New Phytologist 81:553-559
    128.Menge JA,1984. Inoculum production. In: CL Powell DJ Bagyaraj (Editors) VA Mycorrhiza. CRC Press Boca Raton Florida USA pp 187-204
    129.Merryweather J & Fitter AH, 1998. The arbuscular mycorrhizal fungi of Hyacinthoides non-scripta-I. Diversity of fungal taxa. New phytologist, 138:117-129
    130.Millner PD, Mulbry WW, Reynolds SL Patterson CA, 1998. A taxon-specific oligonucleotide probe for temperate zone soil isolates of Glomus mosseae. Mycorrhiza, 8:19-27
    131.Millner PD, Mulbry WW and Reynolds SL, 2001. Taxon-specific oligonucleotide primers for detectionof Glomus etunicatum. Mycorrhiza ,10:259-265
    132.Morton JB, 1988. Taxonomy of VA mycorrhizal fungi: classification, nomenclature, and identification. Mycotaxon, 32, 267-324.
    133.Morton JB, Benny GL, 1990a. Evolutionary relationships among arbuscular mycorrhizal fungi in the Endogonaceae. Mycologia 82:192-270
    134.Morton JB, Benny GL, 1990. Revised classification of arbuscular mycorrhzal fungi (Zygomycetes), A new order, Glomales, two new suborders, Glomineae and Gigasporineae, and two new families, Acaulosporasae and Gigasporaceae, with an emendation of Glomaceae. Mycotaxon, 37: 471-491
    135.Mosse B, 1970. Honey-colored, sessile Endogone spores: II. Changes in fine structure during spore development. Arch. Microbiol., 74:129-145
    136.Mungnier J and Mosse B,1987. Vesicular-arbuscular mycorrhzal infection in transformed root-inducing T-DNA roots grown axenically. Phytopathology 77(7): 1045-1050
    137.Murphy PJ, Langridge P and Smith SE, 1997. Cloning plant genes differentially expressed during of roots Hordeum vulgare by the vesicular-arbuscular mycorrhizal fungus Glomus intraradices.New Phytol.,135:291-301.
    138.Newman El, Heap AJ and Lawley RA, 1981. Abundance of mycorrhizas and root surface microorganisms of Plantago lanceolata in relation to soil and vegetation A multi-variate approach. New Phytologist, 89:95-108
    139.Noyd PK, Pflegar FL and Norland MR, 1996. field responses to added organic matter arbuscular mycorrhizal fungi and fertilizer in reclamation of taconite iron ore tailing. Plant Soil, 179:89-97
    140.Nunez L, Barros N, and Barja 1,1994. A kinetic analysis of the degradation of glucose by soil microorganisms studied by microcalorimetry. Thermochim. Acta, 237, 73-81.
    141.Nunez-Regueira L, Rodriguez-Anon JA, Proupin-Castineiras J, and Nunez-Fernandez O, 2006. Microcalorimetric study of changes in the microbial activity in humic Cambisol after reforestation with eucalyptus in Galicia (NW Spain). Soil Biol. Biochem., 38,115-124.
    142.Paget DK,1975. The effect of Cylindrocarpon on plant growth responses to vesicular-arbuscular mycorrhza, In: Endomycorrhizas, Sanders FE ea tal., Eds., Academic Press, London
    143.Peterson RL and Bonfante P, 1994. Comparative structure of vesicular-arbuscular mycorrhizas and ectomycorrhizas. Plant and Soil,159:81-88
    144.Peterson L, 1999. IC0M2 shows that mycorrhiza research is strong! Mycorrhiza, 8:287-288
    145.Phillips JM & Hayman DS, 1970. Improved procedures for clearing roots and staining parasitic and vesicular arbuscular fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55:158-161
    146.Phillips DA and Tsai SM, 1992. Flavonoids as plant signals to rhizosphere microbes. Mycorrhiza 1(2):55-58
    147.Porter WM, 1979. The "most probable number" method for enumerating infective propagules of vesicular arbuscular mycorrhizal fungi in soil. Aust J Soil Res, 17:515-519
    
    148.Powell CL, Bagyaraj DJ, 1984. VA Mycorrhiza. CRC Press, Boca Raton, Florida
    149.Prado AGS, Claudio Airoldi, 2001. Microcalorimetry of the degradation of the herbicide 2,4-D via the microbial population on a typical Brazilian red Latosol soil, Thermochimica Acta, 371:169-174.
    150.Read DJ, 1998. Influence of fungal species richness on plant biodiversity and production. Nature, 396
    151.Redecker D, Thierfelder H, Werner D, 1995. A new cultivation system for arbuscular mycorrhizal fungi on glass beads. Angew. Bot., 69:189-191
    152.Redecker D, Kodner R, Graham LE, 2000. Glomalean fungi from the Ordovician. Science 289:1920-1921.
    153.Redecker D,2002. Molecular identification and phylogeny of arbuscular mycorrhizal fungi. Plant Soil 244, 67-73
    154.Remy W, Taylor TN, Hass H, and Kerp H, 1994. Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc. Natl. Sci. USA 91:11841-11843
    155.Rhodes LH and Gerdemann JW, 1978. Translocation of calcium and phosphate by external hyphae of vesicular arbuscular mycorrhizas. Soil Sci 126:125-126
    156.Rhodes LH,1980. The use of mycorrhizae in crop production systems. Outlook Agriculture,10:275-281
    157.Rilling MC, 2004. Arbuscular mycorrhzae and terrestrial ecosystem processes. Ecology letters, 7, 740-754
    158.Rodriguez A, Dougall T, Dodd JC, et al, 2001. The large subunit ribosomal RNA genes of Entrophospora infrequens comprise sequences related to two different glomalean families. New phytol., 152:1-9
    159.Rosewarne GM, Barker SJ, Smith SE, Smith FA and Schachtman DP, 1999. A Lycopersicon esculentum phosphate transporter (LePTI) implicated in P nutrition of VA mycorrhizal plants. New Phytol. 144,507-516.
    160.Roussel H, Bruns S, Gianinazzi-pearson V, Hahlbrock K and Franken P, 1997. Induction of a membrane intrinsic protein encoding mRNA in arbuscular mycorrhiza and elicitor-stimulated cell suspension cultures of parsley. Plant Sci. 126: 203-210
    161.Ruiz-Lozano JM, Roussel H, Gianinazzi S and Gianinazzi-Pearson V, 1999. Defense genes are differentially induced by a mycorrhizal fungus and Rhizobium sp in wild-type and symbiosis-defective pea genotypes. Molecular Plant -Microbe Interactions 12(11):976-984
    162.Ryglewicz PT & Andersen CP. 1994. Mycorrhizae alter quality and quantity of carbon below ground. Nature 369: 58-60.
    163.Safir G, 1968. The influence of vesicular-arbuscular mycorrhiza on the resistance of Onion to Pyrenochaeta terrestris. M.S. Thesis, Univ. of Illinois. Urbana
    
    164.Sagan M, Morandi D, Tarenghi E, and Duc G, 1995. Selection of nodulation and mycorhizal mutants in the model plant Medicago truncatula (Gaertn.) after γ-ray mutagenesis. Plant Science 111:63-71
    165.Sambrook J, Fritsch E F, Maniatis T, eds. 1989. Molecualr Cloning: A Laboratory Manual. 2nd Ed. New York: Cold Spring Harbor Laboratory Press.
    166.Sanders IR, Alt M, Groppe K, Boiler T and Wiemken A, 1995. Identification of ribosomal DNA polymorphisms in spores of the Glomales: application to studies on the genetic diversity of arbuscular mycorrhizal fungal communities. New Phytologist, 130:419-427
    167.Sanders IR, Clapp JP and Wiemken A, 1996. The genetic diversity of arbuscular mycorrhizal fungi in natural ecosystems - a key to understanding the ecology and functioning of mycorrhizal symbiosis. New Phytologist, 133:123-134
    168.Sanders IR. 1998. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396: 69-72.
    169.Sanders IR,1999. Evolutionary genetics. No sex please, we're fungi. Nature 399(6838): 737-739
    170.Schenck NC, Ridings WH and Cornell JA, 1977. Interaction of two vesicular-arbuscular mycorrhizal fungi, and Phytophthora parasitica on two citrus root stocks. In: Abst. 3rd N. Am. Conf. Mycorrhizae, Athens, Ga., p9
    171.Schonbeck F and Dehne HW, 1977. Damage to mycorrhizal and nonmycorrhizal cotton seedlings by Thielaviopsis basicola. Plant Dis. Rep., 61:266
    172.Schonbeck F and Dehne HW, 1979. Investigation on the influence of endotrophic mycorrhiza on plant disease. IV. Fungal parasites on shoots, Olpidium brssicae, TMV. Z. Pflanzenkr. Pflanzenschutz, 86:103
    173.Schu61er A, Schwarzott D and Walker C, 2001. A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol. Res. 105:1413-1421
    174.Simon L, Levesque RC and Lalonde M, 1992a. Rapid quantification by PCR of endomycorrhizal fungi colonizing roots. PCR Methods and Application 2:76-80
    175.Simon L, Lalonde M.,Bruns T, 1992b. Specific application of 18S fungal ribosomal genes from vesicular-arbuscular endomycorrhizal fungi colonizing roots. Appl Environ Microbiol, 58:291-295
    176.Simon L, Bousquet J, Levesque RC and Lalonde M, 1993a. Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 363:67-69
    177.Simon L, Levesque RC and Lalonde M, 1993b. Identification of endomycorrhizal fungi colonizing roots by fluorescent single-strand conformation polymorphism-polymerase chain reaction. Applied and Environmental Microbiology, 59:4211-4215
    178.Smith SE and Smith FA, 1990. Structure and function of interfaces in biotrophic symbioses as they relate to nutrient transport. New phytologist 114:1-38
    179.Smith SE, Read DJ, 1997. Mycorrhizal symbiosis (2~(nd) Edn). London: Academic Press. 1-605
    180.Sparling GP, 1983. Estimation of microbial biomass and activity in soil using microcalorimetry. J. Soil Sci., 34, 381-390.
    181.Strittmatter G, Gheysen G, Gianinazzi-Pearson V etal., 1996. Infections with various types of organisms stimulate transcription from a short promoter fragment of the potato gstl gene. Mol. Plant-Microbe Interactions., 9:68-73
    182.Suurkuusk J, Wadso I, 1982. A multichannel calorimeter. Chem. Scr., 20: 155- 163.
    183.Sylvia DM & Jarstfer AG., 1992. Sheared-root inocula of vesicular-arbuscular mycorrhizal fungi. Appl. Environ. Microbiol., 58:229-232
    184.Sylvia D. M. and Jarstfer AG, 1994. Production of inoculum and inoculation with arbuscular mycorrhizal fungi. In: AD Robson, LK Abbott and N Malajczuk (eds.) Management of Mycorrhizas in Agriculture, hoticulture and forestry. Kluwer Academic publishers, Dordrecht, pp231-238
    185.Tisserant B, Gianinazzi-Pearson V, Gianinazzi S and Gollotte A, 1993. In planta histochemical staining of fungal alkaline Phosphatase activity for analysis of efficient mycorrhizal infections. Mycol. Res. 97:245-250
    186.Trappe JM, 1987. Phylogenetic and ecological aspects of mycotrophy in the Angiosperms from an evolutionary standpoint. In: Ecophysiologyof VA mycorrhizal plants. Gr Safir eds p5-25, CRC press, Boca Raton FL
    187.Triegel EK, 1988. Principles of Environmental Sampling, American Chemical Society, Washington DC.
    188.Trouvelet A, Kough JL and Gianinazzi-Pearson V, 1986. Mesure du taux de mycorhization VA d'un systeme radiculaire. Recherche de methods destimation ayant une signification fonctionnelle. In: Physiology and genetical aspects of mycorrhizae, V. Gianinazzi-Pearson and S. Gianinazzi (eds.). INRA press, Paris, pp.217-221
    189.Turnau K, Ryszka P, Gianinazzi-Pearson V and van Tuinen D, 2001. Identification of arbuscular mycorrhizal fungi in soils and roots of plants colonizing zinc wastes in southern Poland. Mycorrhiza, 10:169-174
    190.Turner BL, Bristow AW, and Haygarth PM, 2001. Rapid estimation of soil microbial biomass in grassland soils by ultra-violet absorbance. Soil Biol. Biochem., 33, 913-919.
    191.van Buuren ML, Maldonado-Mendoza IE, Trieu A, Blaylock LA and Harrison MJ,
    
    1999. Novel genes in induced during abuscular mycorrhizal symbiosis formed between Medicago truncatula and Glomus versiforme. Mol. Plant-Microbe Interactions, 12:171-181
    192.Vandenkoornhuyse P, Leyval C and Bonnin I, 2001. High genetic diversity in arbuscular mycorrhizal fungi: evidence for recombination events. Heredity, 86(2):243-253
    193.Van der Heijden MGA, Boiler T, Wiemken A, et al. 1998a. Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology, 79: 2082-2091
    194.Van der Heijden MGA, Klironimos JN, Ursic M et al. 1998b. Mycorrhizal fungi diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396:69-72
    195.van der Heijden MGA, 2002. Arbuscular mycorrhzal fungi as a determinant of plant diversity: in search for underlying mechanisms and general principles, pp 243-265. In: van der Heijden MGA, Sannders IR eds. Mycorrhizal Ecology, Ecological studies vol. 157. Springer-Verlag, Berlin.
    196.Van Tuinen D, Dulieu H, Zeze A and Gianinazzi-Pearson V ,1994. Biodiversity and characterization of arbuscular mycorrhizal fungi at the molecular level. In: Impact of Arbuscular Mycorrhizal on Sustainable Agriculture and Natural Ecosystems, Gianinazzi S and schuepp eds., Birkhauser Verlag Basel, Switzerland
    197. Van Tuinen D , Zhao B, Gianinazzi-Pearson V, 1997. PCR in studies of AM fungi: from primers to application. In: Varma A ed. Mycrrhza Manual. Heidelberg: Springer-Verlag. pp387-401
    198.Van Tuinen D, Jacquot E, Zhao B, Gollotte A, Gianinazzi-Pearson V, 1998. Characterization of root colonization profiles by a microcosm community of arbuscular mycorrhizal fungi using 25S rDNA-targeted nested PCR. Molecular Ecology, 7: 879-887
    199.Vierheiling H and Ocampo JA, 1989. Relationship between SDH-activity and VA mycorrhizal infection. Agriculture, Ecosystems and Environment 29:439-442
    200.Wadso I, 2002. Isothermal microcalorimetry in applied biology. Thermochim. Acta, 394, 305-311.
    201.Walker C, Schuβler A, 2004. Nomenclatural clarifications and new taxa in the Glomeromycota. Mycol. Res. 108:979-982
    202.Wardle DA and Ghani A, 1995. Why is the strength of relationships between pairs of methods for estimating soil microbial biomass often so variable? Soil Biol. Biochem., 27,821-828.
    203.Weissenhora I, Leyval C and Berthelin J, 1993. Cd-tolerant arbuscular mycorrhizal (AM) fungi from heavy metal polluted soil. Plant Soil, 157:247-256
    204.Wilson JM, 1984. Competition for infection between vesicular-arbuscular mycorrhizal fungi. New Phytol, 97:427-435
    205.Wright SF & Upadhyaya A, 1998. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant and Soil 198: 97-107.
    206.Yao J, Liu Y, Liu P, Gao Z, Sun M, Qu S, Yu Z, and Shen Y, 2003a. Microcalorimetric Investigation of the Effect of Manganese(II) on the Growth of Tetrahymena shanghaiensis S199. Biol. Trace Elem. Res., 92, 71-82.
    207.Yao J, Liu Y, Tuo Y, Chen X, Zhou Q, Dong J, Qu S,Yu Z, 2003b. The action of Cu~(2+) on Bacillus thuringiensis growth investigated by microcalorimetry, Applied Biochemistry and Microbiology, 39(6): 656-660
    208.Yao J, Liu Y, Liang H, Liu P, Sun M, Qu S, and Yu Z, 2005. The effect of zinc (II) on the growth of Escherichia coli studied by microcalorimetry. Journal of Thermal Analysis and Calorimetry, 79, 39-43.
    209.Zeze A , Dulieu H and Gianinazzi-Pearson V, 1994. DNA cloning and screening of partial genomic library from an arbuscular mycorrhizal fungus, Scutellospora Castanea. Mycorrhiza, 4:251-254
    210. Zeze A, Hosny M, Gianinazzi-Pearson V and Dulieu H, 1996. Characterization of a highly repeated DNA sequence (SC1) from the arbuscular mycorrhizal fungus, Scutellospora Castanea and its detection in Planta. Applied and Environmental Microbiology, 62(7):2443-2448

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700