(TiB+TiC)/Ti基复合材料的制备、组织与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文分别采用金属粉末注射成形工艺(Metal Injection Molding,MIM)和熔铸原位合成法制备(TiB+TiC)/Ti基复合材料。在MIM工艺中研究了粉末与粘结剂选择及配比、喂料制备、注射成型、脱脂、烧结等工艺。熔铸原位合成法中,对材料的组织性能进行了研究。
     将高纯度的B_4C粉以质量分数2.4%加入到Ti粉中,和石蜡基粘结剂体系混炼成成分均匀并具有一定流动性的喂料,然后制粒。混炼时加入硬脂酸(SA)作为表面活性剂以改善粘结剂对粉末的润湿性。注射工艺中,模具温度为40℃、注射压力为150 MPa、保压压力为120MPa、注射温度为140℃。分别采用三氯乙烷、二硫化碳及汽油进行常温下溶剂脱脂,三者的平均脱脂率分别为56.4%、65.3%、63.4%。当脱脂至坯块重量不再变化时,三者的时间分别为60h、30h、20h。脱脂后的断口分析显示,成形坯内粘结剂大部分脱除,粉末之间的通道被打开,坯块内形成了连通孔隙。采用真空烧结工艺,真空度达到1×10-2Mpa,先以10℃/min升温至200℃,保温5min再以2.3℃/min升至550℃,保温20min,这时残留的粘结剂被彻底脱除。继续升温,最后达到1240℃,分别在800℃、1000℃、1240℃温度下保温40min、60min、60min,随后试样随炉缓冷。
     B_4C在钛中所占质量分数分数分别为2.5%、2.8%、2.9%,采用纽扣式非自耗电极熔炼炉熔炼。分别对熔铸原位法合成及真空烧结后的材料试样进行SEM、金相显微组织分析及XRD相组成分析,两者的组织基本一致,在高温下B_4C和Ti发生反应生成TiB和TiC。TiB和TiC分布在钛基体上,能谱分析表明等轴状或近于等轴状为TiC增强相,针状或短棒状的为TiB增强相。熔铸原位法合成的增强相分布比较均匀,MIM工艺制备的增强相分布相对不均匀。
     TiB和TiC增强相生成后,复合材料的硬度、压缩强度相比钛基体及Ti-6Al-4V合金有了很大提高,并且随着TiB和TiC的增加,材料的压缩强度、硬度也随之增加。压缩断口显示,断口上存在较多的剪切韧窝,宏观压缩断口与作用力呈45°角,表明断裂属于韧性断裂。高温氧化结果表明,TiB和TiC提高了材料的抗氧化性。
In this paper, (TiB+TiC)/Ti matrix composites were obtained by metal powder injection molding (Metal Injection Molding, MIM) and cast in-situ synthesis. In the MIM process, the selection and proportion of the powder and binder, preparation of feedstock, injection molding, debinding, sintering and other processes were studied. For cast in-situ synthesis, microstructure and properties of the materials were researched .
     The B_4C powder of high purity was mixed into Ti powder by the mass fraction of 2.4%, and then mixed with paraffin-based binder system to be made into tempered homogeneous and liquid feedstock, and then granulating. When mixing, stearic acid (SA) was added as a surfactant to improve the wettability of the powder binder. In the injection process, the mold temperature was 40℃, injection pressure was 150MPa, holding pressure was 120MPa, injection temperature was 140℃, then degreased at room temperature by trichloroethane, carbon disulfide, and gasoline which have an average of debinding ratio is 56.4%, 65.3%, 63.4% respectively, When the weight of sample was no longer change, the time was 60h, 30h, 20h respectively. After the process of degreasing, the result of fracture analysis showed that the majority of forming blanks within the binder was removed, the channel was opened between the powders, and the pores was formed. When vacuum sintering, vacuum was 1×10-2 Mpa or more, the temperature was firstly heated to 200℃by 10℃/min, heat preservation for 5min and then rose to 550℃by 2.3℃/min, heat preservation for 20min, then the residual binder would be completely removed from the system. Continue to heat up, and finally to 1240℃, heat preservation for 40min, 60min, 60min at 800℃, 1000℃, 1240℃respectively, then followed by slow cooling the samples with the furnace.
     B_4C mass fraction of titanium in the share were 2.5%, 2.8%, 2.9%, with button-type non-self-consumable electrode melting furnace smelting. The specimens properties were studied using SEM, metallographic microstructure analysis, XRD.The result showed that this two materials have the same organization, TiB and TiC at high temperatures produced by the reaction B_4C and Ti. TiB and TiC were distributed in the titanium matrix, the energy spectrum analysis showed that the equiaxed or near equiaxed reinforcements were TiC, and needle-like or short rod for TiB. The reinforcement produced by cast in-situ synthesis is distributed more evenly, while the reinforcement prepared by MIM is relatively asymmetry distribution.
     The hardness and compressive strength have been greatly improved compared to titanium substrate and the Ti-6Al-4V alloy when TiB and TiC reinforcement were created into the composite, the compressive strength and hardness of the material were enhanced along with the increase of TiB and TiC too. The result of compression fracture showed that there are more shear fracture dimples, and the macro-compression fracture is 45°angle with the forces which indicates the fracture is ductile. The result of high temperature oxidation showed that TiB and TiC have improved the antioxidant activity.
引文
1李双明,郝启堂,李金山等.交变电磁场下金属熔体的电磁约束连续成形与凝固.材料导报,2001,15(3):10~14
    2唐武,高义民,鲍崇高等. Al2O3颗粒增强不锈钢基表面复合材料[J].西安交通大学学报,2005,34(5):106~108.
    3罗国珍.钛基复合材料的研究与发展.稀有金属材料与工程.1997,26(2):1~6
    4 A .W. Urquhart. Novel reinforced ceramics and metals: a review of Lanxide's composite technologies.Mater Sci Eng[J],1991,A131(1):75~81
    5 J. C. Rawers,W.R. Wrzesinski,E.K. Roub et al. TiAl-SiC Composites Prepared by High Temperature Synthesis.Mater Sci Techn[J],1990,6(2):187~192
    6 Z. Fan et al. The kinetics and mechanism of interfacial reaction in sigma fibre-reinforced Ti MMCs.Script Metal[J],1995,32(6):833~836
    7李俊刚,金云学,李庆芬等.颗粒增强钛基复合材料的制备技术及显微组织[J],稀有金属材料及工程.2004,33(12):1252~1256
    8 LüWeijie,Zhang Di,Zhang Xiaonong et al.Growth Mechanism of Reinforceme-nt in In situ Processed TiC/Ti Composites.Acta Metallurgica Sinica[J].1995,35 (suppl.):S354~358
    9 Zeng Quanpu.Particles reinforced titanium matrix composites.Rare Metal Materials and Engineering [J],1991,20(6):33~37
    10 Zhang Erlin,Jin Yunxue,Zeng Songyan et al. Microstructure of in site TiC reinforced titanium alloy matrix composites.Chinese Journal of Materials Research[J],2000,(3):25~29
    11李世普主编.特种陶瓷工艺学[M].武汉:武汉工业大学出版社,1990
    12江东亮,郭景坤.复相陶瓷.硅酸盐学报,1991,19 (3):258~262
    13 M. Humenik,N.M. Parikb. Fundamental concepts related to Microstructure and Physical properties of cermets systems[J].J.Amer.Ceram.Soe.1956,39(2):60~63
    14 N.M.Parikh,Jr.,M.Humenik.Wettability and Microstructure studies in Liquid phase sintering[J].J.Amer.Ceram.Soc.,1957,40(9):315~320
    15郝元恺,黄大暾,赵恂.氧化硅涂层和硅对碳化硅纤维与铝相容性的影响.国防科技大学学报, 1986,(2):28~32
    16新野正之,前田修平.倾斜机能材料.机能材料, 1991,(1):21~25
    17吕维洁,张小农,张荻等.颗粒增强钛基复合材料研究展.材料导报,1999,13(6):15~18
    18 E. A.Eopucba .钛合金金相学.北京:国防工出版社,1986
    19肖平安,曲选辉,雷长明等.高温钛合金和颗粒增强钛复合材料的研究和发展.粉末冶金材料科学与工程,2001,6(4):279~285
    20 M.Kobayashi,Funami.Manufacturing process and mechanical properties of fine TiB dispersed Ti-Al-4V alloy compsoites obtained by reaction sintering. Materials Science and Engineering,1998,A243 :279~284
    21李棣泉,梁振锋.颗粒增强钛基复合材料复合方法的研究[J].稀有金属,1997,(增刊):34~40
    22 S.Gorsse,J.P.Chaminade et al.Preparation of titanium base composites reinforce-d by TiB single crystals using a powder metallurgy technique. Composites part A,1998 :1229~1234
    23 S. Ranganath.A review on particulate reinforced titanium matrix composites.J- ournal of Materials Science,1997,32:1~16
    24 M.H.Loretto,D.G.Konitzer.The effect of matrix reinforcement reaction on fracture in Ti-6Ai-4V-base composites.Metall Trans,1990,21A(6):1579~1583
    25 J.C. Rawers,W.R. Wrzesinski, E.K. Roub et al. TiAl-SiC composites prepared by hightemperature synthesis. Mater Sci Tech,1990,6(2):187~192
    26 D.G. Kontzer,M.H. Loretto .Microstructural assessment of Ti-6Al-4V-TiC metal matrix composite.Acta Metall,1989,37(2):397~400
    27王朋波,毛小南,杨冠军等.原位反应制备颗粒增强钛基复合材料的研究[J].进展稀有金属快报,2006,25(5):1~7
    28杨涛林,陈跃.颗粒增强金属基复合材料的研究进展.铸造技术.2006,27(8):871~873
    29 Abkowitz Susan M,Abkowitz Stanley et al.Extending the Life of Shot Sleeves With Titanium Metal Matrix Composite(MMC)Liners[C].In: Fisher Harvey eds.2003 Transactions Congress Sessions/22nd International Die Casting Congress& Exposition.Chicago:North American Die Casting Association,2003: 109~116
    30汤慧萍,黄伯云,刘咏等.粉末冶金颗粒增强钛基复合材料研究进展[J].粉末冶金技术,2004,22(5):293~296
    31 S. Gorsse,Y.Le. Petitcorps,S. Mater et al.Investigation of the Young’s modulus of TiB needles in situ produced in titanium matrix composite[J].Mater Sci Eng,2003,A340:80~84
    32 S.I. Rhee,S.W. Nam,M. Hagiwara .Effect of TiB particle reinforcement on the creep resistance of near a titanium alloy made by blended elemental powder metallurgy[J].J Alloys Comp,2003,359:186~191
    33 J.Q.Jiang,T.S. Lum,Y.J.Kim et al.In Situ Formation of TiC-(Ti-6Al-4V)Composites Mater Sci Tech,1996,12(4):362~366
    34 Z. Fan,H.J. Niu,A.P.Miodaoruik et al. Microstructure and mechanical properties of in situ Ti/TiB MMCs produced by a blended elemental powder metallurgy method. Key Engineering Materials,1997, 423:127~131
    35 M. Kobayashi,Funami et al. Manufacturing process and mechanical properties of fine TiB dispersed Ti-Al-4V alloy compsoites obtained by reaction sintering.Materials Science and Engineering,1998,A243:279~284
    36陶春虎,张少卿,王守凯等.XD工艺—金属基复合材料制备技术[J].材料工程,1994,(11):10~14
    37 A.P.Brown,R.Brydson,C.T.Hammond et al.The Role of Boron in the Mechanic-al Milling of Titanium 6percent Aluminium 4percent Vanadium Powders[C].In: Komameni Sridhreds Symposium on Nanophase and Nanocomposite Materials III.Warrendale Pa:Materials Reaearch Society,2002:265~270
    38袁武华,吉喆,张召春.钛基复合材料及其制备技术研究进展[J].材料导报,2005,19(4):54~57
    39郭继伟,金云学,吕奎龙. TiC颗粒钛基复合材料的制备及微观机理研究[J].中国有色金属学报,2003,13(1):193~196
    40曾泉浦,王彰默,毛小南.颗粒强化钛基复合材料的研究[J].稀有金属材料与工程,1991,20(6):33~37
    41毛小南.钛基复合材料研究新进展[R].Report for 2005 Annual Session, Xi’an: Northwest Institute of Nonferrous Metal Research,2005
    42李益民,黄伯云,曲选辉.当代金属注射成形技术.粉末冶金工业,2000,1(10):14~19
    43 Sakata.Present Situation of Titanium MIM Products.Titanium Japan(Japan),2001,49(4):42~46
    44 Editor.Iniection Moulding-a new dimension in PM part production.Metal Powder Report,1980,35(1):30~35
    45 R.E.Wiech.Manufacture of Parts from particulate material,US Patent 4197118,1980
    46 R.D.Rivers.Method of injection molding Powder metal parts.US Patent 4113480,1978
    47 R.M. German .Powder Injection Molding.MPIF ,Princeton ,1990
    48 G.R. Punstan, R. Howells,R.C. Paratt. Metal Powder Report ,1994,49(3):46~50
    49 R.M.German,K.F.Hens.Powder Injection Molding Symposiun,MPIF,Princeton, New Jersey ,1992: 1
    50张驰,杨长辉,陈元芳.金属(陶瓷)粉末注射成形技术及应用.现代制造工程.2003(10):55~57
    51李益民,曲选辉,黄伯云.金属注射成形技术的现状和发展动向(ⅱ)—金属注射成形技术的特点及产业的发展.粉末冶金材料科学与工程.1999,2(4):195~198
    52李笃信,黄伯云.金属注射成形技术研究进展[J].粉末冶金材料科学与工程, 2002, 7(1):24~27
    53 R.C.Drewers.Cost effective production of MIM components.Advances in Powder Metallurgy,1991,2:297~306
    54 R.W. Messler. An Industrially Sponsored Research Programme in PIM.Metal Powder Report ,1989,44 (5):362~365
    55张驰,徐博.金属粉末注射成形技术在汽车工业中的应用.汽车技术.2005(4):
    38~41
    56周鹏,覃继宁,吕维洁等.粉末冶金制备原位自生钛基复合材料的显微组织和力学性能研究.粉末冶金工业.2009,19(3):11~16
    57李松林,黄伯云,曲选辉等.表面活性剂对金属粉末注射成形喂料性能的影响.稀有金属材料与工程.2001,30(2):131~133
    58李忠权,周朝阳.陶瓷注射成型粘结剂现状及发展趋势[J].陶瓷工程, 2001. 6
    59周晓晖.Kovar合金的粉末注射成形工艺研究[D].长沙:中南大学硕士学位论文, 2004. 6
    60 Li Shong lin,Huang Bai yun et al.Solvent debinding of water soluble binder in Powder Injection Molding[J].Trans Non ferrous Met Soc China,1999,9(3):578~582
    61李益民,黄伯云,曲选辉等.金属注射成形技术进展.稀有金属材料与工程.1996,25(1):1~5
    62李益民,曲选辉,黄伯云.金属注射成形的脱脂.材料导报. 1999,1:21~23
    63汤慧萍,刘咏等.添加稀土元素对粉末冶金Ti合金显微组织和力学性能的影响.中国有色金属学报.2004,14(2):244~249
    64卞玉君,方平伟,张小农等.增强体TiB和TiC在Ti中的原位生成.上海交通大学学报.1998,32(2):120~122
    65 MAZY,S.C. TJONG,L. GENG.In-TiB metalmatrix composite prepared by a reactive pressing process [J].Scripta Mater.2000,42(4):367~373
    66 X.N. Zhang,J.Lu. W,D.Zhang et al.In situ techque for anything (TiB+TiC)/Ti composites.Scripts Materialia.1999,41(1):39~42
    67 M.E.Hyman, C.Mccullough,J.J. Valencia.Microstructure evolution in TiAl alloy with B additions:conwentional solidification,Metallurgical and Materials Transactions,1989,20A(9):1847~1849
    68 Hyman M E, Mccullough C, Valencia J J,et al. Microstructure evolution in TiAl alloys with B additions: conventional solidifica-tion[J].Metall Trans,198 9, 20A(9): 1847~1859
    69祝宝军.硬质合金的注射成形工艺研究.中南大学博士学位论文,2002
    70吕维洁,张小农,张荻等.原位(TiB+TiC)/Ti复合材料中TiB/Ti界面的微结构研究.电子显微学报.2001 20(1):56~61
    71郭继伟,金云学,吕奎龙等. TiC颗粒增强钛基复合材料的制备及微观机理研究[J].中国有色金属学报,2003,13(1):193~196
    72 A. R. C. Westwood.Materials for advanced studies and devices [J]. Metall.Trans, 1998,18A:749~758
    73 X.N. Zhang,W.J. Lü,D.Zhang et al.In situ technique for synthesizing (TiB+TiC)/Ti composites[J].Scripta Mater, 1999,41(1):39~46
    74 Z.Zhang,D.L.Chen.Consideration of Orowan Strengthening Effect in Particulate Reiforced Metal Matrix Nanocomposites:A Modelfor Predicting Their Yield Strenth .Scripta Materialia.2006,54(7):1321~1326
    75 G.Bao,J.W.Hutchinson,R.M. McMeeking. Particle reinforcement of ductile matrices against plastic flow and creep[J].Acta Metall Mater,1991,39(8): 1871~1882
    76吕维洁,张小农,张荻等.铸态(TiB+TiC)/Ti复合材料组织和性能的研究.复合材料学报.2001,18(3):60~65
    77 R.J. Arsenault, N. Shi. Dislocation generation due to differences between the coefficients of thermal expansion[J].Mater Sci Eng, 1986,81A: 175~187
    78李月英,彭丽华,张驰等.TiB2颗粒增强钛基复合材料抗氧化性能.复合材料学报.2010,27(2):72~76
    79 D.B. Lee, Y.C. Lee, D.J. Kim. The oxidation of TiB2 ceramics containing Cr and Fe[J]. Oxid Met, 2001,56(1/2):177~181
    80叶大伦.实用无机物热力学数据手册[M].北京:冶金工业出版社, 2001
    81 R.W.STEWART, I.B.CUTLER, J.AM.Effect of temperature and oxygen partial presure on the oxidation of titanium carbide[J].Ceram.Soc ,1967,50:176~180
    82 Z.F. Yang,W.J.Lu, J.N.Qin et al.Microstructure and tensile properties of in- situ synthesized(TiC+TiB+Nd2O3)/Ti-alloy composites at elevated temperatu- re[J].Mater·Sci·Eng·A,2006,425:185~191
    83肖代红.(TiB+Nd2O3)/Ti复合材料的显微组织与力学性能[J].铸造技术,2007,28(6):791~795

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700