介孔碳与介孔金属氧化物的结构调控及超电容性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超级电容器作为一种新型绿色储能装置,由于具有能量密度高、功率密度大、循环寿命长等优点,在汽车、通讯、国防等诸多领域有广泛的应用前景,日益受到国内外研究人员的关注。有序介孔碳和介孔金属氧化物具有有序的孔道结构、均一的孔径分布、高的比表面积和大的孔体积,是超级电容器的理想电极材料。制备不同孔道结构的介孔碳和介孔金属氧化物,进一步研究孔道结构对超电容性能的影响,对其在超级电容器电极材料中的应用具有重要意义。
     本文首先以三嵌段共聚物P123为表面活性剂、正硅酸乙酯或硅酸钠为硅源,制备出了具有有序孔道结构的介孔二氧化硅SBA-15、MSU-H和KIT-6。以二维六方结构的MSU-H和三维立方结构的KIT-6为硬模板、蔗糖为碳源,进一步合成了有序介孔碳OMC-M和OMC-K。在蔗糖中添加硼酸,通过控制硼酸的添加量,获得了在4~10 nm范围内孔径可调的有序介孔碳。对所得有序介孔碳进行循环伏安、恒流充放电和交流阻抗等电化学测试,其结果表明,在5 mV/s扫描速率下,对于两种不同结构的OMC-M和OMC-K,OMC-M-6和OMC-K-4的比电容分别达到最大值203.8和190.4 F/g。当扫描速率从5 mV/s变化到100 mV/s时,有序介孔碳的电容保持率高达81~86 %。在4~8 nm范围内,有序介孔碳的比表面电容随孔径的增大而增大,在5 mV/s扫描速率下,OMC-M-2达到最大值27.5μF/cm~2。
     以二维六方结构的SBA-15为硬模板、金属硝酸盐为前驱体,获得了介孔结构的NiO和NiO/Co_3O_4复合物,并研究了添加柠檬酸对产物结构的影响。结果表明添加柠檬酸后,NiO和NiO/Co_3O_4复合物的比表面积由123.8和115.8 m~2/g分别提高到了238.4和170.8 m~2/g。电化学测试结果表明,在0.1 A/g电流密度下,添加柠檬酸后的NiO-CA和NiO/Co_3O_4-CA的比电容分别达到220.1和625.8 F/g,分别是未添加柠檬酸时的1.7和2.7倍。
As a new kind of green energy storage device, supercapacitor has been of wide interest for applications in many fields, such as automobile, telecommunication, and military force, due to high energy density, high power density, and long cycle life, attracting more and more attention from researchers around the world. Ordered mesoporous carbons and mesoporous metal oxides have been recognized as ideal electrode materials due to their ordered mesoporous structures, uniform pore size distributions, high surface areas and high pore volumes. It is significative to research on the preparation of different mesoporous structures of ordered mesoporous carbons and mesoporous metal oxides and the influence of mesoporous structures on the pseudocapacitive performance.
     In this paper, ordered mesoporous silicas SBA-15, MSU-H, and KIT-6 were firstly synthesized by using the triblock copolymer P123 as the surfactant and TEOS or sodium silicate as the silicate precursor. Ordered mesoporous carbons OMC-M and OMC-K were further synthesized by using two-dimensional hexagonal MSU-H and three-dimensional cubic KIT-6, respectively, as the hard template and the sucrose as the carbon precursor. Ordered mesoporous carbons with tunable pore sizes in the range of 4 to 10 nm were obtained by adding some amount of boric acid in the carbon precursor. The as-synthesized samples were characterized by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy experiments. The results reveal that, as to OMC-M and OMC-K, OMC-M-6 and OMC-K-4 exhibited the highest specific capacitances of up to 203.8 and 190.4 F/g, respectively, at the scan rate of 5 mV/s. All ordered mesoporous carbons maintained 81~86 % of the specific capacitances when the scan rate changed from 5 mV/s to 100 mV/s. The specific surface capacitances of ordered mesoporous carbons increased with the increase of the pore sizes in the range of 4 to 8 nm and OMC-M-2 reached the highest value of 27.5μF/cm~2 at the scan rate of 5 mV/s.
     Ordered mesoporous NiO and NiO/Co_3O_4 composite were synthesized by using two-dimensional SBA-15 as the hard template and corresponding metal nitrates as the precursors, and the influence of the addition of citric acid into the precursors on the structure of metal oxides was also investigated. The characterization results reveal that, because of the adding of the citric acid into the precursors, the specific surface areas of NiO and NiO/Co_3O_4 composite increased from 123.8 and 115.8 m~2/g to 238.4 and 170.8 m~2/g, respectively. The results of electrochemical characterization show that the specific capacitances of NiO-CA and NiO/Co_3O_4-CA reached 220.1 and 625.8 F/g, respectively, which were 1.7 and 2.7 times of the NiO and NiO/Co_3O_4.
引文
[1] Becker H L. Low voltage electrolytic capacitor[P]. U. S. Patent: 2800616, 1957-07-03.
    [2] Conway B E. Electrochemical supercapacitors[M]. New York: Kluwer Academic/Plenum Publisher, 1999.
    [3] Kotz R, Carlen M. Principles and applications of electrochemical capacitors[J]. Electrochimica Acta, 2000, 45(15): 2483~2498.
    [4] Burke A. Ultracapacitors: why, how and where is the technology[J]. J. Power Sources, 2000, 91(1): 37~50.
    [5] Vol'fkovich Y M, Serdyuk T M. Electrochemical capacitors[J]. Russian J. Electrochem., 2002, 38(9): 935~958.
    [6]张治安,邓梅根,胡永达,等.电化学电容器的特点及应用[J].电子元件与材料, 2003, 22(11): 1~5.
    [7] Faggioli E, Rena P, Danel V, et al. Supercapacitors for the energy management of electric vehicles[J]. J. Power Sources, 1999, 84(2): 261~269.
    [8] Jung D Y, Kim Y H, Kim S W, et al. Development of ultracapacitor modules for 42-V automotive electrical systems[J]. J. Power Sources, 2003, 114(2): 366~373.
    [9] Huggins R A. Supercapacitors and electrochemical pulse sources[J]. Solid State Ionics, 2000, 134(1-2): 179~195.
    [10]薛洪发.超大容量电容器在内燃机车起动中的应用[J].内燃机车, 2000, 319(9): 8~9.
    [11]陈列春.超级电容器电极材料的制备与研究[D].广州:广东工业大学, 2008.
    [12] Bonnefoi L, Simon P, Fauvarque J F, et al. Electrode compositions for carbon power supercapacitors[J]. J. Power Sources, 1999, 80(1-2): 149~155.
    [13]周冬兰,高立军,汪涛,等.超级电容器的储能原理及其电极材料的研究进展[J].材料导报, 2007, 21(5): 126~128.
    [14]袁定胜,胡向春,刘应亮,等.超级电容器用炭材料的研究进展[J].电池, 2007, 37(6): 763~765.
    [15]邓梅根.电化学电容器电极材料研究[D].成都:电子科技大学, 2005.
    [16] Toupin M. Performance of experimental carbon blacks in aqueous supercapacitors[J]. J. Power Sources, 2005, 140(1): 203~210.
    [17] Fang B, Wei Y Z, Kumagai M. Modified carbon materials for high-rate EDLCs application[J]. J.Power Sources, 2006, 155(2): 487~491.
    [18] Kim C. Electrochemical characterization of electrospun activated carbon nanofibers as an electrode in supercapacitors[J]. J. Power Sources, 2005, 142(1-2): 382-388.
    [19] Meng Q H, Liu L, Song H H, et al. Study on carbon aerogel electrodes for supercapacitor[J]. J. Functional Materials, 2004, 35(4): 457~459.
    [20] Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354: 56~58.
    [21] Niu C M, Sichel E K, Hoch R, et al. High power electrochemical capacitors based carbon nanotube electrodes[J]. Applied Phys Lett., 1997, 70(11): 1480~1482.
    [22] Chen J H, Li W Z, Wang D Z, et al. Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors[J]. Carbon, 2002, 40(8): 1193~1197.
    [23] Conway B E. Transition from“supercapacitor”to“battery”behavior in electrochemical energy storage[J]. J. Electrochem Soc., 1991, 138(6): 1539~1548.
    [24]杨红生,周啸,姜翠玲,等.电化学电容器最新研究进展Ⅱ.氧化还原电容器[J].电子元件与材料, 2003, 22(3): 38~42.
    [25]林志东,刘黎明,张万荣.超级电容器氧化物电极材料研究进展[J].武汉化工学院学报, 2005, 27(2): 40~44.
    [26]张传香.超级电容器NiO/介孔碳复合电极材料的制备及其性能研究[D].南京:南京航空航天大学, 2008.
    [27] Melsheimer J, Ziegler D. Oxygen electrode reaction in acid solutions on RuO2 electrode prepared by the thermal decomposition methods[J]. Thin Solid Films, 1988, 163: 301~308.
    [28] Zheng J P, Cygan P J, Jow T R. Hydrous ruthenium oxide as an electrode material for electrochemical capacitors[J]. J. Electrochem. Soc., 1995, 142(8): 2699~2703.
    [29] Grupioni A F, Arashiro E, Lassali T A F. Voltammetric characterization of an iridium oxide-based system: the pseudocapacitive nature of the Ir0.3Mn0.7O2 electrode[J]. Electrochimica Acta, 2002, 48(4): 407~418.
    [30] Hong J I, Yeo I H, Paik W K. Conducting polymer with metal oxide for electrochemical capacitor poly(3,4-ethylenedioxythiophene) RuOx electrode[J]. J. Electrochem Soc., 2001, 148(2): A156~A163.
    [31] Hu C C, Chen W C, Chang K H. How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors[J]. J. Electrochem Soc., 2004, 151(2): A281~A290.
    [32] Lee H Y, Goodenough J B. Supercapacitor behavior with KCl electrolyte[J]. J. Solid Stade Chemistry, 1999, 144(1): 220~223.
    [33] Zhang F B, Zhou Y K, Li H L. Nanocrystalline NiO as an electrode material for electrochemical capacitor[J]. Mater Chem and Phy, 2004, 83(2): 260~264.
    [34] Kyung W N, Kwang B K. A study of the NiOx electrode via electrochemical route for supercapacitor applications and their charge storage mechanism[J]. J Electrochem. Soc., 2002, 149(3): A346~A354.
    [35] Pang S C, Anderson M A, Chapman T W. Novel electrode materials for thin-film ultracapacitors comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide[J]. J. Electrochem. Soc., 2000, 147(2): 444~450.
    [36]闪星,张密林,董国君,等.纳米MnO2的制备及在超大容量电容器中的应用[J].电源技术, 2002, 26(2): 92~94.
    [37] Lin C, Ritter J A, Popov B N. Characterization of sol-gel-derived cobalt oxide xerogels as electrochemical capacitors[J]. J. Electrochem. Soc., 1998, 145(12): 4097~4103.
    [38]张密林,刘志祥.沉淀转化法制备的Co(OH)2的超电容特性[J].无机化学学报, 2002, 18(5): 513~517.
    [39] Rudge A, Raistrick I, Gottesfeld S, et al. A study of the electrochemical properties of conducting polymers for application in electrochemical capacitors[J]. Electrochimica Acta, 1994, 39(2): 273~287.
    [40] Fusalba E, Gouerec P, Villers D, et al. Electrochemical characterization of polyaniline in non aqueous electrolyte and its evaluation as electrode materials for the electrochemical supercapacitor[J]. J. Electrochem. Soc., 2001, 148(1): A1~A6.
    [41] Suematsu S, Ouram Y, Tsujimoto H, et al. Conducting polymer films of cross-linked structure and their QCM analysis[J]. Electrochimica Acta, 2000, 45(22-23): 3813~3821.
    [42] Carlberg J C, Inganas O. Poly(3,4-ethylenedioythiophene) as electrode material in electrochemical capacitors[J]. J. Electrochem. Soc., 1997, 144(4): L61~L64.
    [43] Clemente A, Panero S, Spila E, et al. Solid-state, polymer-based, redox capacitors[J]. Solid State Ionics, 1996, 85(1): 273~277.
    [44]张治安.基于氧化锰和炭材料的超级电容器研究[D].成都:电子科技大学, 2005.
    [45] Everett D H. IUPAC Manual of symbols and terminology[J], Pure Appl. Chem., 1972, 31: 578~638.
    [46] Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature, 1992, 359: 710~712.
    [47] Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular sieves preparedwith liquid crystal templates[J]. J. Am. Chem. Soc., 1992, 114(27): 10834~10843.
    [48] Vartuli J C, Schmitt K D, Kresge C T, et al. Effect of surfactant/silica molar ratios on the formation of mesoporous molecular sieves : Inorganic mimicry of surfactant liquid-crystal phases and mechanistic implications[J]. Chem. Mater., 1994, 6(12): 2317~2326.
    [49] Huo Q S, Margolese D I, Ciesla U, et al. Generalized synthesis of periodic surfactant/inorganic composite materials[J]. Nature, 1994, 368(6469): 317~321.
    [50] Huo Q S, Margolese D I, Stucky G D. Surfactant control of phases in the synthesis of mesoporous silica-based materials[J]. Chem. Mater., 1996, 8(5): 1147~1160.
    [51] Zhao D Y, Feng J L, Huo Q S, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science, 1998, 279(5350): 548~552.
    [52] Zhao D Y, Huo Q S, Feng J L, et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures[J]. J. Am. Chem. Soc., 1998, 120(24): 6024~6036.
    [53] Kim S S, Pauly T R, Pinnavaia T J. Non-ionic surfactant assembly of ordered, very large pore molecular sieve silicas from water soluble silicates[J]. Chem. Commun., 2000, 17: 1661~1662.
    [54] Forster S, Plantenberg T. From self-organizing polymers to nanohybrid and biomaterials[J]. Angew. Chem. Int. Ed., 2002, 41(5): 689~714.
    [55] Kleitz F, Choi S H, Ryoo R. Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes[J]. Chem. Commun., 2003, 17: 2136~2137.
    [56] Kim T W, Kleitz F, Paul B, et al. MCM-48-like large mesoporous silicas with tailored pore structure: facile synthesis domain in a ternary triblock copolymer-butanol-water system[J]. J. Am. Chem. Soc., 2005, 127(20): 7601~7610.
    [57] Kleitz F, Liu D N, Anilkumar G M, et al. Large cage face-centered-cubic Fm3m mesoporous silica : Synthesis and structure[J]. J. Phys. Chem. B, 2003, 107(51): 14296~14300.
    [58] Che S, Garcia-Bennett A E, Yokoi T, et al. A novel anionic surfactant templating route for synthesizing mesoporous silica with unique structure[J]. Nature Materials, 2003, 2(12): 801~805.
    [59] Monnier A, Schuth F, Huo Q S, et al. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures[J]. Science, 1993, 261(5126): 1299~1303.
    [60] Tiemanm M. Repeated templating[J]. Chem. Mater., 2008, 20(3): 961~971.
    [61] Wu C G, Bein T. Microwave synthesis of molecular sieve MCM-41[J]. Chem. Commun., 1996, 8: 925~926.
    [62] Lin W, Chen J, Sun Y, et al. Binodal mesopore distribution in a silica preparation by calcining a wet surfactant-containing silicate gel[J]. Chem. Commun., 1995, 7: 2367~2368.
    [63] Fyfe C A, Fu G. Structure organization of silicate polyanions with surfactants: a new approach to the syntheses, structure transformations and formation mechanisms of mesostructural material[J]. J. Am. Chem. Soc., 1995, 117(38): 9709~9714.
    [64] Lu Y F, Ganguli R, Drewien C A, et al. Continuous formation of supported cubic and hexagonal mesoporous films by sol-gel dip-coating[J]. Nature, 1997, 389(6649): 364~368.
    [65]于亚涛.介孔二氧化硅纳米管的合成与机理研究[D].上海:上海交通大学, 2008.
    [66] Liu Y, Zhang W Z, Pinnavaia T J. Steam-stable aluminosilicate mesostructures assembled from zeolite type Y seeds[J]. J. Am. Chem. Soc., 2001, 122(36): 8791~8792.
    [67] Holland B T, Isbestr P K, Blandford C F, et al. Synthesis of ordered alumino-phosplate and galloaluminophosphate mesoporous material with anion-exchange properties utilizing polyoxometalate cluster/surfactant salts as precursors[J]. J. Am. Chem. Soc., 1997, 119(52): 6796~6803.
    [68] Yu C Z, Stucky G D. Nonionic block copolymer synthesis of large-pore cubic mesoporous single crystals by use of inorganic salts[J]. J. Am. Chem. Soc., 2002, 124(17): 4556~4557.
    [69] Kim J M, Sakamoto Y, Hwang Y K, et al. Structural design of mesoporous silica by micelle-packing control using blends of amphiphilic block copolymers[J]. J. Phys. Chem. B, 2002, 106(10): 2552~2558.
    [70] Ryoo R, Joo S H, Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation[J]. J. Phys. Chem. B, 103(37): 7743~7746.
    [71]李丽霞.有序介孔碳及其复合材料的合成和应用研究[D].北京:北京化工大学, 2007.
    [72] Fuertes A B, Nevskaia D M. Control of mesoporous structure of carbons synthesized using a mesostructured silica as template[J]. Micropor. Mesopor. Mater., 2003, 62(3): 177~190.
    [73] Zhang W H, Liang C, Sun H, et al. Synthesis of ordered mesoporous carbons composed of nanotubes via catalytic chemical vapor deposition[J]. Adv. Mater., 2002, 14(23): 1776~1778.
    [74] Tian B Z, Liu X Y, Yang H F, et al. General synthesis of ordered crystallized metal oxide nanoarrays replicated by microwave-digested mesoporous silica[J]. Adv. Mater., 2003, 15(16):1370~1374.
    [75] Zhu K K, Yue B, Zhou W Z, et al. Preparation of three-dimensional chromium oxide porous single crystals templated by SBA-15[J]. Chem. Commun., 2003, 1: 98~99.
    [76] Yue B, Tang H L, Kong Z P, et al. Preparation and characterization of three-dimensionalmesoporous crystals of tungsten oxide[J]. Chem. Phys. Lett., 2005, 407(1-3): 83~86.
    [77] Jiao K, Zhang B, Yue B, et al. Growth of porous single-crystal Cr2O3 in a 3-D mesopore system[J]. Chem. Commun., 2005, 45: 5618~5620.
    [78] Jiao F, Harrison A, Hill A H, et al. Mesoporous Mn2O3 and Mn3O4 with crystalline walls[J]. Adv. Mater., 2007, 19(22): 4063~4066.
    [79] Yue W B, Zhou W Z. Synthesis of porous single crystals of metal oxides via a solid-liquid route[J]. Chem. Mater. 2007, 19(9): 2359~2363.
    [80] Liu X M, Zhang X G, Fu S Y. Preparation of urchinlike NiO nanostructures and their electrochemical capacitive behaviors[J]. Mater. Res. Bull., 2006, 41(3): 620~627.
    [81] Wu M Q, Gao J H, Zhang S R, et al. Synthesis and characterization of aerogel-like mesoporous nickel oxide for electrochemical supercapacitors[J]. J. Porous Mater., 2006, 13(3): 407~412.
    [82] Schuth F. Non-siliceous mesostructured and mesoporous materials[J]. Chem. Mater., 2001, 13(10): 3184~3195.
    [83] Dong A, Ren N, Tang Y, et al. General synthesis of mesoporous spheres of metal oxides and phosphates[J]. J. Am. Chem. Soc., 2003, 125(17): 4976~4978.
    [84] Roggenbuck J, Tiemann M. Ordered mesoporous magnesium oxide with high thermal stability synthesized by exotemplating using CMK-3 carbon[J]. J. Am. Chem. Soc., 2005, 127(4): 1096~1097.
    [85] Lai X Y, Li X T, Geng W C, et al. Ordered mesoporous copper oxide with crystalline walls[J]. Angew. Chem. Int. Ed., 2007, 46(5): 738~741.
    [86] Wagner T, Waitz T, Roggenbuck, et al. Ordered mesoporous ZnO for gas sensing[J]. Thin Solid Films. 2007, 515(23): 8360~8363.
    [87] Antonino S A, Peter B, Bruno S, et al. Nanostructured materials for advanced energy conversion and storage devices[J]. Nature Materials, 2005, 4(5): 366–377.
    [88]曹林,周盈科,陆梅,等.纳米氧化钴的制备及其超电容特性[J].科学通报, 2003, 48(7): 1212~1215.
    [89] Jun S, Joo S H, Ryoo R, et al. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure[J]. J. Am. Chem. Soc. 2000, 122(43): 10712~10713.
    [90] Stein A, Wang Z Y, Fierke M A. Functionalization of porous carbon materials with designed pore architecture[J]. Adv. Mater., 2009, 21(3): 265~293.
    [91] Taguchi A, Schuth F, Ordered mesoporous materials in catalysis[J]. Microporous Mesoporous Mater., 2005, 77(1): 1~45.
    [92] Liang C D, Li Z J, Dai S. Mesoporous carbon materials: Synthesis and modification[J]. Angew. Chem. Int. Ed., 2008, 47(20): 3696~3717.
    [93] Lee J, Kim J, Hyeon T. Recent progress in the synthesis of porous carbon materials[J]. Adv. Mater., 2006, 18(16): 2073~2094.
    [94] Sevilla M, Alvarez S, Centeno T A, et al. Performance of templated mesoporous carbons in supercapacitors[J]. Electrochimica Acta, 2007, 52(9): 3207~3215.
    [95] Barbieri O, Hahn M, Herzog A, et al. Capacitance limits of high surface area activated carbons for double layer capacitors[J]. Carbon, 2005, 43(6): 1303~1310.
    [96] Lee J, Yoon S, Hyeon T, et al. Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors[J]. Chem. Commun., 1999, 21: 2177~2178.
    [97] Lee J, Yoon S, Oh M, et al. Development of a new mesoporous carbon using an HMS aluminosilicate template[J]. Adv. Mater., 2000, 12(5): 359~362.
    [98] Zhou H, Zhu S, Hibino M, et al. Electrochemical capacitance of self-ordered mesoporous carbon[J]. J. Power Sources, 2003, 122(2): 219~223.
    [99] Zhou L, Li H, Yu C, et al. Easy synthesis and supercapacities of highly ordered mesoporous polyacenes/carbons[J]. Carbon, 2006, 44(8): 1601~1604.
    [100] Vix-Guterl C, Frackowiak E, Jurewicz K, et al. Electrochemical energy storage in ordered porous carbon materials[J]. Carbon, 2005, 43(6): 1293~1302.
    [101] Fuertes A B, Lota G, Centeno T A, et al. Templated mesoporous carbons for supercapacitor application[J]. Electrochimica Acta, 2005, 50(14): 2799~2805.
    [102] Wang D W, Li F, Fang H T, et al. Effect of pore packing defects in 2-D ordered mesoporous carbons on ionic transport[J]. J. Phys. Chem. B, 2006, 110(17): 8570~8575.
    [103] Xing W, Qiao S Z, Ding R G, et al. Superior electric double layer capacitors using ordered mesoporous carbons[J]. Carbon, 2006, 44(2): 216~224.
    [104] Lee H I, Kim J H, You D J, et al. Rational synthesis pathway for ordered mesoporous carbon with controllable 30- to 100-angstrom pores[J]. Adv. Mater. 2008, 20(4): 757~762.
    [105] Xia K S, Gao Q M, Jiang J H, et al. Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials[J]. Carbon, 2008, 46(13): 1718~1726.
    [106] Li H Q, Luo J Y, Zhou X F, et al. An ordered mesoporous carbon with short pore length and its electrochemical performances in supercapacitor[J]. J. Electrochem. Soc., 2007, 154(8): A731~A736.
    [107] Sevilla M, Alvarez S, Centeno T A, et al. Performance of templated mesoporous carbons insupercapacitors[J]. Electrochimica. Acta. 2007, 52(9): 3207~3215.
    [108] Liu H J, Cui W J, Jin L H, et al. Preparation of three-dimensional ordered mesoporous carbon sphere arrays by a two-step templating route and their application for supercapacitors[J]. J. Mater. Chem., 2009, 19(22): 3661~3667.
    [109] Wang D W, Li F, Liu M, et al. 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage[J]. Angew. Chem. Int. Ed., 2008, 47(2): 373~376.
    [110] Fuertes A B, Pico F, Rojo J M. Influence of pore structure on electric double-layer capacitance of template mesoporous carbons[J]. J. Power Sources, 2004, 133(2): 329~336.
    [111] Prabaharan S R S, Vimala R, Zainal Z. Nanostructured mesoporous carbon as electrodes for supercapacitors[J]. J. Power Sources, 2006, 161(1): 730~736.
    [112] Li L X, Song H H, Chen X H. Pore characteristics and electrochemical performance of ordered mesoporous carbons for electric double-layer capacitors[J]. Electrochimica Acta, 2006, 51(26): 5715~5720.
    [113] Bonnefoi L, Simon P, Fauvarque J F, et al. Multi electrode prismatic power prototype carbon/carbon supercapacitors[J]. J. Power Sources, 1999, 83(1-2): 162~169.
    [114] Xing W, Li F, Yan Z F, et al. Synthesis and electrochemical properties of mesoporous nickel oxide[J]. J. Power Sources, 2004, 134(2): 324~330.
    [115] Wang Y G, Xia Y Y. Electrochemical capacitance characterization of NiO with ordered mesoporous structure synthesized by template SBA-15[J]. Electrochimica Acta, 2006, 51(16): 3223~3227.
    [116] Zhou Q, Li X, Li Y G, et al. Synthesis and electrochemical properties of semicrystalline gyroidal mesoporous MnO2[J]. Chin. J. Chem., 2006, 24(7): 835~839.
    [117] Chen H R, Dong X P, Shi J L, et al. Templated synthesis of hierarchically porous manganese oxide with a crystalline nanorod framework and its high electrochemical performance[J]. J. Mater. Chem., 2007, 17(9): 855~860.
    [118] Srinivasan V, Weidner J W. Studies on the capacitance of nickel oxide films: Effect of heating temperature and electrolyte concentration[J]. J. Electrochem. Soc., 2000, 147(3): 880~885.
    [119] Zhang F B, Zhou Y K, L H L. Nanocrystalline NiO as an electrode material for electrochemical capacitor[J]. Mater. Chem. Phys., 2004, 83(2-3): 260~264.
    [120] Xu M W, Bao S J, Li H L. Synthesis and characterization of mesoporous nickel oxide for electrochemical capacitor[J]. J. Solid State Electrochem., 2007, 11(3): 372~377.
    [121] Zhao D D, Xu M W, Zhou W J, et al. Preparation of ordered mesoporous nickel oxide film electrodes via lyotropic liquid crystal templated electrodeposition route[J]. Electrochimica Acta, 2008, 53(6): 2699~2705.
    [122] Lin C, Ritter J A, Popov B N. Characterization of sol-gel-derived cobalt oxide xerogels as electrochemical capacitors[J]. J. Electrochem. Soc., 1998, 145(12): 4907~4103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700