营养盐加富和罗非鱼对水库浮游动物群落影响的围隔实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为认识我国南亚热带地区以杂食性鱼类为主的水库中级联反应的特点,本论文于2009年9-11月在贫-中营养水库-流溪河水库进行了大型围隔(体积约为85 m3)实验。包括控制组在内,共5个处理,每个处理有3个重复。控制组为水库原水,不添加营养盐和罗非鱼;处理组:1)在水库原水中添加营养盐(N、P);2)水库原水中添加罗非鱼;3)在水库原水中添加营养盐和罗非鱼;4)在水库原水中添加罗非鱼和3倍营养盐。所有的N/P(质量比)都是10/1;添加罗非鱼的密度为2g/m3。水化测定与浮游生物定量样品采样每周一次,共6次采样,通过比较添加营养盐组与空白组,分析了浮游生物对营养盐的响应;比较添加罗非鱼组与空白组,或者添加营养盐的有鱼组与无鱼组作比较,分析了鱼对浮游生物的作用。
     在围隔实验中,在2无鱼组围隔(一个是空白组,另一个是添加营养盐组)中,浮游植物丰度和生物量都升高,添加营养盐使浮游动物的丰度和生物量显著增加。添加营养盐组中,鱼的存在使浮游植物丰度和生物量明显增加;鱼的存在对浮游动物的丰度无显著影响,但使浮游动物生物量降低。从浮游动物优势种来看,在无鱼情况下,添加营养盐使舌状叶镖水蚤、剑水蚤、网纹溞、裸腹溞、秀体溞、象鼻溞等的丰度和生物量均增加;而添加营养盐情况下,罗非鱼的存在使得枝角类的丰度和生物量降低,但是对舌状叶镖水蚤无明显影响。
     轮虫的优势种具有明显的更替现象,在丰度上,实验的前3周以螺形龟甲轮虫、圆筒异尾轮虫、对棘异尾轮虫、Trichocerca chattoni (T.c)等为主要优势种,此后这些种类的丰度急剧下降,方形臂尾轮虫、剪形臂尾轮虫、Brachionus dolabratus (B.d)等急剧增加,成为优势种,而这种更替现象可能是鱼类的摄食影响了这些种类在养鱼围隔中增加的幅度,以及营养盐的添加使得可食性藻类的大量繁殖导致其更替现象的发生。轮虫生物量与其丰度有相同的变化趋势。桡足类的优势种以无节幼体、桡足幼体,舌状叶镖水蚤、中剑水蚤等为主,枝角类的网纹溞、裸腹溞、象鼻溞等的丰度和生物量均明显地受到鱼类捕食的影响。但是在食物条件充足的情况下,可以缓解罗非鱼对象鼻溞和秀体溞丰度的影响。
     上述结果表明,在我国南亚热带水库中,当鱼类的生物量较低或不存在时,滤食性枝角类可能成为优势种群。在不同营养盐梯度对比下,杂食性鱼类的存在并没有降低级联反应的强度。
In order to understand trophic cascades effects of omnivorous fish (tilapia) in warm waters, an enclosure experiment was carried out in Liuxihe Reservoir, an oligo-mesotrophic water body, from September 10 to November 14 of 2009, lasting 6 weeks.15 large enclosures in total were used, each enclosure has a water volume of 85 m3. There are 5 treatments, there are three replicates for each treatment. In the control treatment (C), the water was pumped from the reservoir after filtering small fish, other four treatments included:1) adding low nutrients (N、P) to enclosure in the filtered reservoir water (LN),2) adding tilapia with a biomass of 2g/m3 (F); 3) adding nutrients and tilapia (LNF); 4) adding tilapia and high nutrients (three times higher than in LN) (HNF).The N/P (mass ratio) of 10/1 was fixed in all the treatments. Water quality variables and quantitative plankton samplings were measured or taken every week (7 days). The response of plankton to nutrient addition was analyzed through the nutrients enrichment treatments and controls. Top-down effects of tilapia on plankton were analyzed between the fish treatments and only nutrient enrichment treatments.
     In two no fish treatments (C and LN treatments), the abundance and biomass of phytoplankton increased, but significantly in the LN. In the treatments without fish, the abundance and biomass of zooplankton increased markedly in nutrients enrichment treatments (LN). However, fish treatments only had slight effects on the abundance of zooplankton but decreased their biomass significantly.
     In all the encousres, zooplankton were dominated by copepods, such as Phyllodiaptomus tunguidus, Mesocyclops thermocyclopoides. The cladocerans were mainly composed of Bosmina longirostris, Moina micrura, Diaphanosoma orghidani and Ceriodaphnia cornuta. In the treatments with fish (F and LNF), the abundance and biomass of cladocerans were reduced, but little influence to Phyllodiaptomus tunguidus was detected.
     The dominant species of rotifer showed an evident temporal succession in the adding nutrients treatments. In the first 3 weeks, Keratella cochlearis, Trichocerca cylindrica, Trichocerca stylata and Trichocerca chattoni were primary dominant species in abundance, and their abundance sharply decreased from the third week. On the other hand, Brachionus quadridentatus, Brachionus forficula and Brachionus dolabratus increased quickly. Even if they were suppressed by fish predation in the fish treatments, nutrient enrichments improved edible phytoplankton. The rotifer biomass showed a variation pattern similar to the abundance. The copepods were dominated naupli, copepodites, Phyllodiaptomus tunguidus, Mesocyclops thermocyclopoides. The abundance and biomass of Bosmina longirostris, Moina micrura and Ceriodaphnia cornuta was evidently influenced by fish predation. When edible phytoplankton was abundant, the predation pressure seems to be buffered in Bosmina longirostris and Diaphanosoma orghidani.
     These results indicate that cladocerans could become the dominant population only in water bodies without fish or with low fish biomass in the warm water. By comparing nutrient enrichments, the omnivorous tilapia does not decrease trophic cascade effects when large calanoids replace Cladocera in dominance.
引文
陈绵润,赵帅营,林秋奇,韩博平.广东省水库枝角类组成特征的初步研究[J].湖泊科学,2007,19(1):77-86.
    陈少莲,刘肖芳,华俐.鲢、鳙在东湖生态系统的氮、磷循环中的作用[J].水生生物学报,1991,15(1):8-15.
    陈雪梅.淡水桡足类生物量的测算[J].水生生物学集刊,1981,7(3):397—408.
    韩博平等.广东省大中型水库富营养化现状与防治对策研究[M].北京:科学出版社,2003.
    胡鸿均,魏印心.中国淡水藻类:系统、分类及生态[M].北京:科学出版社,2006.
    胡玫,张中英.尼罗罗非鱼仔鱼稚鱼和幼鱼消化系统的发育及其食性的研究[J].水产学报,1983,7(3):207-217.
    林国恩.广东流溪河水库湖沼学变量的时空动态特征[J].湖泊科学,2009,21:397-404.
    李家乐,李思发.中国大陆尼罗罗非鱼引进及其研究进展[J].水产学报,2001.25(1):90-95.
    林秋奇,胡韧,段舜山,韩博平.广东省大中型供水水库营养现状及浮游生物的响应[J].生态学报,2003,23(6):1101-1108.
    林秋奇,赵帅营,韩博平.广东省水库轮虫分布特征[J].生态学报,2005,25(5):1123-1131.
    林秋奇,赵帅营,韩博平.广东流溪河水库后生浮游动物生物量谱时空异质性[J].湖泊科学,2006,18(6):661-669.
    林秋奇.流溪河水库后生浮游动物多样性与群落结构的时空异质性[D].博士论文.暨南大学,2007.
    林少君,贺立静,黄沛生等.浮游植物中叶绿素a提取方法的比较与分析[J].生态科学,2005,24:9-11.
    孙军,刘东艳.钱树本.浮游植物生物量研究[J].海洋学报,1999,21:75-85.
    赵帅营,韩博平.基于个体大小的后生浮游动物群落结构分析-以广东星湖为例[J].生态学报,2005,26(8):2646—2654.
    章宗涉,黄祥飞.淡水浮游生物研究[M].北京:科学出版社,1991.
    Allan J D. Life history patterns in zooplankton. The American Naturalist,1976,110:165-180.
    Branco C W C, Rocha M A and Pinto G F S et al. Limnological features of Funil Reservoir (R.J., Brazil) and indicator properties of rotifers and cladocerans of the zooplankton community. Lakes and Reservoirs:Research and Management 2002,7:87-92.
    Brett M T and Goldman C R. A meta-analysis of the freshwater trophic cascade. Proc. Natl. Acda. Science,1996,93:7723-7726.
    Brooks J L and S I Dodson. Predation, body size and composition of the plankton. Science,1965, 150:28-35.
    Burns C W. Relation between filtering rate, temperature and body size in four species of Daphnia. Limnology and Oceanography,1969,14:693-700.
    Carpenter S R, Kitchell J F and Hodgson J R. Cascading trophic interactions and lake productivity. BioScience,1985,35:635-639.
    Carpenter S R, Kitchell J F, Hodgson J R, Cochran P A, Elser J J, Elser M M, Lodge D M, Kretchmer D, He X and von Ende C N. Regulation of lake primary productivity by food web structure. Ecology,1987,68:1863-1876.
    Carpenter S R, Cole J J, Hodgson J R, Kitchell J F, Pace M L, Bade D, Cottingham K L, Essington T E, Houser J N and Schindler D E. Trophic cascades, nutrients, and lake productivity:whole-lake experiments. Ecological Monographs,2001,71:163-186.
    Cyr H, Curtis J M. Zooplankton community size structure and taxonomic composition affects size-selective grazing in natural communities. Oecologia,1999,118:306-315.
    DeMott W R. Feeding selectivities and relative ingestion rates of Daphnia and Bosmina. Limnology and Oceanography,1982,27:518—527.
    Drenner R W, de Noyelles, F Jr. and Kettle D. Selective impact of filter-feeding gizzard shad on zooplankton community structure. Limnology and Oceanography,1982,27:965-968.
    Drenner R W, Mummert J R, de Noyelles F Jr and Kettle D. Selective particle ingestion by a filter-feeding fish and its impact on phytoplankton community structure. Limnology and Oceanography,1984,29:941-948.
    Drenner R W, Hambright K D, Vinyard G L, et al. Experimental study of size-selective phytoplankton grazing by a filter-feeding cichlid and the cichlid's effects on plankton community structure. Limnology and Oceanography,1987,32:1138-1144.
    Dumont H J. On the diversity of the cladocera in the tropics. Hydrobiologia,1994,272:27-38.
    Dussart B H, Fernando C H and Matsumura-Tundisi T et al. A review of systematics, distribution and ecology of tropical freshwater zooplankton. Hydrobiologia,1984,113(1):77-91.
    Elser J J and Goldman C R. Zooplankton effects on phytoplankton in lakes of contrasting trophic status. Limnology and Oceanography,1991,36:64-90.
    Fernando C H. The Freshwater Zooplankton of Sri Lanka, with a Discussion of Tropical Freshwater Zooplankton Composition. Int. Revue ges. Hydrobiologia,1980a,65(1): 85-125.
    Fernando C H. The species and size composition of tropical freshwater zooplankton with special reference to the oriental region (South East Asia). Int. Revue ges. Hydrobiologia,1980b,65 (3):411-426.
    Fernando C H. Zooplankton, fish and fisheries in tropical freshwaters. Hydrobiologia,1994,272: 105-123.
    Ferrao-Filho A S, Arcifa M S and Fileto C. Resource limitation and food quality for cladocerans in a tropical Brazilian lake. Hydrobiologia,2003,491:201-210.
    Ferrao-Filho A S, Demott W R and Tessier A J. Responses of tropical cladocerans to a gradient of resource quality. Freshwater biology,2005,50:954-964.
    Gilbert J J. Suppression of rotifer populations by Daphnia:A review of the evidence, the mechanisms, and the effects on zooplankton community structure. Limnology and Oceanography,1988,33:1286-1303.
    Gilbert J J. The effect of Daphnia interference on a natural rotifer and ciliate community: Short-term bottle experiments. Limnology and Oceanography,1989,34:606-617.
    Gulati R D. Zooplankton and its grazing as indicators of trophic status in Dutch Lakes. Environmental Monitoring and Assessment,1983,3:343-354.
    Hall D J, Threlkeld S T and Burns C W et al. The size-efficiency hypothesis and the size structure of zooplankton communities. Annual Review of Ecology and Systematics,1976,7: 177-208
    Haney J F. and Hall D J. Sugar-coated Daphnia:A preservation technique for Cladocera. Limnology and Oceanography,1972,18:331-333.
    Hansson L-A. Annadotter H. Bergman V et al. Biomanipulation as an application of food-chain theory:Constraints, synthesis, and recommendations for temperate lakes. Ecosystems,1998, 1:558-574.
    Hrbacek J, Dvorakova M, Korinek V and Prochazkova L. Demonstration of the effect of the fish stock on the species composition of zooplankton and the intensity of metabolism of the whole plankton assemblage. Verb. Int. Ver. Theoret. Angew. Limnology,1961,14:192-195.
    Knoechel R and Holtby L B. Construction and validation of a body-length-based model for the predation of cladoceran community filtering rates. Limnology and Oceanography,1986,31: 1-16.
    Korponai J, Matyas K and Paulovits G et al. The effect of different fish communities on the cladoceran plankton assemblages of the Kis-Balaton Reservoir, Hungary. Hydrobiologia, 1997,360:211-221.
    Lazzaro X. A review of planktivorous fishes:The evolution, feeding behaviours, selectivities, and impacts. Hydrobiologia,1987,146:97-167.
    Leibold M A. Resource edibility and the effects of predators and productivity on the outcome of trophic interactions. The American Naturalist,1989,134:922-949.
    Leibold M A, Chase J M, Shurin J B and Downing A L. Species turnover and the regulation of trophic structure. Annu. Rev. Ecol. Syst.,1997,28:467-494.
    Lewis, W M Jr. Basis for the protection and management of tropical lakes. Lakes& Reservoirs: Research and Management,2000,5:35-48.
    Lin Q Q, Duan S S, Hu R, et al. Zooplankton Distribution in Tropical Reservoirs. South China. Internat. Rev. Hydrobiologia,2003,88(6):602-613.
    Lu M, Xie P and Tang H J, Shao Z J and Xie L Q. Experimental study of trophic cascade effect of silver carp (Hypophthalmichthys molitrixon) in a subtropical lake, Lake Donghu:on plankton community and underlying mechanisms of changes of crustacean community. Hydrobiologia,2002,487:19-31.
    Lynch M, Shapiro J. Predation, enrichment, and phytoplankton community structure. Limnology and Oceanography,1981,26:86-102.
    Mattson N S. Trophic interactions between two tropical omnivorous fishes, Oreochromis shianus and Barbus paludinosus:feeding selectivities and food web response. Hydrobiologia,1999, 380:195-207.
    Mazumder A. Patterns of algal biomass in dominant odd-vs. even-link lake ecosystems. Ecology, 1994,75:1141-1149.
    McCauley E and Briand F. Zooplankton grazing and phytoplankton species richness:field tests of the predation hypothesis. Limnology and Oceanography,1979,24(2):243-252.
    McNaught D C. A hypothesis to explain the succession from calanoids to cladocerans during eutrophication. Int. Ver. Theor. Angew. Limnology. Verh.,1975,19:724-731.
    McQueen D J, Post J R and Mills E L. Trophic relationships in freshwater pelagic ecosystems. Canadian Jouranl of Fisheries and Aquatic Sciences,1986,43:1571-1581.
    McQueen D J, Johannes MRS, Post J R, Steward T J and lean D R S. Bottom-up and top-down impacts on freshwater pelagic community structure. Ecological Monographs,1989,59: 289-310.
    Pace M L, Cole J J, Carpenter S R and Kitchell J F. Trophic cascades revealed in diverse ecosystems. Trends in Ecology and Evolution,1999,14:483-488.
    Parker B R and Schindler D W. Cascading trophic interactions in an oligotrophic species-poor alpine lake. Ecosystems,2006,9:157-166.
    PejlerB. Zooplanktic indicators of trophy and their food. Hydrobiologia,1983,101:111-114.
    Richman S and Dodson S I. The effect of food quality on feeding and respiration by Daphnia and Diaptomus. Limnology and Oceanography,1983,28:948-956.
    Saunders J F, Lewis W M. Dynamics and control mechanisms in a tropical zooplankton community (Lake Valencia, Venezuela). Ecological Monographs,1988,58(4):337-353.
    Schindler D E, Kitchell J F, He X, Carpenter S R, Hodgson J R and Cottingham K L. Food web structure and phosphorus cycling in lakes. Trans. Am. Fish. Soc.,1993,122:756-772.
    Seda J and Kubecka J. Long-term biomanipulation of Rimov Reservior(Czech Republic). Hydrobiologia,1997,345:95-108.
    Smyly W P. Some effects of enclosure on the zooplankton in a small lake. Freshwater Biology,1976,6:57-64.
    Stephen D, Balayla D M, Collings S E and Moss B. Two mesocosm experiments investigating the control of summer phytoplankton growth in a small shallow lake. Freshwater Biology, 2004,49:1551-1564.
    Swierzowskia A, Godlewska M and Poltorak T. The relationship between the spatial distribution of fish, zooplankton and other environmental parameters in the Solina reservoir, Poland. Aquat. Living. Resour.2000,13:373-377.
    Tonno I, Kunnap H and Noges T. The role of zooplankton grazing in the formation of'clear
    water phase'in a shallow charophyte-dominated lake. Hydrobiologia,2003,506-509: 353-358.
    Vanni M J. Competition in zooplankton communities:Suppression of small species by Daphnia pulex. Limnology and Oceanography,1986,31:1039-1056.
    Vanni M. Fish predation and zooplankton demography indirect effects.Ecology,1987, 67(2):337-354.
    Vanni M J and Findlay D L. Trophic cascades and phytoplankton community structure. Ecology, 1990,71:921-937.
    Vanni M J, Flecker A S, Hood J M and Headworth J L. Stoichiometry of nutrients cycling by vertebrates in a tropical stream:linking species identity and ecosystem processes. Ecology Letter,2002,5:285-293.
    Yang Y F, Huang X F and Liu J K. Long-term changes in crustacean zooplankton and water quality in a shallow, eutrophic Chinese lake densely stocked with fish. Hydrobiologia,1999, 391:195-203.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700