拉拉铁氧化物铜金矿:成矿时代和金属来源
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
四川会理拉拉铜矿床位于扬子地台西缘康滇铜矿带中段,是四川省最大的铜矿床,也是我国西南重要的铜矿产地。该矿床赋存于古元古界河口群落凼组浅变质火山沉积岩系中,是近年来新确认的一个典型的铁氧化铜金矿床(IOCG)。本文以四川会理拉拉IOCG矿床为研究对象,结合区域地质、矿区地质和矿床地质研究,通过野外地质调查和室内分析测试,在矿化和蚀变研究基础上,应用电子探针、元素地球化学、铂族元素地球化学、锆石年代学、Re-Os同位素地球化学、硫同位素地球化学等手段,对矿区矿石、赋矿的变质火山岩、辉绿辉长岩、成矿物质来源、成矿时代等问题进行了系统研究,确定了热液成矿时代和成矿金属来源,探讨了矿床成因。通过以上研究,论文主要取得了以下认识和进展:
     (1)拉拉铜矿金属矿物以磁铁矿、黄铁矿和黄铜矿为主,磁铁矿的含量大于黄铁矿,黄铜矿是主要的含铜矿物,脉石矿物出现大量碳酸盐矿物、萤石和磷灰石;除Fe、Cu矿化外,还伴生有Au、Ag、REE、Mo、Co、P和F矿化,其中Au、Co、Mo矿化达中型规模;矿石具有自形-半自形-它形晶粒结构、交代残余结构、包含结构和枝状结构,矿石构造包括浸染状构造、脉状-网脉状构造和角砾状构造,与典型的热液矿床矿石组构特征一致;成矿作用包括磁铁矿-磷灰石阶段(成矿温度310-442℃)、黄铜矿-黄铁矿阶段(成矿温度200-270℃)和辉钼矿阶段;矿石中磁铁矿的Ti含量低,介于0.06~0.21%之间(平均0.128%),表明该矿床属于IOCG矿床。
     (2)矿区河口群落凼组赋矿的变质火山岩形成于古元古界晚期,其锆石LA-MC-ICP-MS U-Pb年龄为1667±11Ma。火山岩为一套以安山岩、玄武岩为主的中-基性岩,结合元素地球化学特征,表明其形成于大陆岛弧的弧后拉张环境。
     (3)矿区辉绿辉长岩的锆石U-Pb年龄为1062±31 Ma,为成矿后侵入,与成矿关系不大,仅在局部改造或破坏矿体。
     (4)黄铜矿的Re-Os同位素地球化学研究表明,成矿年龄为1262±19Ma,成矿金属主要来自于河口群变质火山岩,成矿的硫主要来自海水硫酸盐还原,但不排除岩浆硫的贡献。
     (5)总之,矿床的形成经历了以下阶段:古元古(大约1670Ma)的火山成矿作用,海底火山喷发带来了大量的成矿金属(如PGE、LREE、Cu、Au等),这些成矿物质在一定的物理化学反应下沉淀下来,预富集于河口群火山沉积岩系;中元古(大约1260Ma)的热液成矿作用,此阶段扬子与华夏板块碰撞开始,此时拉拉矿区所在的扬子西南缘为被动大陆边缘,盆地卤水沿断裂下渗淋滤河口群火山岩中的成矿金属形成氧化的富金属的热液而上升,与海水混合而沉淀黄铜矿、黄铁矿等硫化物;新元古(1000~850Ma)的变质热液改造,此阶段扬子与华夏板块碰撞完成,此时拉拉矿区所在的扬子西南缘为陆-陆碰撞造山带,构造作用将中元古形成的矿床抬升到近地表,同时,该期运动形成的变质热液可能沉淀了大量的辉钼矿,从而在矿区叠加了一起钼成矿作用。
Lala copper deposit is located in the mid-west of Kangdian copper belt, tectonicly on the western margin of Yangtze Block, and is important Cu-Au producing area in South-West China. This deposit is hosted by Paleoproterozoic greenschist metamorphosed volcanic-sedimentary sequences of Luodang Formation of Hekou Group and is a typical Iron Oxide copper-gold (IOCG) deposit in China. Based on study on regional geology, mining area geology and ore deposit geology, the electron microprobe, element geochemistry (including major elements, trace elements, REEs and PGEs), LA-MC-ICP-MS U-Pb zircon geochronology and Re-Os isotope geochemistry were applied to study the nature of the host rocks, ores and intrusive rocks, the sources of ore-forming metals, and mineralization age. Finally, the ore genesis is demonstrated. In conclusion, main understandings and progresses are as following:
     (1) Sichuan Lala copper deposit is one of important large deposits in SW China not only for Cu but also for considerable economic Au-Mo-Co-REE-Fe. Ore minerals are mainly composed of hydrothermal magnetite, chalcopyrite and molybdenite. The wall-rock alterations include biotitization, silicification, carbonatation, albitization, potash feldspathization, apatitation, actinolitation and fluoritation. The ores have euhedral-subhedral-allotriomorphic crystalline grained texture, metasomatic relict texture, poikilitic texture, and dendritic texture, and have disseminated, banded, vein-stockwork and breccia structure. Copper is mainly in chalcopyrite, Cobalt is mainly in pyrite and marcasite, molybdenum is mainly in molybdenite and gold is mainly in chalcopyrite, pyrite and pilsenite as native or silver-bering native gold. The main mineralization stages include magnetite-apatite stage, chalcopyrite-pyrite stage and molybdenite stage. The content of Ti in magnetite is low, the content of S is low in ore with a little Pb-Zn sulfide minerals. So these evidences show that Lala copper deposit is a typical Iron Oxide-Cu-Au (IOCG) deposit.
     (2) A weighted mean LA-MC-ICP-MS 206Pb/207Pb age of 1667±11Ma for a tuffaceous schist unit confirms the Paleoproterozoic formation age of the host rock of Hekou group. These volcanic rocks mainly consist of andesites and basalts. Combination with element geochemistry, it suggests that these volcanic rocks were formed in continental back-arc environment.
     (3) The diabase-gabbro intrusions formed later than mineralization age, so these intrusive rocks show no genetic relation to Cu-Au mineralization and only modified or destroyed the orebodies locally.
     (4) The Re-Os isotope data of chalcopyrite yield a isochron age of 1262±19Ma as direct Cu-Au mineralization age. The high initial 187Os/188Os ratio of the chalcopyrite may suggest a crustal-dominated source with pre-enriched Re and Os. In addition, the sources of sulfur mainly derived from sulfate reduction of seawater but not exclude from magma.
     (5) In conclusion, the Lala deposit experienced three stages as following: the first is Paleoproterozoic (ca. 1670Ma) volcanogenic mineralization stage. In this stage, the ore-forming metals (e.g., PGE, LREE, Cu and Au) were brought about from submarine volcanic eruption and precipitated and pre-enriched in volcanic-sedimentary sequences of Luodang Formation of Hekou Group under suitable physicochemical conditions. The second is mesoproterozoic (ca. 1260Ma) hydrothermal mineralization stage and is intial stage of collision between Yangtze and Cathaysia in South China Block. In this stage, the basin brine infiltrated along with the faults and leached ore-forming metals in volcanic rocks of Hekou Group to form metal-bearing hydrothermal fluid. This fluid ascended for its higher temperature and lower density, and mixed with seawater to precipitate sulfide such as the chalcopyrite and pyrite. The third is Neoproterozoic (ca. 1000~850Ma) metamorphic hydrothermal alteration of concluding stage of collision between Yangtze and Cathaysia Block. In this stage, the orebodies were tectonicly uplifted and molybdenite might precipitate.
引文
Baker T, Mustard R, Fu B, et al, 2008. Mixed messages in iron oxide–copper–gold systems of the Cloncurry district, Australia: insights from PIXE analysis of halogens and copper in fluid inclusions[J]. Mineralium Deposita, 43:599–608.
    Barton, M D, Johnson D A, 1996. Evaporitic-source model for igneous-related Fe oxide-(REE-Cu-Au-U) mineralization[J]. Geology, 24:259-262.
    Barton M D, Johnson D A, 2000. Alternative brine sources for Fe-Oxide(-Cu-Au) systems: Implications for hydrothermal alteration and metals, in Porter, T.M., ed.,Hydrothermal iron oxide copper-gold and related deposits:A global perspective, Volume 1.Adelaide, PGC Publishing:43-60
    Barton M D, Johnson D A, 2004. Footprints of Fe oxide(-Cu-Au)systems[M].University of Western Australia Special Publication, 33: 112-116.
    Bastrakov E N, Skirrow R.G, Davidson, G J, 2007. Fluid evolution and origins of iron oxide Cu-Au prospects in the Olympic Dam district, Gawler craton, South Australia[J]. Economic geology, 102:1415-1440.
    Benavides J, Kyser T K, Clark A H, et al, 2007. The Mantoverde Iron Oxide-Copper-Gold District, III Región, Chile:The Role of Regionally Derived, Nonmagmatic Fluids in Chalcopyrite Mineralization[J]. Economic Geology, 102: 415-440.
    Betts P G, Giles D M, Mark G L, et al,2006. A synthesis of the Proterozoic evolution of the Mount Isa Inlier[J]. Australian Journal of Earth Sciences,53 (1):187-211
    Cardon O, Reisberg L, Andre-Mayer A S, et al, 2008. Re-Os systematics of pyrite from the bolcana porphyry copper deposit, Apuseni Mountains, Romania[J].Economic Geology, 103:1695–1702.
    Chang Z S, Large R R, Maslennikov V, 2008. Sulfur isotopes in sediment-hosted orogenic gold deposits: Evidence for an early timing and a seawater sulfur source[J]. Geology, 36(12):971-974.
    Chen J F, Jahn B M, 1998. Crustal evolution of southeastern China: Nd and Sr isotopic evidence[J]. Tectonophysics, 284:101–133.
    Chiaradia M, Banks D, Cliff R, et al, 2006. Origin of fluids in iron oxide–copper–gold deposits: constraints fromδ37Cl, 87Sr/86Sri and Cl/Br[J]. Mineralium Deposita, 41: 565–573.
    Cook N J, Hoefs J, 1997. Sulphur isotope characteristics of metamorphosed Cu–(Zn) volcanogenic massive sulphide deposits in the Norwegian Caledonides[J]. Chemical Geology, 135: 307–324.
    Davidson G J, Paterson H, Meffre S, et al, 2007. Characteristics and origin of the Oak Dam Eastbreccia-hosted, iron oxide-Cu-U-(Au) deposit: Olympic Dam region, Gawler craton, South Australia[J]. Economic geology, 102:1471–1498.
    De Haller A, Corfu F, FontbotéL, et al, 2006. Geology, Geochronology, and Hf and Pb Isotope Data of the Raúl-Condestable Iron Oxide-Copper-Gold Deposit, Central Coast of Peru[J]. Economic Geology, 101:281-310.
    Direen N G, Lyons P, 2007. Regional crustal setting of iron oxide Cu-Au mineral systems of the Olympic Dam region, South Australia: Insights from potential-field modeling [J]. Economic Geology, 102: 1397-1414.
    Dreher A M, Xavier R P, Taylor B E, et al, 2008. New geologic, fluid inclusion and stable isotope studies on the controversial IgarapéBahia Cu–Au deposit, Carajás Province,Brazil[J]. Mineralium Deposita,43:162–184.
    Fisher L A, Kendrick M A, 2008. Metamorphic fluid origins in the Osborne Fe oxide–Cu–Au deposit, Australia: evidence from noble gases and halogens[J]. Mineralium Deposita, 43:483–497.
    Fu B, Williams P J, Oliver, et al, 2003, Fluid mixing versus unmixing as an ore-forming process in the Cloncurry Fe oxide-Cu-Au district, NW Queensland, Australia: Evidence from fluid inclusions[J]. Journal of Geochemical Exploration, 78–79:617–622.
    Fraser G L, Skirrow R G, Schmidt-Mumm A, et al, 2007, Mesoproterozoic gold in the central Gawler craton, South Australia: Geology, alteration, fluids, and timing[J]. Economic geology, 102:1511–1539.
    Groves D I, Vielreicher N M, 2001. The Phalabowra (Palabora) carbonatite-hosted magnetite-copper sulfide deposit, South Africa: An end member of the iron oxide-copper-gold-rare earth element deposit group [J]. Mineralium Deposita, 36: 189-194.
    Groves D I, Bierlein F P, Meinert L D, et al., 2010. Iron oxide copper-gold (IOCG) deposits through Earth history: Implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits[J]. Economic geology, 105: 641–654.
    Gleason J D, Marikos M A, Barton M D, et al, 2000. Neodymium isotopic study of rare earth element sources and mobility in hydrothermal Fe oxide (Fe-P-REE) systems[J]. Geochimica et Cosmochimica Acta, 64:1059–1068.
    Greentree M R, 2007. Tectonstratigraphic analysis of the Proterozoic Kangdian iron oxide–copper province, south west China[D]. University of Western Australia. Greentree M R, Li Z X, 2008. The oldest known rocks in south-western China: SHRIMP U-Pb magmatic crystallisation age and detrital provenance analysis of the Paleoproterozoic Dahongshan Group[J]. Journal of Asian Earth Sciences, 33: 289–302.
    Hand M, Reid A, Jagodzinski L, 2007. Tectonic framework and evolution of the Gawler craton, South Australia[J]. Economic Geology, 102: 1377-1395.
    Haynes D W, Cross K C, Bills R T, et al, 1995. Olympic Dam ore genesis: A fluid mixing model [J]. Economic Geology, 90: 281-307.
    Haynes DW, 2000. Iron oxide copper(-gold) deposits: Their position in the ore deposit spectrum and modes of origin, in Porter, T.M., ed., Hydrothermal iron oxide copper-gold and related deposits: A global perspective, Volume 1: Adelaide, PGC Publishing:71–90
    Hauck S A, 1990. Petrogenesis and tectonic setting of middle Proterozoic iron oxide-rich ore deposits: An ore deposit model for Olympic Dam-type mineralization[J]. U.S.Geological Survey Bulletin, B-1932: 4-39.
    Hulbert, LJ, 1991. The Geological Settings of PGE[M]. Beijing: Geological Publishing House. Hitzman M.W.,Oreskes N, Einaudi M T,1992.Geological Characteristics and Tectonic Setting of Proterozoic Iron Oxide (Cu-U-Au-REE)Deposit[J].Precambrian Research,58:241-287.
    Hitzman, M W, 2000. Iron oxide-Cu-Au deposits: What, where, when, and why?, in Porter, T.M., ed., Hydrothermal iron oxide copper-gold and related deposits: A global perspective, Volume 1: Adelaide, PGC Publishing:9-25.
    Hitzman M W, Valenta R K, 2005. Uranium in iron oxide-copper-goled(IOCG) systems[J]. Economic Geology, 100:1657–1661.
    Hoefs J, 2009. Stable isopote geochemistry(6th edition) [M].Springer-Verlag, Berlin Heidelberg, 2009.
    Hunt J A., Baker T, and Thorkelson D J, 2007. A Review of Iron Oxide Copper-Gold Deposits, with Focus on the Wernecke Breccias, Yukon,Canada, as an Example of a Non-Magmatic End Member and Implications for IOCG Genesis and Classification[J]. Exploration and Mining Geology, 16:209–232.
    Jingwen Mao, Yuchuan Chen, and Jinjie Yu,2008.The iron oxide-apatite deposits in the Ningwu Cretaceous Basin in the lower reach of the Yangtze river valley, China ,in 33rd international geological congress, abstracts),International Geological Congress:33.
    Johnson J P, McCulloch M T, 1995. Sources of mineralizing fluids for the Olympic Dam deposit, (South Australia): Sm-Nd isotopic constraints[J]. Chem Geol, 121:177–199.
    Keays R R, Nickel E H, Groves D I, et al., 1982. Iridium and Palladium as discriminants of volcanic-exhalative hydrothermal and magmatic nickel sulfide mineralization[J]. Economic Geology, 77: 1535-1547.
    Kendrick M A, Duncan R, Phillips D, 2006. Noble gas and halogen constraints on mineralising fluids of metamorphic versus surficial origin: Mt Isa,Australia[J]. Chem Geol, 235:325–351.
    Kendrick M A, Mark G, Phillips D, 2007. Mid-crustal fluid mixing in a Proterozoic Fe oxide-Cu-Au deposit, Ernest Henry, Australia:evidence from Ar, Kr, Xe, Cl, Br, I[J]. Earth Planet Sci Lett., 256:328–343.
    Kendrick M A, Baker T, Fu B, et al, 2008. Noble gas and halogen constraints on regionallyextensive mid-crustal Na-Ca metasomatism, the Proterozoic Eastern Mount Isa Block, Australia[J]. Precambrian Research, 163:131–150.
    Lan C Y, Chung S L, Lo C H, et al, 2001. First evidence for Archean continental crust in northern Vietnam and its implications for crustal and tectonic evolution in Southeast Asia[J]. Geology, 29: 219-222.
    Li X H, 1997. Timing of the Cathaysia Block formation: constraints from SHRIMP U–Pb zircon geochronology[J]. Episodes 20:188–192.
    Li Z X, Zhang L, and Powell C M , 1995. South China in Rodinia: Part of the missing link between Australia–East Antarctica and Laurentia? [J].Geology 23,407–410.
    Li Z X, Li X H, Zhou H, Kinny P D, 2002. Grenville-aged continental collision in South China: new SHRIMP U-Pb zircon results and implications for Rodinia configuration[J].Geology 30, 163–166.
    Li Z X, Bogdanova S V, Collins A S, et al., 2008. Assembly, configuration, and break-up history of Rodinia: a synthesis[J].Precambrian Res 160, 179–210.
    Liu Y S, Gao S, Hu Z C, et al., 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 51: 537-571.
    Ludwig K R, 2003. Isoplot/Ex, Version 3: A Geochronological Toolkit for Microsoft Excel. Geochronology Center Berkeley, Berkeley, California.
    McLean, R N, 2002. The Sin Quyen iron oxide-copper-gold-rare earth oxide mineralization of North Vietnam. In T.M. Porter ed., Hydrothermal iron oxide copper-gold & related deposits: A global perspective. Vol. 2: Adelaide PGC Publishing: 293-301.
    Malpas, J, Fletcher C J N, Ali J R. et al, 2004. Aspects of the Tectonic Evolution of China. Geological Society, London, Special Publications, 226, 145-155
    Marschik, R and FontbotéL, 2001.The Candelaria-Punta del Cobre iron oxide Cu-Au(-Zn- Ag) deposits, Chile[J]. Economic Geology, 96:1799-1826.
    Marschik, R, Chiaradia M, FontbotéL, 2003. Implications of Pb isotope signatures of rocks and iron oxide Cu-Au ores in the Candelaria-Punta del Cobre district, Chile[J]. Mineralium Deposita, 38:900–912.
    Marshall L J, Oliver N H S, Davidson G J, 2006. Carbon and oxygen isotope constraints on fluid sources and fluid–wallrock interaction in regional alteration and iron-oxide–copper–gold mineralisation,eastern Mt Isa Block,Australia[J]. Mineralium Deposita, 41: 429–452.
    Mathur R, Marschik R, Ruiz J, et al, 2002. Age of mineralization of the Candelaria iron oxide Cu-Au deposit and the origin of the Chilean iron belt based on Re-Os isotopes[J]. Economic geology, 97:59–71.
    Mathur R, Marschik R, Ruiz J, et al, 2003. Age of mineralization of the Candelaria iron oxide Cu-Au deposit and the origin of the Chilean iron belt based on Re-Os isotopes-reply[J]. Economic geology, 98:1050–1052.
    Mosher S, 1998. Tectonic evolution of the southern Laurentian Grenville orogenic belt[J]. GSA Bull 110, 1357–1375.
    Monteiro L V S, Xavier R P, Carvalho, E R, et al, 2008. Spatial and temporal zoning of hydrothermal alteration and mineralization in the Sossego iron oxidecopper-gold deposit, Carajás Mineral Province,Brazil: Paragenesis and stable isotope constraints[J]. Mineralium Deposita, 43:129–159.
    Murowchick J B, Barnes H L, 1986. Marcasite precipitation from hy- drothermal solutions[J]. Geochimica et Cosmochimica Acta, 50: 2615-2630.
    Nasdala L, Hofmeister W, Norberg N, et al, 2008. Zircon M257 - a homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon[J]. Geostandards and Geoanalytical Research, 32: 247-265.
    Ohomoto H, Goldhaber M B, 1997. Sulphur and carbon isotopes. In: Barnes, H.L. (Ed.), Geochemistry of Hydrothermal Ore Deposits, 3rd edn. Wiley, New York: 517-612.
    Oreskes N, Einaudi M T, 1990. Origin of rare earth element-enriched haematite breccias at the Olympic Dam Cu-U-Au-Ag deposit, Roxby Down, South Australia[J]. Enconomic Geology, 85:1-28.
    Pan Y M, Xie Q L, 2001. Extreme fractionation of platinum group elements in volcanogenic massive sulfide deposits[J]. Enconomic Geology, 96: 645-651.
    Perring C S, Pollard P J, Dong G, et al, 2000. The Lightning Creek sill complex, Cloncurry district, northwest Queensland: A source of fluids for Fe oxide Cu-Au mineralization and sodic-calcic alteration[J]. Economic geology, 95:1067–1069.
    Pollard P J, 2000. Sodic(-calcic) alteration in Fe oxide-Cu-Au districts: An origin via unmixing of magmatic H2O-CO2-NaCl±CaCl2-KCl fluids[J]. Mineralium Deposita, 36:93–100.
    Pollard P J, 2006. An intrusion-related origin for Cu-Au mineralization in iron oxide-copper-gold (IOCG) provinces[J]. Mineralium Deposita, 41:179-187.
    Qi L, Hu J, Gregoire D C, 2000. Determination of trace elements in granites by inductively coupled plasma mass spectrometry[J]. Talanta, 51: 507–513
    Qiu Y M, Gao S, McNaughton N J, et al, 2000. First Evidence of >3.2 Ga continental crust in the Yangtze Craton of South China and its implications for Archean Crustal Evolution and Phanerozoic Tectonics[J]. Geology 28, 11–14.
    Requia K, Stein H, Fontbote L, Chiaradia M, 2003. Re-Os and Pb-Pb geochronology of the Archean Salobo iron oxide copper–gold deposit, Carajas mineral province, northern Brazil[J].Mineralium Deposita 38,727–738.
    Ruan HC, Hua, RM, Cox, DP, 1991. Copper deposition by fluid mixing in deformed strata adjacent to a salt diapir, Dongchuan, area, Yunnan Province, China[J]. Economic Geology. 86, 1539–1545
    Sandrin A, Berggren R, and Elming S, 2007. Geophysical targeting of Fe-oxide Cu–(Au) deposits west of Kiruna, Sweden[J]. Journal of Applied Geophysics, 61:92–101.
    Seal R R, 2006. Sulfur isotope geochemistry of sulfide minerals[J]. Reviews in Mineralogy & Geochemisty, 61:633-677.
    Skirrow R G, Bastrakov E N, Barovich K, et al, 2007. Timing of iron oxide Cu-Au-(U) hydrothermal activity and Nd isotope constraints on metal sources in the Gawler craton, South Australia[J]. Economic geology, 102:1441–1470.
    Sláma J, Kosler J, Condon D J, et al, 2008. Plesovice zircon: A new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 249: 1-35.
    Smoliar M I, Walker R J, Morgan J W, 1996. Re–Os ages of group IIA, IIIA, IVA, and IVB iron meteorites[J]. Science 271:1099–1102.
    Smith M, Wu C Y, 2000. The Geology and Genesis of the Bayan Obo Fe-Ree-Nb Deposit: A Review. in Porter, T.M., ed., Hydrothermal iron oxide copper-gold and related deposits: A global perspective, Volume 1: Adelaide, PGC Publishing:271-281.
    Stein H J, Morgan J W, Schersten A, 2000. Re-Os dating of low-level highly radiogenic (LLHR) sulfides: The Harnas gold deposit, southwest Sweden, Records continental scale tectonic events[J]. Economic Geology 95,1657–1671.
    Sun Y L, Xu P, Li J, et al, 2010. A practical method for determination of molybdenite Re-Os age by inductively coupled plasma-mass spectrometry combined with Carius tube-HNO3 digestion[J]. Analytical Methods 2,575–581.
    Shirey S, Walker R, 1995. Carius tube digestion for low blank rhenium-osmium analysis[J]. Analytical Chemistry 67:2136–2141.
    Sillitoe R H, 2003.Iron oxide copper-gold deposits: An Andean view[J]. Mineralium Deposita, 38:787–812.
    Skauli H, Boyce AJ, Fallick AE , 1992. A sulphur isotope study of the Bleikvassli Zn-Pb-Cu deposit, Nordland, northern Norway[J]. Miner Deposita 27: 284–292.
    Strauss H, 2004. 4Ga of seawater evolution: Evidence from the sulfur isotopic composition of sulfate, in Amend, J.P., et al., eds., Sulfur biogeochemistry—Past and present. Geological Society of America Special Paper 379:195–205.
    Sun S S, McLennan S M. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders A D, Norry M J, ed. Magmatism in the oceanbasins. Geological society special publication, 1989, 42: 13-345.
    Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell, 1985.
    Tollo R P et al, 2004. Proterozoic tectonic evolution of the Grenville orogen in North America: Boulder, Colorado, Geological Society of America Memoir 197
    Wang L J, Yu J H, O'Reilly S Y, et al, 2008. Grenvillian orogeny in the Southern Cathaysia Block: Constraints from U-Pb ages and Lu-Hf isotopes in zircon from metamorphic basement[J]. Chin. Sci. Bull. 53,3037–3050.
    Winchester J A, Floyd P A. Geochemical magma type discrimination: application to altered and metamorphosed igneous rocks. Earth Planetary Science Letter, 1976, 45, 326-336.
    Williams P J, Barton M D, Johnson D A, et al, 2005. Iron oxide copper-gold deposits: Geology, space-time distribution, and possible modes of origin[J]. Economic Geology, 100th Anniversary volume: 371-405.
    Williams PJ, Kendrick MA, Xavier RP, 2010. Sources of ore fluid components in IOCG deposits, in Porter, T.M. (Ed), Hydrothermal Iron Oxide Copper-Gold & Related Deposits: A Global Perspective, volume 3, Advances in the Understanding of IOCG Deposits; PGC Publishing, Adelaide (in press).
    Xavier R P, Wiedenbeck M, Trumbull R B, et al,2008.Tourmaline B-isotopes fingerprint marine evaporites as the source of high-salinity ore fl uids in iron oxide copper-gold deposits, Carajás Mineral Province (Brazil)[J]. Geology, 36(9):743-746.
    Zaw K, Peters SG, Cromie P, et al, 2007. Nature, diversity of deposit types and metallogenic relations of South China[J]. Ore Geology Reviews, 31(1-4):3-47.
    Zhang S B, Zheng Y F, Wu Y B, et al,2006. Zircon U-Pb age and Hf-O isotope evidence for Paleoproterozoic metamorphic event in South China[J]. Precambrain Res, 151: 265-288.
    Zhao G C, Cawood P A, 1999. Tectonothermal evolution of the Mayuan assemblage in the Cathaysia Block: new evidence for Neoproterozoic collional-related assembly of the South China craton[J]. American Journal of Science, 99:309-339.
    Zheng J P, Griffin W L, O’Reilly S Y, et al, 2006. Widespread Archean basement beneath the Yangtze craton[J]. Geology, 34: 417-420.
    Zhou M F, Arndt N T, Malpas J, et al, 2008. Two magma series and associated ore deposit types in the Permian Emeishan large igneous province, SW China[J]. Lithos, 103: 352-368.
    仇定茂,1989.黎溪式铜矿的有机—成岩成因[J].地质与勘探,25(4):23-25.
    陈好寿,冉崇英,1992.康滇地轴铜矿床同位素地球化学[M].北京:地质出版社.
    陈根文,程德荣,余孝伟,1992.四川拉拉铜矿黄铁矿表型特征研究[J].矿物岩石,12:85-91.
    陈根文,夏斌,2001.四川拉拉铜矿床成因研究[J].矿物岩石地球化学通报,20(1):42-44.
    方维萱,柳玉龙,张守林,等,2009.全球铁氧化物铜金型(IOCG)矿床的3类大陆动力学背景与成矿模式[J].西北大学学报(自然科学版) ,39(3):404-413.
    方维萱,柳玉龙,郭茂华,等,2009.云南东川滥泥坪铁氧化物铜金型(IOCG)矿床发现与找矿方向[J].矿物岩石地球化学通报,28(增刊):199.
    丰成友,张德全,屈文俊,等,2006.青海格尔木驼路沟喷流沉积型钴(金)矿床的黄铁矿Re-Os定年[J].地质学报,80(4) :571-576
    何德锋,钟宏,朱维光,2008.石榴石-黑云母地质温度计在四川拉拉铜矿床的应用[J].矿物学报,28(2):127-134.
    何德锋,2009.四川省拉拉铜矿床岩石学及地球化学研究[D].北京:中国科学院研究生院.
    何德锋,钟宏,朱维光,等,2010.四川拉拉铜矿床赋矿层位变质沉积岩地球化学特征[J].地学前缘,17(4):218-226.
    侯可军,李延河,田有荣,2009.LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J].矿床地质,28 (4):481-492.
    侯增谦,杜安道,孙卫东,2001.黑矿型矿床成矿物质来源:日本上向黑矿徕-饿和氦同位素证据[J].地质学报,75(1):97-105
    黄崇珂,白治.中国铜矿床[M].北京:地质出版社,2001.
    金明霞,沈苏,1998.四川会理拉拉铜矿床流体特征及成矿条件研究[J].地质科技情报,17(增刊):45-48.
    姜福芝,王玉往,2005.海相火山岩与金属矿床[M].北京:冶金工业出版社.
    蒋少涌,杨竞红,赵葵东,等,2000.金属矿床Re-Os同位素示踪与定年研究[J].南京大学学报(自然科学) ,36(6) :669-677.
    李复汉,覃嘉铭,申玉连,等,1988.康滇地区的前震旦系[M].重庆:重庆出版社.
    李强之,朱成伟,吴尚全,等,1999.内蒙古哈达门沟金矿床钾长石化蚀变特征及其成矿意义[J].现代地质,13(3) :315-322.
    李上森,1996.元古宙铁氧化物(Cu-U-Au-REE)矿床[J].国外前寒武纪地质,74:29-38.
    李庭学,2008.落凼矿区西延矿段地质构造特征研究[J].采矿技术,8(1):23-25
    李云峰,2004.拉拉铜矿矿床地质特征及其成因分析[J].采矿技术,6:58-60.
    李泽琴,胡瑞忠,王奖臻,等,2002.中国首例铁氧化物—铜—金—铀—稀土型矿床的厘定及其成矿演化[J].矿物岩石地球化学通报,21(4):258-260.
    李泽琴,王奖臻,刘家军,等,2003.拉拉铁氧化物-铜-金-钼-稀土矿床Re-Os同位素年龄及其地质意义[J].地质找矿论丛,18(1):39-42.
    李光明,刘波,佘宏全,等,2006.西藏冈底斯成矿带南缘喜马拉雅早期成矿作用-来自冲木达铜金矿床的Re-Os同位素年龄证据[J].地质通报,25(12):1481-1486.
    李友枝,周平,唐金荣,等,2007.铁氧化物-铜-金型矿床的地质特征、成矿模式和找矿标志[J].中国地质,(增刊):53-58.
    刘继顺,吴延之,段嘉瑞,1996.东川铜矿田喷流沉积成矿机制[J].中南工业大学学报,27(1):8-12.
    路彦明,聂凤军,范俊杰,等,2009.东准噶尔盆地东北缘发现氧化铁型铜-金(IOCG)矿床[J].地球学报,30(2):277-278.
    路远发,2004.GeoKit:一个用VBA构建的地球化学工具软件包[J].地球化学,33(5) :459~464
    毛景文,余金杰,袁顺达,等.2008.铁氧化物-铜-金(IOCG)型矿床:基本特征、研究现状与找矿勘查[J].矿床地质,27(3):267-278.
    聂凤军,江思宏,路彦明,2008.氧化铁型铜-金(IOCG)矿床的地质特征、成因机理与找矿模型[J].中国地质,35(6):1074-1087.
    攀西地质大队,1984.四川省会理县拉拉铜矿床详细勘探地质报告[R].成都:四川省地质矿产局.
    申屠保涌,1997.四川会理拉拉厂铜矿床地质地球化学特征及成矿模式[J].特提斯地质,21:112-126.
    申屠保涌,2000.钠长石类地质地球化学特征及变质变形与铜矿的形成-以四川会理拉拉铜矿床为例[J].沉积与特提斯地质,20(3) :77-91.
    沈苏,金明霞,陆元法.西昌-滇中地区主要矿产成矿规律及找矿方向[M].重庆:重庆出版社
    孙燕,李承德,冯祖杰,1994.四川省拉拉铜矿床含金性及金的赋存状态研究[J].矿物岩石,14(2):67-73.
    孙燕,舒晓兰,肖渊甫,2006.四川省拉拉铜矿床同位素地球化学特征及成矿意义[J].地球化学,35(5):553-559.
    孙晓明,石贵勇,熊德信,等,2007.云南哀牢山金矿带大坪金矿铂族元素(PGE)和Re-Os 同位素地球化学及其矿床成因意义[J].地质学报,81(3):394-404
    陶琰,胡瑞忠,屈文俊,2008.力马河镍矿Re-Os同位素研究[J].地质学报,82(9):1292-1304
    田世洪,丁悌平,袁忠信,2006.四川牦牛坪轻稀土矿床地幔流体特征——铅锶钕和氦氩同位素及稀土元素证据[J].地质学报,80(7):1035-1044
    王奖臻,李泽琴,2004.拉拉铁氧化物-铜-金-钼-钴-稀土矿床辉钼矿的多型及标型特征[J].地质找矿论丛,19(2):96-99.
    王绍伟,2004.重视近20年认识的一类重要热液矿床-铁氧化物-铜-金(-铀)-稀土矿床[J].国土资源情报,2:45-52.
    王美娟,李杰美,朝银银,2008.我国的铁氧化物型铜-金矿床特征及研究现状[J].黄金科学技术,16(4):14-19.
    王瑞廷,毛景文,赫英,等,2005.Re-Os同位素体系在矿床地球化学中的应用[J].地质与勘探,41(1):80-84
    肖渊甫,孙燕,1992.拉拉铜矿床含矿岩系岩石学特征及其变质原岩[J].成都地质学院学报,19(2):41-49.
    许德如,王力,肖勇,等,2008.“石碌式”铁氧化物-铜(金)-钴矿床成矿模式初探[J].矿床地质,27(6):681-694.
    杨应选,仇定茂,阙梅英,等,1988.西昌-滇中前寒武系层孔铜矿[M].重庆:重庆出版社.
    杨耀民,涂光炽,胡瑞忠,2004.迤纳厂稀土铁铜矿床稀土元素地球化学[J].矿物学报,24(3):301-308.
    应立娟,王登红,李建康,等,2008.新疆乔夏哈拉铁铜金矿床与国内外IOCG矿床的对比研究[J].大地构造与成矿学,32(3):338-345.
    余祖成,刘承志,1988.异源共化型矿床-四川拉拉铜矿成因探讨[J].岩石学报,2:78-89.
    张作衡,柴凤梅,杜安道,等,2005.新疆喀拉通克铜镍硫化物矿床Re-Os同位素测年及成矿物质来源示踪[J].岩石矿物学杂志,24(4):286-293
    张兴春,2003.国外铁氧化物铜—金矿床的特征及其研究现状[J].地球科学进展,18(4):551-560.
    郑永飞,张少兵,2007.华南前寒武纪大陆地壳的形成和演化[J].科学通报,52(1):1-10.
    周熊,2007.中条山铜矿峪铁氧化物型矿床地质地球化学特征研究[D].长沙:中南大学
    周家云,2008.四川会理拉拉铜矿地球化学特征及大陆动力学背景[D].成都:成都理工大学
    周家云,陈家彪,沈冰,等,2008.四川拉拉铜矿构造成矿动力学机制[J].大地构造与成矿学,32(2):98-104.
    周家云,郑荣才,朱志敏,等,2008.拉拉铜矿黄铁矿微量元素地球化学特征及其成因意义[J].矿物岩石,2008b,8(3) :64-71.
    朱志敏,周家云,罗丽萍,等,2009a.四川拉拉铁氧化物铜金系统:遥感和地球物理研究[J].矿物学报,29(增刊):517.
    朱志敏,曾令熙,周家云,等,2009b.四川拉拉铁氧化物铜金矿床(IOCG)形成的矿相学证据[J].高校地质学报,15(4):485-495.
    朱志敏,2010.四川黎溪地区黑箐Sedex铜矿的厘定及意义[J].矿床地质,29(增刊):765-766.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700