赤峰地区新生代汉诺坝期玄武岩的地球化学及成因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着地球化学的发展,近20年来中外学者对中国东部地区中-新生代玄武岩的研究愈加深入,并取得了丰富的科研成果。中国东部新生代发生大量火山活动,在东北、华北等地区形成了巨量的火山岩。而其中新生代大陆裂谷型汉诺坝玄武岩是多年来中外学者共同关心的热点之一。赤峰新生代玄武岩区,大地构造位置处于华北克拉通与兴蒙造山带的交界处,为华北克拉通北缘呈东西向展布的早古生代的增生造山带。赤峰新生代玄武岩区属于广义的汉诺坝玄武岩,前人的研究大量的数据都是来自狭义的汉诺坝玄武岩,忽略了内蒙古及周边地区广泛意义上汉诺坝玄武岩的研究,尤其是赤峰地区大面积的分布的新生代玄武岩的研究,那么这些玄武质岩石的成因、源区性质及动力学背景如何?赤峰新生代玄武岩的形成与邻近地区新生代玄武岩之间的演化有何关系?并且内蒙古东部地区新生代玄武岩和汉诺坝玄武岩的研究基础良好,而赤峰汉诺坝玄武岩与前人研究相比差距明显。所以基于以上的想法,本文选择位于内蒙古赤峰市之北,行政区划属内蒙古自治区赤峰市克什克腾旗和翁牛特旗管辖,东经118°00′—118°30′,北纬42°50′-43°10′范围内的汉诺坝玄武岩作为研究对象,通过详细的野外路线地质调查,系统采集样品,对玄武岩进行了岩石学和地球化学以及全岩的Sr-Nd-Hf同位素的研究,确定了赤峰汉诺坝玄武岩成因,探讨了玄武岩岩浆源区性质,然后通过对比周边新生代玄武岩探讨了华北北缘岩石圈地幔组成。
     1、赤峰新生代汉诺坝玄武岩岩石学特征
     赤峰地区汉诺坝玄武岩主要岩石组合类型是伊丁石化橄榄玄武岩、伊丁石化橄榄辉石玄武岩和辉石玄武岩等。所采集的岩石手标本颜色一般为灰黑色-黑色、灰紫色,斑状结构或显微斑状结构,基质为隐晶质结构,致密块状、气孔杏仁状构造。斑晶由橄榄石组成,偶见有少量的斜长石和辉石。薄片镜下观察可见其橄榄石斑晶呈他形粒状,常见有熔蚀现象,并多已发生伊丁石化、皂石化等蚀变。辉石斑晶多为半自形粒状,也有熔蚀现象。偶见具有环带的自形辉石斑晶。斜长石斑晶比较发育,自形-办自形柱状呈聚片双晶发育。基质多为显微晶质-隐晶质,由细小的橄榄石、斜长石、辉石、不透明矿物以及火山玻璃等组成。
     2、赤峰新生代汉诺坝玄武岩地球化学及Sr-Nd-Hf同位素特征
     赤峰新生代汉诺坝玄武岩通过主量元素换算成CIPW投图,分成两组:1组橄榄拉斑玄武岩和2组石英拉斑玄武岩。两组玄武岩具有比较相似的主量元素特征, SiO_2含量为46%~52%;Na_2O+K_2O含量为3.1%~5.3%,大部分在4.0%~5.0%之间,MgO含量相对较高且变化范围较大(4.14%-10.57%),Mg#值为49.1~62.1,暗示部分样品可能接近于原生岩浆。Harker图解显示,MgO-SiO_2、Al_2O_3、CaO、 Fe_2O_3有大致的相关性,而在MgO-K_2O、TiO_2、P_2O_5则表现出了不同的趋势,反映了两组玄武岩并没有明显的结晶分异演化趋势。
     赤峰新生代汉诺坝玄武岩稀土显示均有轻稀土富集的特征,明显Eu的正异常。石英拉斑玄武岩则具有低的稀土元素含量∑REE=44.4~145.6μg/g,平均为70.5μg/g,轻、重稀土分异(La/Yb)_N=3.2~10.3,平均为5.2;橄榄拉斑玄武岩具有高的稀土元素含量∑REE=63.2~136.5μg/g,平均为85.7μg/g,轻、重稀土分异(La/Yb)_N=5.1~7.5,平均为6.7。从整体上看研究区赤峰汉诺坝玄武岩中从橄榄拉斑玄武岩到石英拉斑玄武岩显示了一种轻稀土元素含量降低,重稀土元素含量增高的趋势;微量元素则显示具有相对一致的微量元素配分型式,配分曲线呈右倾型,富集Rb、Ba、Sr等大离子亲石元素,具有明显的Nb、Ta的正异常,与洋岛玄武岩的分配模式相似。
     我们挑选了7个样品进行Sr-Nd-Hf分析测试。所测样品具有高的~(143)Nd/~(144)Nd比值范围在0.512822-0.512934之间,而(~(87)Sr/~(86)Sr)i比值范围在0.703695-0.704315之间,εNd(t)值在3.59-5.77之间变化。样品的Lu-Hf同位素结果表明赤峰汉诺坝玄武岩具有类似的Hf同位素组成,并与Nd同位素有很好的正相关关系。样品~(176)Hf/~(177)Hf初始比值也比较集中,其范围在0.282969-0.283063,εHf(t)值从+6.89-+10.3。
     3、赤峰新生代汉诺坝玄武岩的成因
     赤峰汉诺坝玄武岩具有原生岩浆属性,其Nb/U和La/Nb比值都在OIB范围以内,微量元素蛛网图中显示明显Nb和Ta正异常,Sr-Nd-Hf同位素具有OIB特征,表明赤峰汉诺坝玄武岩具有软流圈来源的性质,并且没有受到明显的地壳混染。La-La/Sm图解中显示明显的正相关说明部分熔融作用是玄武岩成分变化主要影响因素, Ni-Mg~#和CaO/Al_2O_3-CaO的投图中呈现出正相关系说明在玄武岩浆形成后上升过程中,经历了单斜辉石与橄榄石的分离结晶。
     4、赤峰新生代汉诺坝玄武岩岩浆源区及性质
     赤峰汉诺坝玄武岩具有高Rb/Nb和Ba/Th比值类似EMⅠ型的洋岛玄武的特征,而在Zr/Nb-Ba/Nb投图中也落入EMⅠ型的洋岛玄武附近,暗示了其成岩过程中可能有来自岩石圈地幔的贡献。Sr-Nd-Hf同位素的研究表明两类玄武岩在EMI与DMM两个地幔端元之间呈连续变化的特征,且变化趋势相同,这暗示我们两者之间的地球化学差异可能是EMI与DMM地幔熔体参与混合的比例不同所致。根据CIPW标准矿物模拟计算玄武岩的起源深度:橄榄拉斑玄武岩的形成深度大约在70km左右,而石英拉斑玄武岩的形成深度大约在60km左右
     5、赤峰新生代汉诺坝玄武岩形成的深部过程
     赤峰汉诺坝玄武岩1组和2组玄武岩具有相同或相似的源区组成,但并不是单一岩浆的产物,根据模拟可能代表了一个熔融柱在不同压力下形成的岩浆的产物或称为变压熔融柱产物,然而由于赤峰汉诺坝玄武岩需要岩石圈-软流圈相互作用,我们采用了Perry et al(1987)提出的所谓“布丁”模型来解释其深部动力学。最后从岩石学,地球化学及Sr-Nd-Hf同位素角度,通过对比赤峰汉诺坝玄武岩与周边新生代玄武岩区,我们得到如下结论:赤峰-汉诺坝-集宁-天和永一线即华北北缘新生代玄武岩区源区组分应该是DMM-EMⅠ混合产物,形成不同的玄武岩的原因是地幔两个端元组分混合的比例不同所致,并且岩石圈减薄强度自西向东呈增强的趋势;而内蒙古阿巴嘎-外蒙古达里冈爱新生代玄武岩区源区组分是DMM-EMⅡ混合产物,这可能意味着赤峰和阿巴嘎之间,以西拉木伦河断裂为界,两侧的岩石圈地幔属性不同。
In the past20years, the development of geochemical makes scholars have evenmore depth-the study of the Cenozoic basalts in eastern China (East Asia), and obtain awealth of scientific research. China 's volcano activity, a lot of volcanic rock in thenortheast china, north china and other regions during the Cenozoic. The Cenozoiccontinental rift type Hannuoba basalt was for many years the Chinese and foreign scholarsfocus of common concern. Cenozoic basalts from Chifeng area, tectonic position located atthe juncture of North China Craton and the Da hinggan MTS.-Mongolia orogenic belt, asthe northern margin of the early Paleozoic North China Craton accretion-type Orogen.Chifeng Cenozoic basalts are belongs to the generalized Hannuoba basalt, Previous studiesof large amounts of data are from the narrow sense of the Hannuoba basalt, ignoring theInner Mongolia and the surrounding areas of broad sense of the Hannuoba basalt research,Especially in Chifeng Cenozoic basalt research.How the magmatism in the process of thesebasaltic rocks? What the magma source and Geodynamic environment of these basalticrocks? What is the relationship between the the Chifeng Cenozoic basalts and theneighboring regions of Cenozoic basalts? And the research base of the eastern InnerMongolia region of Cenozoic basalts and Hannuoba basalt, while the Chifeng Hannuobabasalt compared to the gap significantly. Based on the above idea, this paper choose inNorth of Chifeng City, Inner Mongolia, E118°00′—118°30′,N42°50′-43°10′Hannuobabasalt as the object of study. Through detailed field geological survey line,systematic sampling, on the petrology,geochemistry and whole rock Sr-Nd-Hf isotope research tomake sure the genesis and magma source of the chifeng hanhuoba basalt, then through thecontrast of the surrounding Cenozoic basalts to discuss on northern margin of North Chinalithosphere mantle composition.
     1、petrology of the Chifeng Cenozoic Hannuoba basalt
     Petrological characteristics show that there exist such basalt rock types asiddingsite olivine basalt, iddingsite olivine pyroxene basalt and pyroxene basalt. Thehand specimen colour is generally black, Porphyritic texture Matrix, is cryptocrystallinetexture, massive structure. Phenocrysts mainly about olivine, followed by small amountsof plagioclase and clinopyroxene.
     2、Geochemistry of Chifeng Cenozoic Hannuoba basalt and Sr-Nd-Hf isotope of Wholerock
     Major elements of Chifeng Cenozoic Hannuoba basalt are translated into CIPWand then divided into two groups.1group is olivine tholeiite and2group is quartz tholeiite.Two groups of basalt has quite similar to the major element characteristics. SiO_2contentsranging from46wt%to52wt%,Na_2O+K_2O ratios being between3.1%~5.3%.MgOcontents and Mg~#values ranging from4.14%to10.57%and from49.1to62.1,. In theHarker diagram,it can be seen that the contents of SiO_2、Al_2O_3、Na_2O decrease linearlyfollowing the increase of MgO contents,but contents of K_2O、TiO_2、P_2O_5No correlationlinearly following the increase of MgO contents showing No correlation with fractionalcrystallization..
     The Chifeng Cenozoic Hannuoba basalt rare display was light REE enrichmentcharacteristics,obvious Eu positive anomaly. Quartz tholeiite has a low content of rare earthelements The ΣREE=44.4~145.6μg/g, an average of70.5μg/g, REE fractionation (La/Yb)_N=3.2to10.3, an average of5.2; olive tholeiitic basalt has a high content of rare earthelements the ΣREE=63.2~136.5μg/g, the average is85.7μg/g, light, REE fractionation (La/Yb) N=5.1~7.5, an average of6.7. From the olives tholeiite to quartz tholeiite ofthe Chifeng Hannuoba basalt shows a LREE contents lower but HREE content is slightlyhigher trend. The trace elements are displayed with a relatively consistent patterns, showssimilar right-dipping forms, enriched in large ion lithophile elements (LILE)such asRb,Ba,and Sr, Nb and Ta elements for the basalt show obvious positive anomalies in thespider diagram. Similar to the distribution patterns of oceanic island basalts
     We selected7samples for Sr-Nd-Hf analysis test. The Chifeng Cenozoic Hannuobabasalt have high~(143)Nd/~(144)Nd ratios(0.512822-0.512934) and (~(87)Sr/~(86)Sr)iratios(0.703695-0.704315), ε_(Nd)(t) values(3.59-5.77). Samples of Lu-Hf isotope results show thatChifeng Hannuoba basalt with similar Hf isotopic composition, And have a good positivecorrelation with Nd isotopes.176Hf/177Hf ratios,ranging from0.282969to0.283063,εHf(t) values(+6.89-+10.3)
     3、Petrogenesis of Chifeng Cenozoic Hannuoba basalt
     Chifeng Hannuoba basalt has the primary magma attribute, its Nb/U and La/Nbratio in the OIB range, Nb and Ta elements for the basalt show obvious positive anomaliesin the spider diagram, Sr-Nd-Hf isotope with OIB characteristics, indicating that the theChifeng Hannuoba basalts from the sources of the asthenosphere. which reflects invisiblecrustal contamination and represents the isotope composition of mantle source. La-La/Smdiagrams showed significantly positive correlation,which infer that partial melting is themain factors affecting the changes in basalt composition. The voted diagram of the Ni-Mg~#and CaO/Al_2O_3-CaO, showing a positive correlation illustrate that basaltic magmaExperienced clinopyroxene and olivine fractionation crystallization during magma ascent.
     4、Magma source and Source characteristics of Chifeng Cenozoic Hannuoba basalt
     Chifeng Hannuoba basalt has a high Rb/Nb and Ba/Th ratio similar to EM I typeoceanic island basalt.. In the Zr/Nb-Ba/Nb Figure also fall into the EM I type of oceanicisland basalt. Implies that there exist a lot of lithospheric mantle material in the reservoir. Sr-Nd-Hf isotope studies have shown that two types of basalt was the continuous changesin the characteristics between EMI and DMM mantle end-members and have the samethrend. The difference between two type basalt may be just due to the EMI and DMM-typemantle melt in a mixture of different proportions. According to the CIPW standard mineralsimulated basalt depth of origin: olivine tholeiite formed about the depth of about70km,and quartz tholeiite formation depth at about60km.
     5、Deep process of Chifeng Cenozoic Hannuoba basalt
     The two groups of the Chifeng Hannuoba basalts may be from the same or similarsource region, But not comagmatic products. According to the simulation may berepresented by a column under different pressure of molten magma product or pressuremelting column product. However, due to the Chifeng Hannuoba basalt need thelithosphere-asthenosphere interaction, we adopted the Perry, et al (1987) proposed theso-called "pudding" model to explain the deep dynamics mechanism. Finally from thepetrology, geochemistry and Sr-Nd-Hf isotopic Perspective. Through contrast ChifengHannuoba basalt and the surrounding area of Cenozoic basalts, we get the followingconclusions: line of Chifeng-Hannuoba-Jining-tianheyong source region component ofthe northern margin of the North China Cenozoic basalt area. should be a component ofDMM-EM I mixed product, form different basalt is the result of mantle two end-membermixing ratio induced by different, and lithospheric thinning intensity decrease from east toWest. Inner Mongolia Abaga-Mongolia Dariganga Cenozoic basalt area sourcecomponent is the DMM-EM II mixed product, which may mean that the Chifeng andAbaga between West LA, Mulun River fault as the boundary, on both sides of thelithospheric mantle with different attributes
引文
[1]丛柏林,张儒媛,杨瑞瑛等.万全县大麻坪玄武岩及其超镁铁质岩包体的稀土同位素地球化学[J],科学通报,1982,27(7):426-429.
    [2]陈义贤,陈文寄等.辽西及邻区中生代火山岩-年代学、地球化学和构造背景[M].北京:地震出版社,1997,1-279.
    [3]池际尚.中国东部新生代玄武岩及上地幔研究(附金伯利岩)[M].武汉:中国地质大学出版社,1988.
    [4]杜星星,樊祺诚.汉诺坝玄武岩中熔体-捕虏体相互作用初步研究[J].岩石矿物学杂志,2010,29(4):377-386.
    [5]邓晋福,鄂莫岚,路凤香.中国东北地区上地幔组成、结构及热状态[J].岩石矿物学杂志,1987,6(1):1-10.
    [6]邓晋福,赵海玲.中国东部新生代上部软流圈性质及历史变迁.见:中国矿物岩石地球化学学会地幔矿物岩石地球化学专业委员会编著.中国上地幔特征与动力学论文集[C].北京:地震出版社,1990..
    [7]邓晋福,赵海玲,莫宣学等.中国大陆根-柱构造[M].北京:地质出版社,1996:1-110.
    [8]鄂莫岚等,东海早第三纪玄武岩的发现机器区域地幔地球化学成因意义[J].岩石学报,1992,8(4):396-398.
    [9]鄂莫岚,赵大升.中国东部新生代玄武岩及深源岩石包体[M].北京:科学出版社,1987.
    [10]解广轰,王俊文.汉诺坝玄武岩及其超镁铁岩捕虏体的地球化学.见:刘若新主编.中国新生代火山岩年代学与地球化学[M].北京:地震出版社,1992:149-170.
    [11]方占仁.冀东-辽西太古代花岗质岩石的形成与演化[J].长春地质学院学报,1986,16(2):37-46.
    [12]樊祺诚,隋建立,孙谦等.北部湾涠洲岛橄榄岩中熔体包裹体-大陆岩石圈地幔交代作用的新证据[J].岩石学报,2008,24(11):2495-2500.
    [13]冯家麟,谢漫泽,郑海飞.汉诺坝玄武岩稀土元素地球化学特征及成因意义[J].河北地质学院学报,1986,9(3-4):217-232.
    [14]高山,金振民.拆沉作用(delamination)及其壳—幔演化动力学意义[J].地质科技情报,1997,16(1):1-8.
    [15]韩宝福,王式.赤峰地区新生代玄武岩的基本特征及成因[J].北京大学学报(自然科学版),1998,34(1):88-96.
    [16]江琳,支霞臣.汉诺坝玄武岩Re-Os同位素地球化学—Re的挥发性丢失和壳-幔相互作用的证据[J].岩石学报,2010,26(4):1265-1276.
    [17]贾文,朱慧中,邵济安.内蒙古赤峰地区新生代玄武岩的时空分布[J].地质论评,2002,48(3):267-272.
    [18]邱家骧,李昌年.汉诺坝玄武岩的地质学与岩石化学特征[J].矿物岩石,1986,6(3):5-16.
    [19]刘嘉麒.中国东北地区新生代火山岩的年代学研究[J].岩石学报,1987,(4):2-31.
    [20]刘嘉麒.中国火山[M].北京:科学出版社,1999:13-125.
    [21]刘丛强,解广轰,增田彰正.中国东部新生代玄武岩的地球化学-I.主元素和微量元素组成:岩石成因及源区特征[J].地球化学,1995,24(1):1-19.
    [22]刘丛强,解广轰,增田彰正.中国东部新生代玄武岩的地球化学(Ⅱ)Sr、Nd、Ce同位素组成[J].地球化学,1995,24(3):203-214.
    [23]刘颖,刘海臣,李献华.用ICP-MS准确测定岩石样品中40余种微量元素[J].地球化学,1996,25:552-558.
    [24]李绍柄,刘德林,张振江.汉诺坝玄武岩稀有元素成分特征[J].地球化学,1987,4:35l-359.
    [25]李天福,马鸿文,白志民.汉诺坝玄武岩的地球化学特征及成因模式[J].岩石矿物学杂志,1999,18(3):217-228.
    [26]梁细荣,韦刚健,李献华,刘颖.利用Mc-ICPMs精确测定143Nd/144Nd和Sm/Nd比值[J].地球化学,2003,32(l):91-96.
    [27]李献华,刘颖,涂湘林,胡关黔,曾文.硅酸盐岩石化学组成的ICP-AES和ICP-MS准确测定:酸济与碱熔分解样品方法的对比[J].地球化学,2002,31(3):289-294.
    [28]刘若新等.中国新生代火山岩年代学与地球化学[M].北京:地震出版社,1992.
    [29]罗修泉陈启桐.内蒙古新生代玄武岩年代学初步研究[J].岩石矿物学杂志,1990,9(1):37-46.
    [30]孟庆. Re-Os同位素体系分析方法与铁铜沟和汉诺坝深源岩矿包体的Re-Os同位素地球化学[D].合肥:中国科学技术大学,2004.
    [31]马金龙,徐义刚.河北阳原和山西大同新生代玄武岩的岩石地球化学特征:华北克拉通西部深部地质过程初探[J].地球化学,2004,33(1):75-88.
    [32]内蒙古自治区地质矿产局.内蒙古自治区区域地质志[M].地质出版社,1991-7:1-725.
    [33]内蒙古自治区地质矿产局.内蒙古自治区岩石地层[M].中国地质大学出版社,2008-11:1-344.
    [34]邱家骧,李昌年,李增田.汉诺坝玄武岩的主要特征及其形成的T、P、fO2条件[J].岩石矿物学杂志,1986b,5(3):193-203.
    [35] Rollison H R.岩石地球化学[M].合肥:中国科学技术大学出版社,2003:219-224.
    [36]吴福元,葛文春,孙德有,郭春丽中国东部岩石圈减薄研究中的几个问题[J].地学前缘,.2003,10(3):51-60.
    [37]王荃,刘雪亚,李锦轶.中国内蒙古的古板块构造[J].中国地质科学院报,1991,22:1-15.
    [38]王慧芬,杨学昌,朱炳泉等.中国东部新生代火山岩K-Ar年代学及其演化[J].地球化学,1988,17(1):1-12.
    [39]解广轰,王峻文,Tatsumoto M等.汉诺坝玄武岩及大同火山群的岩石学和同位素地球化学[J].地球化学,1989,4:277-296.
    [40]许文良,王冬艳,王嗣敏.中国东部中生代火山作用的PTTC模型与岩石圈演化[J].长春科技大学学报,2000,30(4):329-335.
    [41]夏琼霞,支霞臣,孟庆等.汉诺坝幔源橄榄岩包体的微量元素和Re-Os同位素地球化学:SCLM的性质和形成时代[J].岩石学报,2004,20:1215-1224.
    [42]徐好民,刘天革,杨以道.东北地区岩石圈动力学特征.见:马杏坦主编.中国岩石圈动力学地图集[M].北京:中国地图出版社,1989.
    [43]徐义刚.岩石圈的热-机械侵蚀和化学侵蚀与岩石圈减薄[J].矿物岩石地球化学通报,1999,18(1):1-5.
    [44]杨建军.内蒙锡盟新生代玄武岩的岩石学研究[J].岩石学报,1988,4(2):1329.
    [45]杨宗锋,罗照华,张华锋等.内蒙古天河永新生代玄武岩成因及其地质意义[J].地学前缘,2009,16(2):90-106.
    [46]杨岳衡,张宏福,谢烈文等.华北克拉通中、新生代典型火山岩的岩石成因: Hf同位素新证据[J].岩石学报,2006,22(6):1665-1671.
    [47]支霞臣,冯家麟.汉诺坝玄武岩的地球化学.见:刘若新主编.中国新生代火山岩年代学与地球化学[M].北京:地震出版社,1992,114-148.
    [48]张宏福,郑建平.华北中生代玄武岩的地球化学特征与岩石成因:以辽宁阜新为例[J].科学通报,2003,48(6):603-609.
    [49]张宏福.橄榄岩-熔体的相互作用:岩石圈地幔组成转变的重要方式[J].地学前缘,2006,13(2):65-75.
    [50]郑建平.中国东部中新生代地幔置换作用与岩石圈减薄[M].武汉:中国地质大学出版社,1999,1-126.
    [51]张臣,韩宝福,童英等.内蒙古阿巴嘎旗地区新生代玄武岩基本特征及成因[J].吉林大学学报(地球科学版),2004.,34(1):21-26.
    [52]张文慧,韩宝福,杜蔚等.内蒙古集宁新生代玄武岩的地幔源区特征:元素及Sr-Nd-Pb同位素地球化学证据[J].岩石学报,2005,21(6):1569-1582.
    [53]郑学正,从柏林,张雯华等.我国东部新生代玄武岩岩石化学的一些探讨[J].地质科学,1978(3):253-264.
    [54]翟明国,朱日祥,刘建明等,华北东部中生代构造体制转折的关键时限[J].中国科学D辑;地球科学,2003,33(10):913-920.
    [55] Barry T L, Kent RW. Cenozoic magmatism in Mongolia and the origin of central and east Asianbasalts[J]. Mantle Dynamics and Plate Interactions in East Asia Geodynamics,1998,27:347-364.
    [56] Barry T L,Saunders A D,Kemplon P D. Petrogenesis of Cenozoic basalts form Mongolia:asthenospheric versus melasonmalized lithospheric mantle Sources[J].Journal of Petrology,2003a,44(1):55-91.
    [57] Basu A R,Wang Junwen,Huang Wangkang et al. Major element, REE, and Pb, Nd and Sr isotopicgeochemistry of Cenozoic volcanic rocks of eastern China: implications for their origin fromsuboceanic-type mantle reservoirs[J].Earth and Planetaru Science Letters,1991.,105:149-169.
    [58] Choi SH,Mukasa SB,Zhou XH,et al. Mantle dynamics beneath East Asia constrained by Sr,Nd,Pband Hf isotopic systematics of ultramafic xenoliths and their host basalts from Hannuoba,NorthChina[J].Chemical Geology,2008,248:40-61.
    [59] Chung S L,Sun S-s,Tu K,et al. Late Cenozoic basaltic volcanism around the Taiwan Strait,SEchina: Product of lithosphereo-asthenosphere interaction during continental extension[J].ChemGeol,1994,112(1-2):1-20.
    [60] Cooper J L and Hart W K. Mantle sources in the Arizona transition zone and global mantleheterogeneity[J].Geology,1990,18:1146–1149.
    [61] DePaolo D J. Neodymium isotope geochemistry: anintroduction[J]. Springer, Berlin HeidelbergNewYork,1988,p181.
    [62] DePaolo D J and E E Daley. Neodymium isotopes in basalts of the southwest basin and range andlithospheric thinning during continental extension[J].Chem.Geol,2000,16(9),157-185.
    [63] Frey F A, Green D H, Roy S D. Integrated models of basalt petrogenesis: A study of quartz tholeiitesto olivine melilitites from South eastern Australia utilizing geochemical and experi-mentalpetrological data[J]. Journal of Petrology,1978,19(3):463-513.
    [64] Fan Q,HooPer P R. The Cenozoie basaltic rocks of eastern China:Petrology and Chemiealcomposition[J]. Journal of Petrology,1991,32:765-810.
    [65] Fan QC, Liu RX,Xu P,et al. Mid-acidic silicate melt found in continental mantle of easternChina[J].Chinese Sciences Bulletin,1997,42(10):879~880.
    [66] Fan QC,Sui JL,Xu P,et al. Si-and alkali-rich melt inclusions in the minerals of mantle peridotitesfrom eastern China: Implication for lithospheri evolution[J].Science in China(Serise D),2006,49(1):43~49.
    [67] Gao S,Rudinck R L,Carlson R W et al. Re-Os evidence for replacement of ancient mantlelithosphere beneath the North China Craton[J].Earth Plant Sci Lett,2002,198:307-322.
    [68] Gao Y,Janke A,Waddell P J et al.. Confict among individual mitochondrial proteins in resolvingthe phylogeny of eutherian orders[J].J.Mol.Evol,1998,47:307-322.
    [69] Griffin W L,Zhang A D,O’Reilly S Y,et al. Phanerozoic evolution of the lithosphere beneath theSino-Korean Craton. Flower M F, Chung S L, Lo C H, et al, Mantle Dynamics and Plate lnteractionin East Asia[J].Washington D C:Am Geophys Union Monograph.,1998,107~126.
    [70] Hammouda and Laporte. Ultrafast mantle impregnation by carbonatite melts[J]. Geology,2000,28(3):283-285.
    [71] Han Bao-fu, Wang Shi-guang, Hiroo Kagami. Trace element and Nd–Sr isotope constraints onorigin of the Chifeng flood basaltsNorth China[J]. Chemical Geology,1999,155:187–199.
    [72] Hawkesworth C J,Gallagher K,Hergt J M et al. Trace element fractionation processes in thegeneration of island arc basalts[M].Philos.Trans.R.Soc.London.In press,1992.
    [73] Hart SR,Hauri EH,Oschmann LA,et al. Mantle plumes and entrainment: isotopic evidence.Science,1992,256:517-20.
    [74] Hawkesworth,C.J.,S.Turner,K.Gallagher et al. Calc-alkaline magmatism,lithospheric thinningand extension in the Basin and Range[J]. J.Geophys.Res,1995,100,10271-10286.
    [75] Hofmann A W. Sampling mantle heterogeneity through oceanic basalts: Isotopes and Traceelements. In: Holland H D, Turekian K K(eds.)[J].Treatise on Geochemistry. Oxford,Elsevier-Pergamon,2003,2:61-101.
    [76] Ho KS、Y Liu、C Chen et al.Cenozoic Abaga basalts, Inner Mongolia: Implications for petrogenesisand mantle process[J]. Geochem.,2008,42,339-357.
    [77] Hirose K,Kushiro I. Partial melting of dry peridotites at high perssure: Determination ofcomposition of compostions of melts segregated from peridotite using aggregates of diamond[J].Earth Planet Sci Lett,1993,114(4):477-489.
    [78] Ionov, D.A., Griffin, W.L., and O'Reilly, S.Y. Volatile-bearing minerals and lithophile traceelements in the upper mantle[J]. Chemical Geology,1997,141:153-184.
    [79] Maury et al.L'atoll de Mururoa (Polynésie fran aise), II. La série magmatique[J].Bull.Soc.Geol.Fr.,1992,659-679.
    [80] Mcdonough W Fand sun S S.The composition of the Earth[J].Chemical Geology,1995,120(1):223-253.
    [81] Menzies M A, Fan W M, Zhang M,Paleozoic and Cenozoic lithoprobes and loss of>120Km ofArchean lithosphere,Sino-Korean Craton, China,Prichard H M, Alabaster T, Harris N B W, et al,Magmatic Processes and Plate Trctonics[J]. Geol Soc Spel Pub76,1993,71~78.
    [82] Münker C.The isotope and trace element budget of the Cambrian Devil River Arc System,NewZealand:Identification of four source components[J].Journal of Petrology,2000,41:759-788.
    [83] Pearce JW and Peate DW.Tectonic implications of the composition of volcanic arcmagmas[J].Annual Review of Earth and Planetary Sciences,1995,23:251-285.
    [84] Perry F V,Baldridge W S,DePaolo D J. Role of asthenosphere and lithosphere in the genesis ofLate Cenzoic from the Rio Grande rift and adjacent regions of the southwestern United States[J].JGeophys Res.,1987,92:9193-9213.
    [85] Jeremy N. Mitchell-James S. Scoates9C arol D. Frost.High-AI gabbros in the Laramie AnorthositeComplex, Wyoming:implications for the composition of melts parental to Proterozoicanorthosite[J].Contrib Mineral Petrol,1995,119:166-180.
    [86] Johnson K T M. Experimental cpx/and garnet/melt partitio-ning of REE and other trace elements athigh pressures:Petrogenetic implications[J]. Mineralogical Magazine,1994,58:454-455.
    [87] Kelemen P B, Dick J B, Quick J E. Formation of harzburgite by pervasive melt/rock reaction inthe upper man-tle[J].Nature,1992.,358:635-640.
    [88] Lin CY,Xu YG,Shi LB et al.K-and Na-rich glasses in mantle xenoliths from Yitong,JinlinProvince,China: Evidence for upper mantle fluids[J].Chinses Science Bulletion,1994,13:52-57.
    [89] Roden,M.F.,andV.R.Murthy,Mantle metasomatism, Ann[J]. Rev.Earth Planet. Sci. Lett.,1985,13,269-296.
    [90] Kushiro1. Partial melting of a fertile mantle Peridotite at high Pressures:an-experirnental studyusing aggregates of diamond in:BasuA,Hart S R(Eds.). Earth Processes:Reading the IsotopoicCode[J].Geophysical Monograph.Ameriean GeoPhysical Union,Washjngton,DC,1996,109-122.
    [91] Rudnick R L,Fountain D M. Nature and composition of the continental crust: a lower crustalperspective.Rev[J].Geophys,1995,33:267-309.
    [92] Shaw J E,Baker J A,Menzies M A et al. Petrogenesis of the Largest intraplate Volcanic Field onArabian Plate(Jordan):a Mixed Lithosphere-Asthenosphere Sourse Activated by LithosphericExtension[J].Journal of Petrology,2003,44(9):1657-1679.
    [93] Schilling J G.. Upper mantle heterogeneiries and dynamics.Nature,1985,314:62-67.
    [94] Smith D A. The Geodynamic Significance of the DUPAL Anomaly in Asia In:Flower M F J,ChungS L,Lo C H et al(eds.).Mantle Dynamics and Plate Interactions in East Asia[J].Washinglon DC:American Geophysical Union Monograph,1998,27:89-105.
    [95] Song Y,Frey FA,Zhi X. sotopic characteristics of Hannuoba basalts,eastern china: implications fortheir petrogenesis and the composition of subcontinental mantle[J]. Chem Geol,1990,85:35-62.
    [96] Sun SS,McDonough WF.1989.Chemical and isotopic systematics of oceanic basalts:implications formantle composition and processes.In:Saunders A D,Norry M J(Eds.).Magmatism in the Oceanbasins[J].Geol.Soc.Spec,1989,Publ.,42:313-345.
    [97] Stewart K,Rogers N. Mantle plume and lithosphere contributions to basalts from southernEthiopia[J].Earth Plant.Sci.Lett.,1996,139:195-211.
    [98] Tatsumoto M,Basu A R,Huang W et al.Sr,Nd and Pb isotopes of ultramaic xenoliths in volcanicrocks of Eastern China:enrished components EMⅠand EMⅡin subcontinental lithosphere[J].EarthPlanet Sci Lett,1992,113(l-2):107-128.
    [99] Thibault Y and Edgar A D. Patent mantle-metasomatism: Inferences based on experimentalstudies[J].Journal of Earth System Science,1990,99(1):21-37.
    [100] Vervoort J,Patchett PJ,Blichert-Toft J, et al.Relationships between Lu Hf and Sm Nd isotopicsystems in the global sedimentary system[J].Earth Planet.Sci.Lett.,1999,168:79-99.
    [101] Weaver,D. Issue salience and public opinion:Are there consequences of agenda-setting?[J].International Journal of Public Opinion Research,1991,3,53-68.
    [102] Wiechert U,Ionov D A.Wedepohl K H. Spinel peridotite xenoliths from the Atsagin-Dush volcano,Dariganga lava plateau, Mongolia:a record of partial melting and cryptic metasomatism in the uppermantle.Contrib[J].Mineral.Petrol,1997,126:345-364.
    [103] Wilson M,Downes H. Tertiary-Quaternary extension-related alkali magmatism in western andcentral Europe[J].J Petrol,1991,32:811-849.
    [104] Wu F Y,Walker R J,Ren X,et al..Osmium isotopic constraints on the age of lithospheric mantlebeneath northeastern China[J].Chem Geol,2003,196:107-129.
    [105] Wulff-Pedersen, E., Neumann, E.-R., and Jensen, B.B. The upper mantle under La Palma,Canary Islands: formation of Si-K-Na-rich melt and its importance as a metasomatic agent.Contributions to Mineralogy and Petrology[J],1996,125,113-139.
    [106] Xu Y G,Menzies M A,Mattey D P et al. The nature of the lithospheric mantle near theTanclleng-Lujiang fault,China: an integration of texture,ehemistry and O isotopes[J].Chem Geol,1996,134:67-82.
    [107] Xu Y. Evidence for crustal components in the mantle and constraints on crustalrecyclingmechanisms:pyroxenite xenoliths from Hannuoba,North China.Chem. Geol,2002,182:301-322.
    [108] Xu Y G,Ma J L,Frey F A et al. Role of lithosphere-asthenosphere interaction in the genesis ofQuaternary alkali and tholeiitie basalts fiom Datong,western North China Craton[J].Chem Geol,2005,224:247-271.
    [109] Yoder H S. Generation of Basaltic Magma[J]. Washington D C, United States: Natl Acad Sci,1976,265.
    [110] Zhang M,Stephenson P J,Oreilly S Y et al.2001.Petrogenesis and Geodynamic Implications ofLate Cenozoic Basalts in North Queensland, Australia:Trace-element and Sr-Nd-Pb IsotopeEvidence[J].Journal of Petrology,2001,42(4):685-719.
    [111] Zangana N,Downes H,Thirlwall M F et al.. Grochemical variations in peridotite xenoliths andtheir constituent clinopyroxenes from Ray Pic(French Massif Central):implications for thecomposition of the shallow lithospheric mantle[J].Chem Geol,1999,153:11-35.
    [112] Zhao X X,Coe R S,Zhou Y X et al. New plaeomagnetic results form notthern China:Collision andsuturing with Siberia and Kazakstan[J].Tectonophysics,1990,181:43-81.
    [113] Zhi X, Song Y, Frey F A, Feng J et al. Geochemistry of Hannuoba basalts, easternChina:Constraints on the origin of continental alkalic and tholeiitic basalt[J].Chem Geol,1990,88:1-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700