安徽铜陵朝山金矿床成因及其成矿动力学背景
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
朝山金矿床位于铜陵矿集区中部狮子山矿田内,是长江中下游唯一的矽卡岩型独立金矿床。区域地层除缺失中、下泥盆统和下石炭统外,自志留系-第四系均有分布。主要地层为石炭系-三叠系海相沉积碳酸盐岩,其中赋矿地层主要为二叠-中三叠灰岩、硅质岩、页岩夹半深海-海陆交互相碎屑岩。区内岩浆活动强烈,广泛出露的晚中生代侵入岩类主要为一套中基性-中酸性侵入岩,主要岩石类型有辉石闪长岩、闪长岩、石英闪长岩、花岗闪长岩、花岗岩,但许多岩体实质上是中酸性岩和基性岩组成的复式岩体或杂岩体。前印支期棋盘格式的导岩、导矿基底断裂和燕山期浅部北东向“S”形盖层褶皱构造相复合,组成了铜陵地区“立体网络状”构造格架,控制着铜陵矿集区矿田和矿床的分布。区内矿产丰富,已探明矿产地上百处,主要矿种为Cu,Au,Mo,S,主要矿床类型为矽卡岩型、层控型,其次还有斑岩型及少量热液脉型,组成完整的岩浆热液矿床组合。绝大多数矿床的形成与晚中生代中酸性岩浆作用有关。
     朝山金矿床是铜陵矿集区典型的还原性矽卡岩金矿,规模不大,但品位高(6-38g/t,平均18.4g/t)。矿区内出露地层主要为三叠系中统南陵湖组(T_2n)和分水岭组(T_2f),岩性以灰岩、大理岩为主,夹少量泥岩或角岩条带。矿区内近EW向、近SN向、NNE向、NW向断裂构造及层间破碎带或层间断层发育,这些构造控制了矿床(体)的空间展布。矿区内侵入岩以花岗闪长岩和石英闪长岩为主,其次是辉石闪长岩和后期的脉岩。矿体主要赋存于三叠系下统南陵湖组与白芒山中基性杂岩体东接触带及其围岩的层间裂隙中。主矿体形态多呈透镜状、陡薄板状,严格受构造控制,构造叠加处矿体变厚。矿石矿物以磁黄铁矿黄铁矿、为主,其次为毒砂、黄铜矿、方铅矿、闪锌矿、黝铜矿和辉铋矿等,其中磁黄铁矿是矿床内含量最多和主要的载金矿物。脉石矿物为方解石、石英、绿泥石、石榴石等。围岩蚀变主要有矽卡岩化、钾长石化、黑云母化、交代石英岩化、碳酸盐化,局部见绿帘石化、阳起石化、绿泥石化、绢云母化。
     白芒山杂岩体以辉石闪长岩为主,其次为石英闪长岩。辉石闪长岩含大量角闪石和辉石巨晶和堆积晶以及辉石堆积岩,寄主岩具有准铝质、高钾钙碱性的地球化学特点。此外,白芒山辉石闪长岩富集大离子亲石元素(Rb、Ba、Th、Sr)和轻稀土LREE,亏损高场强元素(Nb、Ta、Ti)和HREE,无明显的Eu异常。Sr-Nd同位素组成较均一,具有较低的(~(87)Sr/~(86)Sr)_i值和较高的ε_(Nd)(t),分别为0.7065~0.7074和-7.78~-8.01。Ba/Th和Ba/La比值较高,分别为64.65-74.76和13.61-15.56,,但Rb/Sr比值和Sm/Nd比值低,分别为0.068-0.09和018-0.20。地球化学和同位素组成特征与长江中下游地区白垩纪玄武岩和基性侵入岩基本一致,表明白芒山岩体的初始岩浆可能来源于富集的岩石圈地幔(EMⅠ)。结合前人资料,可将白芒山岩体的成因总结为:富集的岩石圈地幔减压熔融形成高钾钙碱性玄武质岩浆,之后底侵到壳幔边界形成深位岩浆房。大量幔源岩浆的底侵导致下地壳物质的熔融及岩浆混合,形成壳幔混源型岩浆。这种岩浆在深位岩浆房及随后的上升侵位过程中与中下地壳之间发生了较明显的AFC过程,并在不同深度的结晶分异过程中形成角闪石、辉石巨晶/堆积晶和辉石堆积岩和辉长质包体。在整体伸展的构造背景下,经过复杂演变的中基性岩浆以“底辟”形式侵位,至大约2.5-3.2km的上地壳浅部就位,形成白芒山辉石闪长岩。
     白芒山辉石闪长岩中角闪石的Ar-Ar定年结果表明其侵位时代大致为142-138Ma;而磁黄铁矿的Re-Os定年说明朝山金矿床形成于141.7Ma左右。这反映成岩成矿时代基本一致,也进一步证明了白芒山辉石闪长岩与朝山金矿床的成因联系。
     矿石矿物和蚀变脉石矿物的O、C、S、Pb、H、Os、Si同位素分析结果表明成矿物质主要来自白芒山辉石闪长岩,成矿作用与燕山晚期的岩浆活动密切相关。成矿流体早期以岩浆水为主,,晚期则大气降水的加入增多。朝山金矿床是地层、构造和岩浆岩等多种地质因素和地质作用综合作用的结果。地层的虚脱部位和层间裂隙系统是成矿和赋矿的主要场所;白芒山岩体不仅为朝山金矿床提供直接的热动力,而且为成岩成矿提供了必要物质基础;而构造则是密切组合各成矿因素的关键,既是岩浆侵位和流体迁移的通道,又是有利的控岩控矿因素(接触带的内凹部分),控制着岩体和重要的矿床(体)的分布。
     近年的高精度同位素年代学研究结果(如SHRIMP锆石U-Pb、辉钼矿Re-Os、单矿物~(40)Ar/~(39)Ar等)表明,铜陵地区大规模的中酸性-中基性岩浆活动时代始于晚侏罗世末期,但集中在143-136Ma。同样,绝大多数矿床的成矿时代集中在145-135Ma,说明铜陵地区大规模成矿作用发生于早白垩世约8-10Ma的时间内,成矿作用与早白垩世岩浆作用密切相关。
     铜陵矿集区成岩成矿时代与鄂东南矿集区巨量岩浆活动与大规模成矿的时代(144-135Ma)几乎完全一致,也与长江中下游晚中生代第一阶段(145-133Ma)成岩成矿时代十分吻合。不同矿集区内岩浆活动与成矿作用近于同时发生的事实表明它们受统一的地球动力学背景和深部过程控制。长江中下游成矿带位于地幔的隆起带,地壳厚度比邻区一般要小2-3km,表明该区自晚中生代以来发生了明显的软流圈上涌和岩石圈伸展减薄。热的软流圈上涌必然引发岩石圈地幔的大规模熔融和伸展减薄,并沿几条超岩石圈断裂(如长江深断裂、常州-阳新断裂等)形成长江中下游凹陷带,这也是朝山金矿床和长江中下游晚中生代成矿作用发生的深部地球动力学背景:强烈的岩石圈伸展及玄武岩浆底侵为大规模岩浆活动及成矿作用提供了必要的热、物质和流体来源以及重要的构造。这种构造背景与晚中生代时期整个中国尔部地区处于总体伸展的地质事实一致,并可能与古太平洋板块向欧亚大陆的斜向俯冲有关。
The Chaoshan gold skarn deposit is situated in the Shizishan ore field, the center ofTongling district Anhui province, which is the only one gold deposit of the well-known middleand lower Yangtze River. Regional strata host from the Silurian to the Quaternary exceptthe Devonian lower-medium series and the Carboniferous lower series. Thestratigraphy in this district is dominated by the Carboniferous-Triassicmarinecarbonate carbonate rock, in which Permian period-Triassic period limestone,silicalites, shales interbeding half deep sea-thalassianic terrestrialis alternate clasticrocks are main ore-beating strata. It is marked by widespread distribution of Late Mesozoicintrusive rocks are intermidiate -basic to intermediate-acid rocks, which are dominated bypyroxene diorite, quartz diorite, granodiorite and granite related with the most copper-golddeposits. However, many intrusives characteristic complexes composing of the intermediate-acidrocks and the basic rocks. Preindo Chinese epoch basement faults and Yanshanian NE directionsigmoid cover drape folds compound and constitute "solid network" structure trellis controllingthe distribution of the ore fields and ore deposits. There are more than one hundred mineraloccureences including Cu, Au, Mo, S etc. The intact deposit compages are dominated by skarndeposits and stratabound deposits are the dominant type of mineralization, although porphyrydeposits and hydrothermal lode deposits are also developed.
     The Chaoshan deposit, small scale, is typical reduced gold skam deposit with high oregrade from 6 t 38 g/t Au, average of 18.4 g/t. Triassic Nanlinghu and Fenshuiling Formationlimestone, mables interbeding minor mudstone or chert bandings are import wall rock or andhost of skarn and stratabound mineralization. The utmost important ore deposits/bodiescontrolling structures are almost east-west, south-north, north -north west folds and interbeddedfracture zone and interbedded faults. The ordinate intrusives are granitic diorite and diorite, theminor are proxene dioriteand the later dike rocks. Ore bodies lie in the east contract between theBaimangshan intermidiate-basic complex and the Nanlinghu limestone and its interbeddedcrannies, Main ones controlled by the strutures are commonly lenticular and podiform in shapeand thicken at the congruence of the structures. Ore minerals are pyrrhotite, arsenopyrite andpyrite, with minor amounts of chalcopyrite, galena, sphalerite, tetrahedrite and bismuthinite etc, in chich pyrrhotite is the most Au-bearing mineral. Gangue minerals are calcite, quartz, chlorite andgart etc. Wall alteration develop skarnlization, k-felspathic alteration, biotite, alterated quartzite,carbonate and in place occur epidote, actinolite, chlorite and sericite etc.
     Baimangshan complex hosting abundant hornblende and proxene accumulatingcrystal xenolits is dominated by pyroxene diorite with minor quartz diorite belonging tothe pre-aluminum, high potassium calc-alkaline rock. Besides,i t is enriched in large ionlithosphere elements (Rb, Ba, K, Sr) and LREE, but strongly depleted in high field strengthelements (Nb, Ta, Ti). All samples have high Sr, Ba/Th和Ba/La, they are 1007-1100, 64.65-74.76 and 13.61-15.56 respectively, on the contrary, they have low Rb/Sr ratio (0.068-0.09) andSm/Nd ratio(0.18-0.20). Rock has high and even Sr-Nd composition (~(87)Sr/~(86)Sr)_i=0.7065-0.7074,(~(143)Nd/~(144)Nd)_i=0.5121, and the calculatedε_(Na(t))=-7.78--8.01. The geochemistric and isotopiccharacteristics are indistinguishable from the cretaceous basalt and basic rocks origining from theenriched geosphere mantle in from the middle and lower reaches of Yangtze River. All thatmentioned above indicates that primary magma of the Baimangshan complex maybe source fromthe enriched geosphere mantle (EMⅠ). The enriched Lithosphere mantle partialy melted as thetemperature descended, and formed the high potassium(K) calc-alkaline basaltic magma, and thenunderplated and melt the lower crust and came into being the crust-mantle admixing(Ⅰ) magma.These magma represented distinct AFC action with the middle-lower crust during the upliftingprocess resulting in the hornblende and proxene crystal xenolits accumulated at the differentdepth. Under the extending constrcture setting, the evolved intermediate-basaltic magma ascendand formed the Baimangshan proxene diorite at the 2.5-3.2 Km under the earth's surface due tocooling.
     The Ar-Ar dating of hornblende from the Baimangshan proxene diorite indicate thatmagma intruded at the 142-138 Ma approximately, otherwise, the Re-Os dating of pyrrhotite showthat the Chaoshan gold deposit formed at the 141.7Ma. It suggests that magmasim is consistentwith the mineralization and also prove the genesic intimate relationship between the Baimangshanproxene diorite and Chaoshan gold deposit.
     The H-O-C-S-Si-Pb-Os isotope composition of the ore minerals and Gangue mineralsindicates that the metallogeny matter derive from the Baimangshan proxene diorite, and also showthat the metallogeny of the Chaoshan gold skarn deposit is related with the later Yanshanianmagmatism intimately. The ore-bearing fluid is dominated by the magmatic water in the early, butatmosphere water increases in the later stage. Deposit is the result from the compositiveinteractions between strata, structure and magma-thermal liquid system. The collapse sections andinterbedded crannies of strata are the favorable sites for metallogeny.The Baimangshan complexprovides matter and heat energy. And that, structures assemble all kinds of metallogeny factors,they are the channels for magma emplacement and fluid transfer, and are also important factorcontrolling the rock and ore deposit (ore bodies).
     Recent high precise isotope chronology studies (such as Zircon SHRIMP U-Pb, Re-Os ofmolybdenite, Ar-Ar of single mineral) reveal that this district developed extensiveintermidiate-basic to intermediate-acid magma at the 143-136 Ma of the end of the later Jurassic. Meanwhile, The most deposits have been well constrained 145-135 Ma and themetallogeny of this district focus on eight-eleven Ma interval, the coherence indicates that themetallgeny is related with the cretaceous magmatism intimately.
     The magmatism and mineralization ages of Tongling are not only almost coherent with themetallogeny ages (144-135Ma) of Southeastern Hubei province, and also are inosculate with thefirst large scale mineralization stage (145-133 Ma) of the Middle and lowerreches of Yangtze River.The coeval magmatism and mineralization recognized in distinct regions of the Mid-LowerYangtze River indicate that they had the same geodynamic setting.
     The middle and lower reaches Yangtze River Metallogenic Belt is coincident with at theYangtze River rift, where the crust is 2-3km thinner than its surroundings. This indicates thatsignificant asthenosphere upwelling and lithospheric thinning since the later Mesozoic. This riftalong several lithospheric fault (such as Yangtze River deep fault, Changzhou-Yangxin fault)wasformed by upwelling of hot asthenosphere and partial melting of lithosphere. Large-scalelithospheric extension and magma underplating of the Early Cretaceous time could have been thegeodynamic setting of Chaoshan gold deposit and the middle and lower reaches Yangtze RiverMetallogenic Belt. It provide vast heat, matter, fluids and important structures and is responsiblefor the voluminous magrnatism and large-scale mineralization. The setting is coincident with thefact that the whole east of China has been extending since the later Mesozoic, and it is mayberelated with the ancient Pacific Ocean Plate dived to Eurasia obliquely.
引文
Barbarin, B., 1999. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, v.46,p.605-626.
    Brenan, JM., Daniele, J., Cherniak, D.J., Rose, L.A., 2000. Diffusion of osmium in pyrrhotite and pyrite: implications for closure of the Re-Os isotopic system. Earth Planet. Sci. Lett.v.180, p.399-413
    Brenan, JM., Ruiz, J., Chesley, J et al., 2000. Re-Os fractionation in magmatic sulfide melt by monosulfide solid solution. Earth and Planetary Science Letters, v. 199, p.257-268
    Catagari, A.A., 2004. Fluid inclusion studies in quartz veinlets in the porphyry copper deposit at Sungun, East-Azarbaidjan, Iran. Journal of Asian Earth Sciences, v.23, p. 179-189.
    Candela, P.A., Piccoli, P.L.,1995. Model ore-metal partitioning from melt intovapor and vapor/brine mixtures. In: Thompson, J.F.H. (Ed.), Magmas,Fluids and Ore Deposits. Mineralogical Association of Canada Short Course Handbook, v.23,p. 101-127.
    Chen, F., Hegner, E., Todt, W., 2000. Zircon ages, Nd isotopic and chemical compositions of orthogneisses from the Black Forest, Germany - evidence for a Cambrian magmatic arc. International Journal of Earth Sciences, v.88,p.791-802.
    Chen, F., Siebet, W., Satir, M.et al., 2002.Geochronology of the Karadere basement (NW Turkey) and implications for the geological evolution of the Istanbul zone. International Journal of Earth Sciences, v.91, p.469-481.
    Chen,J.F., Yan, J., Xie, Z.et al., 2001. Nd and Sr isotopic compositions of igneous rocks from the Lower Yangtze region in eastern China: constraints on sources. Physics and Chemistry of the Earth,Part A: Solid Earth and Geodesy,v.26,p. 719-731
    Condie, K.C., 1993. Chemical composition and evolution of the upper crust:contrasting results from surface samples and shales. Chemical Geology, v. 10, p. 1-37
    Cross, A.F., Schlesinger, W.H., 1995. A literature review and evaluation of the Hedley fractionation; applications to the biogeochemical cycle of soil phosphorus in natural ecosystems Geoderma, v.64, p. 197-214
    Depaolo, D.J., 1981. Trace element and isotopic effecas of cumhined wallrock assinulation and fractional crystallization. Earth and Planetary Science Letters, v.53, p. 189-202
    Di, Y., Wu, G., Zhang, D.et a1.,2005. SHRIMP U-Pb zircon geochronology of the Xiaotongguanshan and Shatanjiao intrusions and its petrological implications in the Tongling Area, Anhui. Acta Geologica Sinica, v.79, p.795-802.
    Du,Y.S., 1999. Petrological and mineralogical study of enclaves inclusions in the typical mining districts of Tongling, Anhui and its bearing on the process of magmatism and metallogeny. Chinese Journal of Geochemistry, v. 18, p.208-218
    Du, A.D., Wu, S.Q., Sun, D.Z.et al., 2004. Preparation and Certification of Re-Os Dating Reference Materials: Molybdenite HLP and JDC. Geostand Geoanal R, v.28,p. 41-52
    Einaudi, M.T., Meinert, L.D., Burt, D.M., 1981. Skarn deposits[J].Economic Geology,75th Anniversary, v.75,p.317-391.
    Einaudi, M.T., Burt, D.M., 1982. Introduction,terminology,classification and composition of skarn deposits [J].Economic eology, v.77,p.745-754.
    Ernst, R.E., Buchan, K.L., 2003. Recognizing mantle plumes in the geological record. Ann Rev Earth Planet Sci, v.31,p.469-523
    Faure, G.., 1986. Principles of isotope geology. NewYork:John Wiley and Sons, 321-343.
    Faure, G.., Mensing, T.M., 2005. Isotopes;principles and applications, wiley,Hoboken, N.J.
    Gaspar, M., Meinert, L., 2004. The Crown Jewel Au-skarn deposit, WA, USA (in Italia 2004; 32nd international geological congress;abstracts,Anonymous,)International Geological Congress, Abstracts Congres Geologique International, Resumes, v.32,p. 1-49
    Jahn, B.M., Wu, F., Lo, C.H.,Tsai, C.H., 1999. Crust-mantle interaction induced by deep subduction of the continental crust: geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China. Chem Geol, v.157, p.119-146
    Kirk, J., Ruiz, J., Chesley, J. et al., 2001. A detrital model for the origin of gold and sulfides in the Witwatersrand basin based on Re-Os isotopes. Geochimica et Cosmochimical Acta, v.65, p. 2149-2159
    Levresse, G.E., Gonzalez, Partida., 2003. Highly oxidised gold skarn fluids evolution in the Mezcala deposit, Guerrero, Mexico. Joul of Geological Expioration, v78-79, p. 649-652
    Li, S.G., Jagoutz. E., Chen, Y.Z., Li, Q.L., 2000. Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, central China. Geochim Cosmochim Acta,v. 64,p. 1077-1093
    Li, X.H., 2000. Southeast Ghina. Journal magrnatism and lithospheric extension in of Asian Earth Sciences, v. 18, p. 293-305
    Meinert, L.D., 1989. Gold skarn deposits-Geology and exploration criteria [J].Economic Geology, v.6, p.537-552.
    Meinert, L.D., 1992. Skarn and skarn deposits. Geoscience Canada, v. 19,p. 145-162.
    Meinert, L.D., 1997.Application of skarn deposit zonation models to mineral exploration [J].Explor.Mining Geol., v.6, p. 185-208.
    Meinert, L.D., 1998. A Review of skarns than contain gold. ,Mineralized Intrusion-related skarn systems: Mineralogical Association of Canada Short Course Series. Mineralogical Association of Canada, Que'bec City, Quebec, v.59,p.359-414.
    Meinert, L.D., Lentz, D.R., Newberry, R.J., 2000. Special issue Devoted to skarn deposits[J].Economic Geology,v.95,p. 1183-1184.
    Markey, R., Stein, H., Morgan, J., 1998. Highly precise Re-Os dating for molybdenite using alkaline fusion and NTIMS. Talanta v.45, p. 935-946
    Marsh, T.M., Einaudi, M.T., McWilliams, M., 1997. 40Ar/39Ar geochronology of Cu-Au and Au-Ag mineralization in the Poterillos district,Chile: Economic Geology, v.92,p. 784-806.
    Mathur, R., Ruiz, J., Titley, S. et al., 2000. Different crustal sources for Au-rich and Au-poor ores of the Grasberg Cu-Au porphyry deposit. Earth and Planetary Science Letters, v.183, p. 7-14
    Mathur, R., Titley, R., Ruiz, J. et al., 2005. A Re-Os isotope study of sedimentary rocks and copper-gold ores from the Ertsberg district, West Papua, Indonesia: Ore Geology Reviews, v.26,p.207-266.
    Myers, G.L., 1994. Geology of the Copper Canyon-Fortitude skarn system, Battle Mountain, Nevada. Ph.D. thesis. Washington Pullman:Washington State University. 1-356
    Ohmoto, H., Goldhaber, M.B., 1997. sulfur and carbon isotopes.In: BarnesHL(ed.).Geochemistry of hydrothermal ore deposits: Wiley,NewYork, 517-599
    Pan, Y.M., Fleet, M.E., Ray, G.E., 1994. Scapolite in two Canadian gold deposits; Nickel Plate, British Columbia and Hemlo, Ontario. The Canadian Mineralogist, v.32, p.825-837
    Pan, Y.M., Dong, P., 1999. The Lower Changjiang (Yangzi/Yangtze River) metallogenic belt, east central China: intrusion- and wall rock-hosted Cu-Fe-Au, Mo, Zn, Pb, Ag deposits. Ore Geo Rev, v.15, p. 177-242
    Pirajn, F., 2000. Ore Deposits and Mantle Plume [M].London: Kluwer Academic, 556.
    Pollard, P.J., Taylar, R.G.., 2005. Ages of Intrusion, Alteration, and Mineralization at the Grasberg Cu-Au Deposit, Papua, Indonesia.Economic Geology, v. 100, p. 1005-1020
    Qi, L., Gregoire, D.C., 2000. Determination of trace elements in 26 Chinese Geochemistry Reference Materials by inductively coupled plasma- mass spectrometry. Geostand. Newsl, v.24, p. 51-63.
    Ray, G.E., Dawan, G.L., Simpson, R., 1988. Geology, geochemistry and metallogenic zoning in the Hedley golds karn camp Geological Field work, v. 1, p. 59-80
    Ray, G.E., Dawson, G.L., Webster, I.C.L., 1996. The stratigraphy of the Nicola Group in the Hedley district, British Columbia and the chemistry of its intrusions and Au skarns. Canadian Journal of Earth Science,v.33,p. 1105-1126.
    Ray, J.S., Ramesh, R., Pande, K., 1999. Carbon isotopes in Kerguelenplume- derived carbonatites: evidence for recycled inorganic carbon[J ] . Earth and Planetary Science Letters, v. 170, p.205-214.
    Ray, J.S., Ramesh, R., Pande, K. et al., 2000. Isotope and rare earth element chemistry of carbonatite-alkaline complexes of Deccan Related skarn systems[C].Quebec Short CourseSeries, v.26, p. 359-414.
    Sengoram, A.M.C., Natalinb, A., 1996. Paleotectonics of Asia: Fragments of synthesis [A]. The Tectonic Evolution of Asia [M].Cambridge: Cambridge University Press, 486-640.
    Shirey, S.B., Walker, R.J., 1995. Carius tube digestion for low-blank rhenium-osmium analysis. Anal Chem,v.67:,p.2136-2141
    Shirey,S.B.,Walker, R.J.,1998. The Re-Os isotope system in cosmochemistry and high-temperature geochemistry. Annual Review of Earth Planetary Sciences, v.26, p. 423-500
    Smoliar, M.I., Walker, R.J., Morgan, J.W., 1996. Re-Os ages of group ⅡA, ⅢA, ⅣA and ⅥB iron meteorites.Science, v. 271, p. 1099-1102
    Stacey, J.S., Hedlund, D.C.,1983. Lead isotope composition of diverse ignous rocks and ore deposits from southwestern New Mexico and their implications for early Proterozoic crustal evolution in the western United States.Geological Society of America Bulletin, v.94, p. 43-57.
    Stein, H.J., Markey, R.J., Morgan, J.W. et al., 1998. Re-Os ages for Archean molybdenite and pyrite, Kuittila-Kivisuo, Finland and Proterozoic molybdenite, Kabeliai, Lithuania: Testing the chronometer in a metamorphic and metasomatic setting. Mineralium Deposita, v.33:,p.329-345.
    Stein, H.J., Morgan, J.W., Schersten, A., 2000. Re-Os dating of low-level highly radiogenic (LLHR) sulfides:The Harnaes gold deposit, southwest Sweden, records continental-scale tectonic events. Economic Geology, v.95,p. 1657-1673
    Stein, H.J., Markey, R.J., Morgan, J.W. et al., 2001. The remarkable Re-Os chronometer in molybdenite: How and why it works. Terra Nova, v. 13,p.479-486.
    Sun, W.D., Xie, Z., Chen, J.F., 2003. Os-Os Dating of copper and molybdenum deposits along Middle and lower reaches of the Yangtze River, China. Economic Geology,v.98,p. 175-180
    Taylor, B.E., 1987. Stable isotope geochemistry of ore-forming fluids.In: Kyser, T.K. (Ed.), Geochemistry of Low Temperature Fluids. Mineral. Assoc. Can. Short Course, vol. 13. Mineralogical Society of Canada, Toronto, 337-445.
    Theodore, T.G., Orris, G.J., Hammarstrom, I.M.et al,1991.Gold-bearing skarns [M]. Washington: U.S. Geol. Surv. Bull.1930.1-61.
    Townley, B.K., Herail, G., Maksaev, V. et al., 2003. Gold grain morphology and composition as an exploration took:application to gold exploration in covered areas. Geochemistry: Exploration, Environment, Analysis, 29-38
    Vasconcelos, P.M., 1999. ~(40)Ar/~(39)Ar geochronology of supergene process in ore deposits. Rev. Econ. Geol., v.12,p. 73-113.
    Vinogradov, V.I., DePaolo, D.J., Anderson, T.F., 1995. The Sm-Nd method of isotope dating. In: Marfunin A S (ed), Andvanced Mineralogy Vol 12, Methods and instrumentations: Results and recent developments. Berlin:Springer, 1365-368
    Woodhead, J., Brauns, M., 2004. Current limitations to the understanding of Re-Os behaviour in subduction systems, with an example from New Britain. Earth and Planetary Science Letters, v.221, p.309-323
    Wu, C.L., Wang, Z.H., Qiao, D.W. et al., 2000. Types of enclaves and their features and origins in intermediate-acid intrusive rocks from the Tongling district, Anhui Province. China Acta Geologica Sinica, v.74,p. 56-67.
    Wu, C.L., Wang, F.S., Hao, M.Y. et al., 2000. Geochronology of intermediate-acid intrusive rocks from Tongling,Anhui. Continental Dynamics, v.5,p. 15-23.
    Wu, F.Y., Lin, J.Q., Wilde, S.A., et al., 2005. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth and Planetary Science Letters, v.233,p. 103-119.
    Xu, X.C., Lu, S.M., Xie, Q.Q. et al., 2006. Rare Earth Element Geochemistry on Magmatic Rocks and Gold Deposits in Shizishan Ore-Field of Tongling, China. Journal of Rare Earths, v.24, p.617-625.
    Zhao, Y. M., Zhang, N., Bi, C. S., 1999. Geology of gold-bearing skarn deposits in the middle and lower River Valley and adjacent regions. Ore Geology Reviews, v14, p.227-249
    Zheng, J. P., Griffin, W. L., Suzanne, Y. O'Reilly. et al., 2006. Widespread Archean basement beneath theYangtze craton. Geology, v.34,p.417-420
    Zhou, T. H., Richard, J., Goldfarb, G. et al., 2002. Tectonics and distribution of gold deposits in China (An overview) [J].Mineralium Deposita, v.37,p. 249-282
    Zhou, X., Sun, M., Zhang, G. et al., 2002. Continental crust and lithospheric mantle interaction beneath North China: isotopic evidence from granulite xenoliths in Hannuoba, Sino-Korean craton. Lithos, v.6 p. 111-124.
    鲍亦冈,白志民,葛世伟等.1995.北京燕山期火山地质及火山岩.北京:地质出版社.1-164.
    常印佛,刘湘培,吴言昌.1991.长江中下游铜铁成矿带.北京:地质出版社,309-319.
    陈沪生.1988.扬子准地台下扬子盆地HQ213线地球物理-地质解释纲要.见:陈沪生主编.中国南方油气勘查新领域探索论文集(第二辑).北京:地质出版社.
    陈江峰等.1993.安徽南部燕山期中酸性侵入岩的源区锶、钕同位素制约.地球化学,3:261-268.
    陈江峰,谢智.张巽等.200t.安徽的地壳演化:Sr-Nd同位素证据.安徽地质,11(2):123-130.
    陈衍景,郭抗衡.1993.银家沟金矿的地质地球化学特征和成因[J].矿床地质,12:265-272
    陈衍景,秦善,李欣等.1997.中国矽卡岩型金矿的成矿时间、空间地球动力学背景和成矿模式[J].北京大学学报(自然科学版),33:456-466
    陈衍景,陈华勇.刘玉琳等.1999.碰撞造山过程内生矿床成矿作用的研究历史和进展.科学通报,44(3):1681-1689
    陈衍景.陈华勇.K.Zaw等.2004.中国陆区大规模成矿的地球动力学:以矽卡岩型金矿为例.地学前缘,11(1):57-83
    储国正,李东旭.1992.顺层滑动构造对安徽省狮子山矿因“多层楼”矿床的控制[J].现代地质,6(4):504-513.
    储国正,黄许陈,张成火等.1995.安徽铜陵地区成矿控制冈素的探讨.安徽地质,5(1):47-58
    杜杨松,李学军.1997.安徽铜陵典型矿区岩石包体研究及其岩浆—成矿作用过程探讨.高校地质学报,3(2):171-178
    杜杨松,秦新龙,李铉具.2004.安徽铜陵地区中生代幔源岩浆底侵作用-米自矿物巨晶和岩石包体的证据.岩石矿物学杂志,23(2):109-116.
    杜杨松,李铉具.2004.安徽铜陵岩浆岩中辉长质岩石包体的发现及其地质意义.高校地质学报,10(3):332-342
    邓晋福,刘厚样,赵海玲.1996.燕辽地区燕山期火成岩与造山模型.现代地质,10:137-148.
    邓晋福,莫宣学,赵海玲等.1999.中国东部燕山期岩石圈-软流圈系统大灾变与成矿环境[J].矿床地质,18(4):309-315
    邓亚福,吴宗絮.2001.下扬子克拉通岩石圈减薄事件与长江中下游Cu-Fe成矿带.安徽地质,11(2):86-91
    邓晋福,戴圣潜,赵海玲等.2002.铜陵Cu-Au(Ag)成矿区岩浆-流体-成矿系统和亚系统的 识别.矿床地质,21(4):317-322
    杜安道,赵敦敏,王淑贤等.2001.Carius管溶样和负离子热表面电离质谱准确测定辉钼矿铼-锇同位素地质年龄.岩矿测试,20(4):247-252.
    邓军,王庆飞,黄定华等.2004.铜陵矿集区燕山期地壳浅部成矿流体活动的构造控矿.矿床地质,23(3):399-404.
    邓军,王庆飞,黄定华等.2004.铜陵矿集区构造-流体-成矿系统演化格架.地学前缘,11(1):121-129
    邓军,王庆飞,黄定华等.2006.铜陵矿集区浅层含矿岩浆输运网络与运移机制.中国科学,36(3):252-260
    丰成友,张德全,屈文俊等.2006.青海格尔木驼路沟喷流沉积型钴(金)矿床的黄铁矿Re-Os定年.地质学报.80(4):571~576.
    傅世昶.1999.铜陵朝山金矿床成矿地质特征和成矿预测.地质找矿论丛,14(2):69-74.
    高山,Qiu,Y.M.,凌文黎等.2001.崆岭高级变质地体单颗粒钻石SHRIMP U-Pb年代学研究-扬子克拉通大于3.2Ga陆壳物质的发现.中国科学(D),31:2-35.
    高庚,徐兆文,杨小男等.2006a.安徽铜陵白芒山辉石闪长岩体的成因Sr-Nd、Pb-O同位素制约.南京大学学报,42(3):270-279.
    高庚,徐兆文,杨小男等.2006b.安徽铜陵朝山金矿床地质特征及成因研究.地质找矿论丛,21(3):162-167.
    黄定华.2005.铜陵矿集区构造-岩浆-成矿系统模型研究.博士学位论文.北京:中国地质大学.
    黄华盛.1994.矽卡岩矿床的研究现状.北京:中国地质大学出版社.
    黄华盛.1994a.矽卡岩矿床的研究现状,地学前缘,1(1-3):105-111.
    胡欢,王汝成,陆建军等.2001.安徽铜陵狮子山矿田矽卡岩型金矿床的矿物组合、化学成分及成因意义.矿床地质,20(1):86-98
    占月受奚.叶瑛,方长泉.2004.交代蚀变岩岩石学及其找矿意义.北京:地质出版社,1-264
    黄顺生,徐兆文,顾连兴等.2004.安徽铜陵狮子山矿田岩浆岩地球化学特征及成因机制探讨.高校地质学报,10(2):217-226
    黄许陈,储国正.1993.铜陵狮子山矿田多位一体(多层楼)模式.矿床地质,12(3):221-230
    雷文秀.2004.层控式矽卡岩铜铁矿床的典型特征及其地质工作实践.有色金属,56(5):17-18
    李锦轶.1998.中国东北及邻区若干地质构造问题的新认识.地质论评,44:339-347
    李曙光.1992.论华北与扬子陆块的碰撞时代.同位素年代学方法的原理及应用.安徽地质,2(4):13-23.
    李武显,周新民,李献华等.2001.庐山“星子变质核杂岩”中U-Pb年龄及其地质意义.地球科学,26(5):491-495
    李献华.1996.Sm-Nd模式年龄和等时线年龄的适用性与局限性.地质科学,31(1):97-104
    李新俊,刘伟.2002.东天山马庄山金矿床流体包裹体和同位素地球化学研究及其对矿床成因的制约.岩石学报,18(4):551-558
    李进文.2004.铜陵矿集区矿田构造控矿与成矿化学动力学研究.博士学位论文.北京:中国地质大学.
    李进文,裴荣富,张德全等.2007.铜陵矿集区燕山期中酸性侵入岩地球化学特征及其地质 意义.地球学报,28(1):11-22
    李景春,庞庆邦,李文亢等.1998.中国金矿工业类型[J].贵金属地质,7(2):114-120.
    李学军.2006.铜陵地区控矿因素及成矿模式研究.博士学位论文.北京:中国地质大学.
    李志昌,路远发,黄圭成.2004.放射性同位素地质学方法与进展.武汉:中国地质大学出版社
    刘文灿,高德臻,储国正.1996.安徽铜陵地区构造变形分析及成矿预测.北京:地质出版社.
    梁俊红,刘海波,王建国等.2000.自然金的标型及成色特征在金矿床研究中的意义.黄金,21 (12):1-14.
    梁树平,屈文俊,杜安道等.2004.两种质谱仪在辉钼矿铼-锇年龄测定中的应用比较.岩矿测试,23(4):268-272
    梁祥济,王福生.2000中国矽卡岩和矽卡岩矿床形成机理的实验研究.北京:学苑出版社.1-365
    凌其聪,程惠兰.1998.岩浆矽卡岩的地质特征及其形成机理讨论-以铜陵地区为例.长春科技大学学报,28(4):366-371
    刘洪,邱检生,罗清华等.2002.安徽庐枞中生代富钾火山岩成因的地球化学制约.地球化学,31(2):129-140.
    楼亚几,杜杨松.2006.安徽繁吕中生代侵入岩的特征和锆石SHRIMP测年.地球化学,35(4):359-366
    陆三明,徐晓春,储国正等.2005.安徽铜陵狮子山铜金矿田锚同位素地球化学特征.矿物岩石地球化学通报,24:244-245
    吕庆田,侯增谦,赵金花等.2003.深地震反射剖面揭示的铜陵矿集区复杂地壳结构形态.中国科学,33(5):442-449
    吕庆田,侯增谦,史大年等.2004.铜陵狮子山金属矿地震反射结果及对区域找矿的意义.矿床地质,23(3):390-398.
    马振东.单光祥.1997.长江中下游地区多位一体大型、超大型铜矿形成机制的地质、地球化学研究,矿床地质,16(3):225-242.
    毛建仁,苏郁香,陈三元.1990.长江中下游中酸性侵入岩与成矿.北京:地质出版社,1-191.
    毛景文,杜安道.2001.广西宝坛地区铜镍硫化物矿石982Ma Re-Os同位素年龄及其地质意义.中国科学(D辑),18(12):61-67
    毛景文.杨建民,屈文俊等.2002.新疆黄山东铜镍硫化物矿床Re-Os同位素测定及其地球动力学意义.矿床地质,21(4):323-330.
    毛景文,Holly Stein,杜安道等.2004.长江中下游地区铜金(钼)矿Re-Os年龄测定及其对成矿作用的指示.地质学报,78(1):121-131.
    梅燕雄,毛景文,李进文等.2005.安徽铜陵大团山铜矿床层状矽卡岩矿体中辉钼矿.地球学报,26(4):327-331
    蒙义峰,杨竹森,曾普胜等.2004.铜陵矿集区成矿流体系统时限的初步厘定.矿床地质,23(3):271-280.
    彭聪,赵一鸣.1998.长长中下游及其邻区深部地球物理背景与含金矽卡岩矿床的分布.物探与化探,22(3):175-182.
    彭聪,赵一鸣.1999.中国尔部含金矽卡岩矿床分布规律与深部地球物理背景研究.物探与化探,23(6):415-420.
    秦新龙,杜杨松,田世洪等.2002.安徽铜陵地区含磁黄铁-矿黄铜矿角闪石巨晶的首次发现.自然科学进展,12(8):834-839.
    屈文俊,杜安道.2003.高温密闭溶样电感耦合等离子体质谱准确测定辉钼矿铼-锇地质年龄.岩矿测试,22(4):254-257.
    屈文俊,杜安道.2004.电感耦合等离子体质谱测定辉铝矿中Re、Os含量时的质量分馏效应的校正.质谱学报,25(增刊):181-182.
    任云生,刘连登,万相宗等.2004a.铜陵地区矽卡岩型独立金矿成矿深度探讨.大地构造与成矿学,28(4):397-403
    任云生,刘连登等.2004b.狮子山矿田矽卡岩型金矿铋矿物与金矿化关系研究.矿物岩石,24(4):41.
    任云生,刘连登等.2005.铜陵狮子山矿田金的独立与叠加成矿.黄金,5(26):9-12
    邵晓尔,李景春.2000.中国金矿床主要工业类型及其分布特征.贵金属地质,9(3):166-169
    史大年,吕庆田,徐明才等.2004.铜陵矿集区地壳浅表结构的地震层析研究.矿床地质,23(3):383-389.
    田世洪,杜杨松,秦新龙等.2001.安徽铜陵地区中酸性侵入岩及其岩石包体中的矿物包裹体研究.地学前缘,8(4):421-427
    田世洪,丁悌平.2004.安徽铜陵朝山金矿床稳定同位素、稀土元素地球化学研究.矿床地质,23(3):365.
    唐永成,吴言昌,储国正等.1998.安徽沿江地区铜金多金属矿床地质.北京:地质出版社.
    涂光炽.1997.矿床地球化学.北京:地质出版社,1-112
    韦永福,吕英杰,江雄新等.1994.中国金矿床.北京:地震出版社,1-328
    千训诚,吴多元,周育才等.安徽铜陵鸡冠石银金矿床稀土元素地球化学特征[J].安徽地质,10(1):51-57
    吴才来,周徇若,黄许陈等.1996.铜陵地区中酸性侵入岩年代学研究.岩石矿物学杂志.15(4):299-306.
    王强,赵振华,熊小林等.2001.底侵玄武质下地壳的熔融:来自安徽沙溪adakite质富钠石英闪长玢岩的证据.地球化学,30(4):353-362.
    王强.许继峰,赵振华等.2003.安徽铜陵地区燕山期侵入岩的成因及其对深部动力学过程的制约.中国科学.33(4):323-334
    干庆飞,邓军,黄定华等.2004.铜陵矿集区浅层隐伏岩体预测及其形态分析.矿床地质,23(3):405-410
    王元龙,张旗,王焰等.2001.宁芜火山岩的地球化学特征及其意义.岩石学报,17(4):565-575.
    王元龙,王焰,张旗等.2004.铜陵地区中生代中酸性侵入岩的地球化学特征及其成矿-地球动力学意义.岩石学报.20(2):325-338.
    王彦斌,刘敦一,曾普胜等.2004a.安徽铜陵地区幔源岩浆底侵作用的时代-朝山辉石闪长岩锆石SHRIMP定年.地球学报,25(4):423-427
    王彦斌,刘敦一,曾将胜,等.2004b.铜陵地区小铜官山石英闪长岩锆石SHRIMP的U-Pb年 龄及其成因指示.岩石矿物学杂志,23(4):298-304
    王彦斌,刘敦一,蒙义峰等.2004c.安徽铜陵新桥铜-硫-铁-金矿床中石英闪长岩和辉绿岩锆石SHRIMP年代学及其意义.中国地质,31(2):169-173
    王彦斌.唐索寒,王进辉等.2004d.安徽铜陵新桥铜金矿床黄铁矿Rb-Sr同位素年龄数据-燕山晚期成矿作用的证据.地质论评,50(5):538-542
    吴淦国.张达,臧文拴.2003.铜陵矿集区构造滑脱与分层成矿特征研究.中国科学,23(4):300-308
    吴言昌,邵桂清,吴炼,1996.岩浆矽卡岩及其矿床.安徽地质,6(2):30-39
    吴言昌,常印佛,1998.关于岩浆矽卡岩问题.地学前缘,5(4):291-301
    徐志刚,盛继福,孙善平.1999.关于“橄榄玄粗岩系列(组合)”特征及某些问题的讨论.地质论评,45(增刊):43-62
    徐祥,刑城鸣.1994.宁芜地区三个辉长岩的全岩和矿物Rb-Sr等时线年龄.地质科学,29(3):309-312.
    徐兆文,方长泉等.2004.与朝山金矿有关岩体地质地球化学特征.地质与勘探,40(3):42.
    谢家莹,陶奎元,尹家衡等.1996.中国东南大陆中生代火山地质及火山-侵入杂岩.北京:地质出版社,1-277.
    谢锡才,王义文等.1997.安家营子金矿田矿床及同源岩体同位素地球化学.贵金属地质,6(3):171-182.
    邢凤鸣,徐祥.1995.铜陵鸡冠山岩体中的堆晶淬冷包体.岩石矿物学杂志,14(1):19-25.
    邢凤鸣.1996a.铜陵沿长江地区中生代岩浆岩的碱质来源.安徽地质,6(1):15-18.
    邢凤鸣,徐祥.1996b.铜陵地区高钾钙碱系列侵入岩.地球化学,25(1):29-38.
    刑凤鸣,徐祥,1996c.AFC混合与铜陵地区侵入岩的成因.岩石矿物学杂志,15(1):10-20.
    邢凤鸣.1998.扬子岩浆岩带东段基性岩地球化学.地球化学,27(3):258-268.
    谢桂青.毛景文,李瑞玲等.2006.鄂东南地区Cu-Au-Mo-(W)矿床的成矿时代及其成矿地球动力学背景探讨:辉钼矿Re-Os同位素年龄.矿床地质,25(1):43-52.
    谢锡才,王义文等.1997.安家营子金矿田矿床及同源岩体同位素地球化学.贵金属地质,6(3):171-182.
    徐祥,刑凤鸣,1994.宁芜地区三个辉长岩的全岩和矿物Rb-Sr等时线年龄.地质科学,29(3):309-312
    徐祥,邢凤鸣.1999.安徽沿江地区中基性岩稀土元素地球化学特征.安徽地质,9(2):81-89.
    徐夕生,范饮成,Reilly Y.O等.2004.安徽铜官山石英闪长岩及其包体锆石U-Pb定年与成因探讨.科学通报,49(18):1883-1891
    徐兆文,方长泉等.2004.与朝山金矿有关岩体地质地球化学特征.地质与勘探,40(3):42-45.
    徐志刚,盛继福,孙善平.1999.关于“橄榄玄粗岩系列(组合)”特征及某些问题的讨论.地质论评,45(增刊):43-62.
    鄢明才,迟清华.1997.中国东部地壳与岩石的化学组成.北京:科学出版社.
    闫峻,陈江峰.喻钢等.2003.长江中下游晚中生代中基性岩的铅同位素特征富集地幔的证据.高校地质学报,9(2):195-206.
    杨刚,陈江峰,杜安道等.2004.安徽铜陵老鸦岭含钼碳质页岩的Re-Os定年.科学通报. 49(12):1205-1208.
    杨小男,徐兆文,陆现彩等.2006.安徽铜陵狮子山岩浆岩岩石化学统治及成因讨论.全国岩石学与地球动力学研讨会,177-179.
    於崇文,岑况,鲍征宇等.1998.成矿作用动力学.北京:地质出版社,30-76.
    岳文逝,丁保良.1999.江苏白垩纪陆相层序地层研究.火山地质与矿产,20:287-344.
    臧文拴.2003.铜陵矿集区侵入岩年代学及构造分层成矿作用研究.博士学位论文.北京:中国地质大学.
    翟裕生,姚书振,林新多等.1992a.长江中下游地区铁铜(金)成矿规律.北京:地质出版社.
    翟裕生,姚书振,陈华慧等.1992b.长江中下游鄂城-铜陵一带遥感地质及成矿规律研究.武汉:中国地质大学出版社,73-81.
    赵会民,刘雪松,祝永军.2004.安徽狮子山矿田白芒山岩体地球化学特征及成因机制.吉林地质,23(3):30-35.
    赵新福,李建威,马昌前等.2006.鄂东南铁铜矿集区铜山口铜(钼)矿床~(40)Ar/~(39)Ar年代学及对区域成矿作用的指示.地质学报,80(6):849-862.
    赵一鸣,林文蔚,毕承恩等.1990.中国矽卡岩卡岩矿床[M].北京:地质出版社.1-354.
    赵一鸣,林文蔚,毕承思等.1997a.中国含金矽卡岩矿床分布和主要地质特征.矿床地质,16(3):193-203.
    赵一鸣.张轶男,林文蔚.1997b.我国矽卡岩矿床中的辉石和似辉石特征及其与金属矿化的关系.矿床地质,16(4):318-329.
    赵一鸣,张轶男,毕承思.1999.含金矽卡岩矿床产出构造环境和地质地球化学评价标志.地学前缘,6(1):181-193.
    赵一鸣.2002.矽卡岩矿床研究的某些重要新进展.矿床地质,21(2):113-120.
    章邦桐,陈培荣,凌洪飞等.2004.赣南中侏罗世玄武岩的Pb-Nd-Sr同位素地球:中生代地幔源区特征及构造意义.高校地质学报,10(2):145-156.
    张旗,赵太平,钱青等.2001.中国东部燕山期岩浆活动的几个问题.岩石矿物学杂志,20:273-280.
    张旗,简平,刘敦一等.2003.宁芜火山岩的锆石SHRIMP定年及其意义.中国科学(D),33:309-314.
    张贻侠,寸琏,刘连登等.1996.中国金矿床:进展与思考.北京:地质出版社,1-205
    张作衡,柴风梅,杜安道等.2004.新疆喀拉通克铜镍硫化物矿床Re-Os同位素测年及成矿物质来源示踪.岩石矿物学杂志,24(4):285-293.
    周曙光.2000.鹅抱蛋山硫金矿床地质特征及其成因探讨.矿业快报,411:13-17
    周泰禧,李学明,赵俊深等.1987.铜陵铜官山矿田火成岩的同位素地质年龄[J].中国科学技术大学学报,17(30):403-413.
    周涛发,岳书仓,刘晓东.1999.长江中下游铜、金矿床密集区形成条件及矿床成因研究综述.地质科技情报,18(3):51-54.
    周涛发,岳书仓,袁峰等.2000.长江中下游两个系列铜、金矿床及其成矿流体系统的氢、氧、硫、铅同位素研究,中国科学(D辑),43(增刊):209-218.
    周徇若,任进.1994.长江中下游中生代花岗岩.北京:地质出版社.1-119.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700