红外隐真与示假中的若干热物理问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着红外探测技术的飞速发展,各种具有高探测精度、高分辨率的红外探测和遥感设备不断涌现,对武器装备的战场生存产生了极大的威胁,武器装备的红外伪装能力急需得到提高。
     按目的可将红外伪装技术分为两类,分别为红外隐真与红外示假。红外隐真主要是针对目标的红外辐射特征进行材料和结构设计,减弱目标热红外辐射信号,降低目标从背景中被辨识的概率,以实现对目标的保护。红外示假主要是通过制作与真目标外形及尺寸一致,且红外辐射特性与真目标接近的假目标来迷惑敌方精确制导武器,达到保护真目标,消耗敌人火力的目的。
     影响目标红外辐射强度的主要参数为表面发射率和表面温度。红外伪装的实质是通过对表面发射率及表面温度的控制,将目标的红外辐射控制在所需范围之内。表面发射率与表面结构和材料密切相关,当表面材料及结构确定时,其表面辐射特性只由温度决定。为实现较好的伪装效果,选用合适的热物理手段对目标表面进行温度控制是实现红外伪装的关键所在。本文研究的为红外隐真与示假中的一些热物理问题。
     在红外示假方面,当前国内的制式假目标多采用主动加热方式,能在夜间较好地模拟真目标的红外特征,但是由于其只能加热,不能冷却,在白天不能有效模拟真目标的红外特性。针对这个问题,作者提出了两种解决方案,一为利用相变材料的大热容,将假目标的热量在白天以潜热形式存储,避免温升过快,夜间则通过相变将白天存储的热量释放,以减缓假目标表面的降温速率;另一种方法则是通过对流换热,将假目标的热量以显热的形式存储与释放,达到温控目的。
     在相变材料应用于红外示假的研究中,通过数值模拟,研究确定了适用于制作假目标的相变材料各物性参数的范围,分析了相变材料制作假目标的可行性,并根据所得结果,选取石蜡为研究对象,建立了相变材料模拟金属构件红外特征的理论模型,研究了适用于模拟各金属构件红外特征的相变材料假目标的相关结构参数,得出了相变材料假目标模拟各金属构件红外特征的理论结果,并对相变材料的导热系数这一物性提出了进一步的改进要求;搭建了假目标实验平台,验证了所建理论模型的准确性;以坦克假目标为研究对象,制作了炮塔、负重轮和前上装甲板三个坦克假目标的关键红外热特征部件,并进行了野外实验,取得了较好的结果;以添加铝肋片作为改进相变材料导热能力的手段,理论研究了此类导热增强型相变材料的相关结构参数对模拟效果的影响,得出了模拟不同厚度钢板红外特征的导热增强型相变材料的结构参数及模拟效果。
     在研究对流换热在红外假目标中的应用中,作者设计了一种金属构件红外特征的被动式模拟系统,系统由管板、泵、储液罐及工质构成;工质在系统中循环,以控制板材的表面温度,用于模拟金属构件的红外特征。通过数值模拟,研究了管板上管道分布密度、单根管道内工质的流率以及工质的总质量对管板表面平均温度变化的影响,结果表明,系统可较好地模拟2、5、10及20cm四种典型厚度的钢板的表面红外特征,管板表面温度的均匀度可控制在0.6℃以内,在一天中与钢板表面温度的最大差别可控制在4℃以内,符合当前红外假目标的设计要求。
     在红外隐真方面,追求与环境背景的全波段融合是红外隐真的最高目标。真实植被叶片的蒸腾作用对其红外特征有重要影响。通过选择适宜孔隙率和适宜材质的多孔材料制成伪装器材,利用流动介质在多孔材料孔隙通道内的渗流和表面蒸发作用,可望模拟实际植被的红外特性,达到逼真伪装的目的。
     本文建立了考虑蒸腾作用的植物叶片的热物理模型,理论分析了其表面温度的变化情况;设计了一种多孔仿真叶片,建立了多孔仿真叶片的理论模型,研究多孔介质的厚度、孔隙率、颗粒有效直径等关键参数对其表面温度变化的影响,并与实际植物叶片的结果相比较,发现多孔材料板厚0.5cm、孔隙率0.05、颗粒有效直径2.5mm的仿真叶片与植物叶片的表面温度较接近,典型日周期内两者表面温差在3℃以内,可很好地实现红外伪装。
With the development of the infrared(IR) detecting technology,various infrared detecting and remote sensing equipments of high accuracy and resolution are developed in the world,the safety of weaponry is seriously threatened,IR camouflage capacity of the weaponry should be enhanced urgently.
     There are two categories of IR camouflage technology according to the purpose, one is IR stealth and the other is IR decoy.IR stealth is to reduce the thermal infrared signal of the target by the method of material selecting and structure designing, making the thermal signal of target similar to the background,and reducing the probability of the target being identified from the background.IR decoy is to make a false target whose configuration and dimensions are same as real target and of similar infrared characteristic to real target.The false target is used in battlefield to protect the real target by puzzling enemy's precision-guided weapon.
     Surface emissivity and surface temperature are two key parameters that influence the infrared radiant intensity of the target.The essential of IR camouflage is to limit the infrared radiation of the target in a certain range by controlling surface emissivity and temperature of the target.Surface emissivity is determined by surface material and structure,while the surface material and structure are definite,surface temperature is the only influence factor.In order to achieve a satisfying camouflage effect,the key point is the surface temperature control by choosing an appropriate thermophysical method.This paper studies the application of some thermal control technologies in infrared camouflage and decoy.
     In the study of IR decoy technology,the method of active heating is commonly adopted in the standard false target,which is appropriate for simulating the infrared characteristic of real target at night,but the simulation is not satisfying during the daytime as lack of cooling ability.In this work,two methods are presented to solve that problem.The first method is the application of phase change material(PCM). PCM is used to store the heat of false target in the form of latent heat during the daytime,to avoid fast temperature increasing,while at night,the heat stored in PCM during the daytime is released by phase changing to slow down the surface temperature decreasing.The other method is storing and releasing heat of false target in the form of sensible heat by convection heat transfer to achieve the purpose of surface temperature control.
     In the study of the application of PCM in IR false target,through numerical simulation,the feasibility of the use of PCM is analyzed and the range of PCM parameters that suit for IR false target is determined.Based on the results,paraffin is selected as the candidate material.A theoretical model is built to investigate the simulation of the infrared characteristic of the metal structure with the PCM false target.Structure parameters of the PCM false target that suit for the simulation are investigated numerically.According to the results,further request on the improvement of the thermal conductivity of PCM is presented.An experimental platform is built and the numerical model is validated experimentally.Three key thermal characteristic components of the false tank(barbette,wheel and front armor plate) are manufactured and tested,and good results are obtained.A method for the thermal conductivity enhancing of PCM by using aluminum fins is studied,the influence of the structure parameters of PCM plates to the simulation effects are investigated numerically,and the reasonable configuration parameters of the PCM plates used to simulate the steel plates of different thickness are obtained.
     In the study of the application of heat convection method in IR false target,a passive infrared simulation system is designed to simulate the infrared characteristic of metal constructions.The system is made up of pipe-plate,pump,receiver,and working fluid.The working fluid circulates in the system,to control the pipe-plate surface temperature for simulating the infrared characteristic of metal constructions. By numerical simulation,the influences of the pipe distribution density,working fluid mass flow rate and the total mass of working fluid to the simulation effects are discussed.Results show that such a system can show a good performance in simulating the surface thermal characteristic of armor plates of four typical thicknesses of 2,5,10 and 20cm,the evenness degree of the surface temperature of pipe-plate is within 0.6℃,and the maximum surface temperature difference between pipe-plate and armor plate is within 4℃in a whole day.
     In the study of the IR stealth technology,the final goal of IR stealth is to make the infrared radiation of target same as the background.The infrared characteristic of plant leaf is greatly influenced by transpiration.Take advantage of the seepage flow and surface evaporation of the liquid in porous material,the IR stealth equipment made from porous material of suitable porosity and material can be used to simulate the IR characteristic of plant leaf.
     A thermophysical model of plant leaf considering transpiration is built and the surface temperature variation of the plant leaf is investigated theoretically.A kind of porous artificial leaf is proposed,the influences of the porosity,thickness and particle diameter of the artificial leaf to its surface temperature are discussed.According to the simulation results,it is found that the artificial leaf of the thickness of 0.5cm,porosity of 0.05 and particle diameter of 2.5mm is suit for simulating the infrared characteristic of realistic leaf,the surface temperature difference is within 3℃in a typical diurnal periodicity.
引文
[1]洪维权.红外探测制导跟踪技术在军事上的应用[J].隐身技术,1988,4(2):68-72.
    [2]周立伟.目标探测与识别[M].北京:北京理工大学出版社,2001.
    [3]常本康,蔡毅.红外成像阵列与系统[M].北京:科学出版社,2006.
    [4]任全,李为民.反巡航导弹中的红外探测预警分析[J].战术导弹控制技术,2005,(4):42-45.
    [5]赵江.红外探测技术的现状与发展趋势[J].舰船电子工程,2007,27(1):32-36.
    [6]林武文,徐锦,徐世录.红外探测技术的发展[J].激光与红外,2006,36(9):840-843.
    [7]蔡毅,胡旭.红外成像寻的用红外探测器现状和发展趋势[J].红外与激光工程,2006,(1):7-11.
    [8]李新华.国外涂料型红外隐身材料研制现状和发展方向分析[J].红外技术,1994,16(1):5-11.
    [9]Sucoe.R.F.Blue-gray low IR emitting coating.USP4311623[P],1982.
    [10]Wake.L.V.Principles and formulation of solar reflecting and low IR emitting coatings for defence use.AD-A218429[P],1990.
    [11]Clvert.R.L.et.al.Surface coating for low emittance in the thermal survellance band.AD-A152257[P],1984.
    [12]田乃林.红外隐身方法与材料的发展[J].化工进展,2002,21(4):283-286.
    [13]Hugo Gerd.Camouflage paint with low emission in heat radiation range and mfr.Process.DE-4418215[P],1995.
    [14]Bach.W.Diplphys,Assfalg.A.D.Materials for multispectral camouflage in the visual,IR and micro/millimetre-wave range:DE-3606691[P],1987.
    [15]Tului.M,Valle.R,Mortoni,et al.Composite with a low emissivity in the medium and far infrared,and with a low reflectivity in the visible and near infrared.USP7070857[P],2006.
    [16]杜永,刑宏龙,陈水林.热红外隐身涂料的研究进展[J].涂料工业,2007,37(2):54.
    [17]Shan.Y,Zhou.Y.M,Cao.Y,et.al.Preparation and infrared emissivity study of collagen-g-PMMA/In2O3 nanocomposite[J].Materials Letters,2004,(58):1655-1660.
    [18]辛宇天,王强.纳米隐身涂料特性及应用分析[J].光电技术应用,2005,20(4):29-31.
    [19]黄芸,沐磊,张其土.红外低辐射率涂料的研究进展与发展趋势[J].材料科学与工程学报,2008,26(5):820-824.
    [20]庄海燕,郑添水,任润桃,等.红外隐身涂料的研究现状及发展趋势[J].材料开发与应用,2006,21(3):43.
    [21]宋兴华,於定华,马新胜,等.涂料型红外隐身材料研究进展[J].红外技术,2004,2(26):9.
    [22]张树海,苟瑞君.隐身技术的研究进展[J].华北工学院学报,2002,23(2):100.
    [23]王庭慰.8~14μm低发射率红外隐身涂料研究[J].光学技术,2005,4(31):598.
    [24]王自荣,余大斌.红外隐身涂料颜料发射率研究[J].上海航天,2000,(1):24.
    [25]马格林,曹全喜,黄云霞.红外和雷达复合隐身材料—掺杂氧化物半导体[J].红外技术,2003,25(4):77.
    [26]翁小龙,张捷,刘孝会.热红外低辐射率涂料的研制[J].表面技术,2001,4(30):36.
    [27]于斌,齐鲁.多功能隐身材料的研究与应用现状[J].红外技术,2003,3(25):63.
    [28]肖冰,李军念,陈秦,等.国外军用伪装网技术的现状及发展趋势[J].四川兵工学报,2003,24(5):64-66.
    [29]Amsafe Bridport LTD,GB2420169[P],2006.
    [30]Jane's Military Vehicles and Logistics 2006-2007[G].Great Brutain:Biddies LTD,2006:983-991.
    [31]Amsafe Bridport(GB).EP1464914[P],2004.
    [32]Ploug Quet.US5348789[P],1994.
    [33]Texplorer Gmbh.JP2004101166[P],2004.
    [34]Slepnyov Alexei,Burmitsky Yuri.Camouflage will Save Personnel and Material[J].Military Parade,2006,(12):14-16.
    [35]Amsafe Bridport LTD(GB).EP1610085[P],2005.
    [36]Mckinney.R.A,Bryant.Y.G,Colvin.D.P.Method of reducing infrared viewability of objects.US6373058[P],2002.
    [37]李晓霞,张胜虎,凌永顺,等.新型热红外伪装体系[J].红外技术,2002,24(1):42-45.
    [38]阳波,.顾红军,吴义富.武器装备伪装毯研究[J].装备环境工程,2005,2(6):94-97.
    [39]颜家斌,刘颖,胡传断,等.多波段草型伪装网的研制[J].表面技术,2008,37(1):75-77.
    [40]王凯民,符绿化.国外火工烟火技术发展研究[R].中国兵器工业第213所,1998,152-186.
    [41]Sing.A.Evaluat ion of Pyrotechnic smoke for anti-infrared and anti-laser roles[J].Propellants,Explosives,Pyrotechnics,1995,19(3):16-20.
    [42]张海数,苟瑞君.隐身技术的研究进展[J].华北工学院学报,2002,23(2):100-104.
    [43]Krone.U.Pyrotechnic Smoke Generator for Camouflage Purpose[R].DE4337071,1995:1-10.
    [44]张冬梅,赵升洪,乔衍华,等.国外军用烟幕隐身剂的现状和发展[J].红外技术,2008,30(7):376-379.
    [45]孙世安,费逸伟,王协旗,等.红外烟幕材料及其发展趋势[J].红外技术,2005,27(2):164-166.
    [46]王玄玉,潘功配,何艳兰,等.几种纳米氧化铝的红外消光性能研究[J].含能材料,2005,13(5):312-315.
    [47]周遵宁,潘功配,关华,等.纳米SiO_2对复合碳粉发烟剂性能的影响[J].含能材料,2004,12(2):113-115.
    [48]Matthew.Y.S,Tobias.B,Feng.W,et.al.Optical spectroscopy of individual single-walled carbon nanotubes of defined chiral structure[J].Science.2006,312(5773/:554-556.
    [49]王红霞,刘代志,翟为刚.不同碳纳米材料的微波衰减性能研究[J].含能材料,2007,15(2):148-151.
    [50]王红霞,刘代志,宋子彪.碳纳米材料红外图像遮蔽特性研究[J].含能材料,2008,16(5):588-593.
    [51]刘香翠,郑卫平.纳米银粉的红外消光特性研究[J].红外技术,2008,30(5):301-305.
    [52]Woodward.E.D.Combined Microwave and Infrared Chaff.USP5049883[P],1991.
    [53]Giglia.R.D.Radar and Infrared-Detectable Structural Simulation Decoy.USP5092244[P],1992.
    [54]王家营,刘益民.红外伪装技术现状和发展趋势[J].红外与激光技术,1995,24(4):1-4.
    [55]李弥异,王利生.武器装备排气系统红外抑制武器技术综述[J].现代防御技术,2003,31(5):51-56.
    [56]王军生,马治国,刘海波.导弹的红外隐身技术[J].飞航导弹,2006,(6):34-37.
    [57]Brown.N.Counter-Stealth,The unconventional approach[J].Jane's Defence weekly.2001,(5):26-28.
    [58]Fulghum.D.A,Wall.R.Russia's top designers claim antistealth skills[J].Avitio Week &Space Technology.2001,(10):82-85.
    [59]夏新仁,冯金平.导弹隐身技术的现在与将来[J].电子对抗,2007,(4):44-50.
    [60]汪朝群.空中目标的红外隐身及探测跟踪技术[J].红外与激光工程,2006,(35):127-133.
    [61]张羽,杨立.海面舰艇红外隐身效能评估[J].激光与红外,2006,(5):335-338.
    [62]王进昌,朱天明.水面舰艇的红外辐射及红外隐身技术分析[J].红外,2006,(2):28-32.
    [63]张紫辉,徐晓刚,石小玉.水面舰艇目标红外隐身技术[J].红外,2007,28(11):1-3.
    [64]吕晓红.国外伪装技术发展现状及其趋势[J].飞航导弹,1996,(3):1-7.
    [65]刘凯龙.国外伪装器材及性能测试的新进展[J].装备环境工程,2006,3(5):92-96.
    [66]葛强胜.外军机动装备伪装技术研究与发展现状[J].国防交通工程与技术,2004,(2):38-42.
    [67]周宗濂.战场示假与假目标装备器材的发展[J].工兵装备研究,1997,(1):47-54.
    [1]张寅平,胡汉平,孔祥冬,苏跃红.相变贮能-理论和应用[M].合肥:中国科学技术大学出版社,1996.
    [2]Frank P.Incropera,David P.DeWitt,Heat and Mass Transfer,fifth edition,John Wiley &Sons,Company,2002,USA.
    [3]D.Feldman,D.Banu and D.W.Hawes,Development and application of organic phase change mixtures in thermal storage gypsum wallboard,Solar Energy Materials and Solar Cells,1995,36:147-157.
    [4]T.J.Lu,Thermal management of high power electronics with phase change cooling,International Journal of Heat and Mass Transfer,2000,43:2245-2256.
    [5]肖敏,龚克成.良导热、形状保持相变蓄热材料的制备及性能[J].太阳能学报,2001,22(4):427-430.
    [6]陈则韶,葛新石.相变储热材料的热物性及石蜡的焓增量与相对容积增量的关系[J].太阳能学报,1983,(1):11-17.
    [7]叶宏,葛新石,一种定形相变材料的结构和理化分析[J].太阳能学报,2000,(4):417-422
    [8]Ye Hong,Ge Xin-shi.Preparation of polyethylene-paraffin compound as a form-stable solid-liquid phase change material[J].Solar Energy Materials & Solar Cells,2000,(64):37-44.
    [9]叶宏,葛新石,焦冬生.带定形PCM的相交贮能式地板辐射采暖系统热性能的数值模拟[J].太阳能学报,2002,(4):482-487.
    [10]V.Voller and M.Cross.Accurate solutions of moving boundary problems using the enthalpy method[J].Int.J.Heat Mass Transfer,1981,24(5):545-556.
    [11]葛新石,龚堡,陆维德,王义方.太阳能工程-原理和应用[M].北京:学术期刊出版社,1988.
    [12]Frank P.Incropera,David P.DeWitt.Heat and Mass Transfer[M].Fifth Edition.New York:John Wiley & Sons,Company,2002.
    [1]V.Voller and M.Cross.Accurate solutions of moving boundary problems using the enthalpy method[J].Int.J.Heat Mass Transfer,1981,24:545-556.
    [2]Ge Xinshi,Gong Bao,Lu Weide,Wang Yifang.Solar Energy Engineering—Principles and Applications[M].Beijing:Academic Journal Press,1988:101(in Chinese).
    [3]Zhang.Y.P,Liang.X.G,Numerical analysis of effective thermal conductivity of mixed solid materials[J].Materials & Design,1995,16:91-95.
    [4]Zhang.Y.P,Liang.X.G.Effective Thermal Conductivity of Composite Materials with Metal Matrix I.Numerical Analysis,Proc.of the 4th Int.Symposium of Heat Transfer with Exhibition,Beijing,China,Oct.,1996.
    [1]Xinglin Tong,Jamil A.Khan,M.Ruhul Amin.Enhancement of heat transfer by inserting a metal matrix into a phase change material[J].Numerical Heat transfer,Part A,1996,(30):125-141.
    [2]Hisham.M.Ettouney,Imad Altatiqi,Mohammad Al-Sahali,Safaa Ahmad Al-Ali.Heat transfer enhancement by metal screens and metal spheres in phase change energy storage systems[J].Renewable Energy,2004,(29):841-860.
    [3]Osama Mesalhy,Khalid Lafdi,Ahmed Elgafy,Keith Bowman.Numerical study for enhancing the thermal conductivity of phase change material(PCM) storage using high thermal conductivity porous matrix[J].Energy Conversion and Management,2005,46:847-867.
    [4]Jun Fukai,Yuichi Hamada,Yoshio Morozumi,Osamu Miyatake.Effect of carbon-fiber brushes on conductive heat transfer in phase change materials[J].International Journal of Heat and Mass Transfer,2002,45:4781-4792.
    [5]F.Frusteri,V.Leonardi,S.Vasta,G.Restuccia.Thermal conductivity measurement of A PCM based storage system containing carbon fibers[J].Applied Thermal Engineering,2005,25:1623-1633.
    [6]Aytunc Erek,Zafer Ilken,Mehmet All Acar.Experimental and numerical investigation of thermal energy storage with a finned tube[J].International Journal of Energy Research,2005,29:283-301.
    [7]Zhongliang Liu,Xuan Sun,Chongfang Ma.Experimental investigations on the characteristics of melting processes of stearic acid in an annulus and its thermal conductivity enhancement by fins[J].Energy Conversion and Management,2005,46:959-969.
    [8](美)弗兰克·P·英克鲁佩勒、戴维·P·戴威特著,葛新石、王义方、郭宽良泽.传热的基本原理[M].合肥:中国科学技术大学出版社,1993.
    [9]葛新石,龚堡,陆维德,王义方.太阳能工程-原理和应用[M].北京:学术期刊出版社,1988.
    [1]叶宏,江利锋,王西耀,庄双勇.相变材料模拟金属构件热特性的数值研究[J].计算物理,2006,23(4):461-469.
    [2]葛新石,龚堡,陆维德,王义方.太阳能工程.原理和应用[M].北京:学术期刊出版社,1988.
    [3]J.A.达菲,W.A.贝克曼著,葛新石,龚堡,陆维德译.太阳能—热能转换过程[M].北京:科学出版社,1980.
    [4]Frank·P·Incropera等著,葛新石等译.传热的基本原理[M].合肥:安徽科学技术出版社,1985.
    [5]John A.Duffle,William A.Beckman.Solar Engineering of Thermal Processes[M].John Wiley & Sons,INC.,1991.
    [6]郑爱平.空气调节工程[M].北京:科学出版社,2002.
    [7]刘森元,黄远峰,天空有效温度的探讨[J].太阳能学报,1983,4:63-68.
    [1]闫晓,肖泽军,黄彦平,王飞.多孔介质中流动换热特性的研究进展[J].核动力工程,2006,27(1):77-82.
    [2]S.Kiwan.M,A.Al-Nimr.Using porous fins for heat transfer enhancement[J].A.S.M.E.J.H.T.2001.
    [3]Kang-Hoon Ko.N.K.Anand.Use of porous baffles to enhance heat transfer in a rectangular channel[J].International Journal of Heat and Mass Transfer.2003,(46):4191-4199.
    [4]Bruno Monte Da Silva Miranda.N.K.Anan.Convective heat transfer in a channel with porous baffles[J].Numerical Heat Transfer,Part A,2004,46:425-452.
    [5]Mehmet Sozen.T.M.Kuzay.Enhanced heat transfer in round tubes with porous inserts[J].I.J.H.F.F.1996.
    [6]S.Chikh,A.Boumedien,K.Bouhadef,G.Lauriat.Analysis of fluid flow and heat transfer in a channel with intermittent heated porous blocks[J].Heat and Mass Transfer,1998,(33):405-413.
    [7]J.M.ZHANG,W.H.SUTTON,F.C.LAI.Enhancement of heat transfer using porous convection-to-radiation converter for laminar flow in a circular duct[J].I.J.H.M.T.1997.
    [8]M.K.Alkam.M.A.Al-Nimr.M.O.Hamdan.Enhancing heat transfer in parallel-plate channels by using porous inserts[J].International Journal of Heat and Mass Transfer.2001,(44):931-938.
    [9]M.K.Alkam,M.A.Al-Nimr.Improving the performance of double-pipe heat exchangers by using porous substrates[J].International Journal of Heat and Mass Transfer.1999,(42):3609-3618.
    [10]Jay A.Landis,W.Jerry Bowman.Numerical study of a transpiration cooled rocket nozzle.American Institute of Aeronautics and Astronautics.1996.A9636836,AIAA:96-2580.
    [11]A.Bouddourt,J.L.Auriault and M.Mhamdi-alaoui.Heat and mass transfer in wet porous media in presence of evaporation-condensation[J].Int.J.Heat Mass TransJer.1998,41(15):2263-2277.
    [12]D.S.FREITAS,M.PRAT.Pore Network Simulation of Evaporation of a Binary Liquid from a Capillary Porous Medium[J].Transport in Porous Media,2000,(40):1-25.
    [13]Joao Borges Laurindo.Marc Prat.Numerical and experimental network study of evaporation in capillary porous media[J].Drying rates,Chemical Engineering Science,1998,53(12):2257-2269.
    [14]M.A.Hanlon,H.B.Ma.Evaporation Heat Transfer in Sintered Porous Media[J].Journal of Heat Transfer,2003,1(125):644-652.
    [15]李申升.太阳常数与太阳辐射的光谱分布[J].太阳能学报,2003,24(4):5-6.
    [16]J.C.Roy,C.Vidal,J.Fargues,T.Boulard.CFD based determination of temperature and humidity at leaf surface[J].Computers and Electronics in Agriculture,2008,61(2):201-212.
    [17]吴大千,徐飞,郭卫华,王仁卿,张治国.中国北方城市常见绿化植物夏季气孔导度影响因素及模型比较[J].生态学报,2007,27(10):4141-4148.
    [18]Frank.P.Incropera等著,葛新石等译.传热的基本原理[M].合肥:安徽技术科学出版社,1985.
    [19]M.A.Hanlon,H.B.Ma.Evaporation Heat Transfer in Sintered Porous Media[J].ASME.2003,125(4):644-652.
    [20]M.Prat.On the influence of pore shape,contact angle and film flows on drying of capillary porous media[J].International Journal of Heat and Mass Transfer,2007,50(7-8):1455-1468.
    [21]赵孝保.吸液芯热管设计因素分析与修正[J].南京师范大学学报,2004,4(3):7-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700