前视探地雷达关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前视探地雷达是一种利用地下介质的不连续性来探测地下目标的有效工具。它是在下视探地雷达的基础上发展起来的一种新型的探地雷达。在前视探地雷达中,天线被放置在运动装置的前方,以一定的入射角照射被探测区域。
     与下视探地雷达相比,前视探地雷达具有地表回波较弱、效率更高、远离危险地及可以对目标进行多视处理等优点。因此,对前视探地雷达的研究已成为当今探地雷达研究领域中的热点。
     当前,对前视探地雷达的研究主要有系统硬件设计和信号处理技术,论文重点研究前视探地雷达的信号处理技术。前视探地雷达信号处理的难点主要表现在:前视探地雷达目标的雷达有效散射面积小于下视探地雷达目标的雷达有效散射面积,这使得前视探地雷达对目标的探测更加困难;前视探地雷达斜入射的电磁波在地表面的散射难以预测,目标回波易被地表杂波所淹没,这使得前视探地雷达很难得到高质量的数据图像;前视探地雷达斜入射的电磁波在空气和地分界面发生折射,同时由于地下介质的复杂性,如何精确地进行折射校正处理也是前视探地雷达研究的一个难题。论文主要研究了前视探地雷达的杂波抑制、合成孔径成像及波速估计等方面,针对这几个研究对象,论文的主要工作及创新点如下:
     1.针对来自于成像区域之外的点散射源产生的杂波,提出了一种非线性拟合的杂波抑制方法。该方法通过顶点变化的抛物线Radon变换,提取杂波参数,利用非线性拟合技术重构杂波,实现杂波抑制。并分别对杂波抑制前后的信噪比及接收机的工作特性(Receiver Operating Characteristic,ROC)曲线进行了比较。从比较结果可以看出,采用该方法抑制这类杂波的效果较明显,通过杂波抑制可以获得更好的图像质量。
     2.提出了两种前视探地雷达合成孔径成像方法,即:微波全息成像法和非平稳滤波法。微波全息成像法是通过计算电磁波的等效传播速度,将电磁波在两层介质中的传播等效处理为在单层介质中的传播,再利用微波全息成像法实现合成孔径成像。而非平稳滤波法则是将非平稳滤波理论应用于前视探地雷达合成孔径成像处理,通过构建非平稳滤波变换函数,对雷达接收数据的频谱进行频率域非平稳卷积滤波运算,实现重建目标频谱。最后,将非平稳滤波理论应用于前视探地雷达三维成像处理,利用估计的目标入射角,对目标图像进行折射校正处理,该方法的创新点是提出一种折射校正方法,使成像中的折射校正计算量显著降低。同时,利用估计的目标入射角实现前视探地雷达的多视处理,通过多视处理提高信噪比及目标的检测能力。
     3.分析了在前视探地雷达中波速估计不精确对目标定位的影响,提出了一种前视探地雷达波速估计方法。该方法通过波速扫描和成像处理,利用目标图像灰度方差进行波速估计。对仿真数据和实测数据进行处理,结果证明了所提方法的有效性。
Forward-looking ground penetrating radar (FLGPR) is an effective tool to detect buried targets by discerning the discontinuities in the electric permittivity of the propagation medium. And it is a new type GPR developed on the base of down-looking GPR (DLGPR). FLGPR places its antennas in front of a mobile platform and inspects the ground surface of interest with an incidence angle.
     Compared with downward-looking systems, there are many advantages of FLGPR. FLGPR does not suffer from the problem of strong specular reflection from the ground, and is capable of collecting data for a much larger area in a much shorter time than DLGPR and imaging away from a safe distance. Furthermore, FLGPR can usually provide multiple observations on the same spot as the system moves forward, and can take advantage of multi-look processing to improve its detection capability. Due to these merits, the research of FLGPR has become an hot topic in the landmine detection community.
     Currently, the researches of FLGPR can be cast into the system hardware design and the signal processing technology. This dissertation focuses on the signal processing technology of FLGPR, which is a challenging task due to the following reasons: The landmine radar cross section RCS of FLGPR is smaller than that of DLGPR, which makes landmine detection by FLGPR a challenging problem. EM waves scatter from a random rough ground surface in unpredictable ways, contributing to clutter which distort and obscure the desired scattering field from a buried target. Problems such as refraction at the air/ground interface will also result in errors to simple propagation models because of the complexity in the propagation medium. The clutter reduction, synthetic aperture imaging and the electromagnetic wave velocity estimation are investigated in this dissertation. The contents and innovations of this dissertation are as following:
     1. Aimed at the clutter in radar data caused by backscattered from the scatterer external the imaging (survey) area in FLGPR, this dissertation proposes a method to reduce this kind of clutter. This clutter reduction method uses apex shifted parabolic Radon transform estimate the clutter parameter in the Radon domain. And the clutter are reconstructed by nonlinear curve fitting. Then the clutter is removed by subtraction method. By comparing the effect between pre-and post clutter reduction, the clutter reduction method increases the signal-to-noise ratio (SNR) of the radar images and improves the detection performance. And the clutter reduction method can obtain higher quality images.
     2. Two new methods, which are synthetic aperture imaging based on holographic imaging and synthetic aperture imaging based on nonstationary filter have been proposed. For the holographic imaging method, the propagation of electromagnetic wave in two different media can be equivalent to the propagation in one media by using the equivalent wave velocity, and the synthetic aperture imaging can be accomplished by holographic imaging method. But the nonstationary filtering method, by using nonstationary convolution filter, the spectrum of the refocused image can be reconstructed directly from the spectrum of backscattered signal from the target area. Furthermore, the theory of nonstationary filtering can be applied to the 3-D synthetic aperture imaging for FLGPR. The refraction correction of the target imaging can reduce the computational cost. The multi-look processing which improve its SNR and detection capability are accomplished by estimating the incidence angle of target.
     3. After analyzing the effects of the imprecise of wave velocity on the target locating. A method is proposed to estimate the velocity of the electromagnetic wave propagation under ground. This method estimates the velocity using the image gray variance after synthetic aperture imaging with various velocities. The effectiveness of the approach is demonstrated with simulated data and experimental data set.
引文
[1] D. J. Daniels, D. J. Gunton, H. F. Scott. Introduction to subsurface radar. IEE Proceedings, 1988,135(4):278-320
    [2] P. Gao, L. Collins. A two-dimensional generalized likelihood ratio test for land mine and small unexploded ordnance detection. Signal Process, 2000, 80:1669-1686
    [3] C. P. Gooneratne, S. C. Mukhopahyay, G. Sen Gupta. A review of sensing technologies for landmine detection: Unmanned Vehicle Based Approach. 2nd International Conference on Autonomous Robots and Agents, 2004, pp:401-407
    [4] D. J. Daniels. Ground penetrating radar-2nd edition. Published by IEE, London, United Kingdom, 2004
    [5] R. J. Chignell. Ground penetrating radar-a sensor for mine detection. A Humanitarian Imperative Seeking a Technical Solution, EUREL International Conference, 1996, pp:103-108
    [6] Stanislav Vitebskiy, Lawrence Carin, Marc A. Ressler, et al. Ultra-wideband, short-pulse ground-penetrating radar: simulation and measurement. IEEE Transactions on Geoscience and Remote Sensing, 1997,35(3):762-772
    [7] Jennifer I. Halman, Keith A., George T. Ruck. SAR processing of ground-penetrating radar data for buried UXO detection: results from a surface-based system. IEEE Transactions on Antennas and Propagation, 1998,46(7): 1023-1027
    [8] Hakan Brunzell. Detection of shallowly buried objects using impulse radar. IEEE Transactions on Geoscience and Remote Sensing, 1999,37(2):875-886
    [9] Thomas RMontoya, Glenn S. Smith. Land mine detection using a ground penetrating radar based on resistively loaded vee dipoles. IEEE Trans. AP, 1999,47(12):1795-1806
    [10] Anders Sullivan, Raju Damarla, Norbert Geng, et al. Ultrawide-band synthetic aperture radar for detection of unexploded ordnance: modeling and measurements. IEEE Transactions on Antennas and Propagation, 2000,48(9): 1306-1314
    [11] R.Benjamin, I.J.Craddock, et al. Microwave detection of buried mines using non-contact synthetic near field focusing. IEE Proc. Radar, Sonar Navig., 2001,148(4):233-240
    [12]P.D.Gader, M.Mystkowski, Yunxin Zhao.Landmine detection with ground penetrating radar using hidden Markov models.IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(6):1231-1244
    [13]Yanting Dong, Paul R.Runkle, Lawrence Carin, et al.Multi-aspect detection of surface and shallow-buried unexploded ordnance via ultra-wideband synthetic aperture radar.IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(6):1259-1270
    [14]Alexander G.Yarovoy, Leo P.Ligthart.Polarimetric video impulse radar for landmine detection.Subsurface Sensing Technologies and Applications,2002, 3(4):271-293
    [15]K.C.Ho, Paul D.Gader.A linear prediction land mine detection algorithm for hand held ground penetrating radar.IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(6):1374-1384
    [16]Yunxin Zhao, Paul Gader, Ping Chen, et al.Training DHMMs of mine and clutter to minimize landmine detection Errors.IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(5):1016-1024
    [17]K.C.Ho, Leslie M.Collins, Lisa G.Huettel, et al.Discrimination mode processing for EMI and GPR sensors for hand-held land mine detection.IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(1):249-263
    [18]Paul Gader, Wen-Hsiung Lee, Joseph N.Wilson.Detecting landmines with ground-penetrating radar using feature-based rules, order statistics, and adaptive whitening.IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(11):2522-2534
    [19]Chih-Chung Yang, N.K.Bose.Landmine detection and classification with complex-valued hybrid neural network using scattering parameters dataset.IEEE Transactions on Neural Networks, 2005, 16(3):743-753
    [20]Delphine Potin, Philippe Vanheeghe, Emmanuel Duflos, et al.An abrupt change detection algorithm for buried landmines localization.IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(2):260-272
    [21]Yuwei Liao, Loren W.Nolte, Leslie M.Collins.Decision fusion of ground-penetrating radar and metal detector algorithms-a robust approach.IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(2):398-409
    [22]Peter Torrione, Leslie M.Collins.Texture features for antitank landmine detection using ground penetrating radar.IEEE Transactions on Geoscience and Remote Sensing, 2007,45(7):2374-2382
    [23]Joseph N.Wilson, Paul Gader, Wen-Hsiung Lee, et al.A large-scale systematic evaluation of algorithms using ground-penetrating radar for landmine detection and discrimination.IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(8):2560-2572
    [24]K.C.Ho, Lawrence Carin, Paul D.Gader, et al.An investigation of using the spectral characteristics from ground penetrating radar for landmine/clutter discrimination.IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(4):1177-1191
    [25]Lanho Liu, Yong Li, Chaoguang Zhou.Identification of paleo-liquefaction and deformation features.In Eighth Intl.Conference on Ground Penetrating Radar,SPIE,2000, Vol.4084:383-389
    [26]J.Aaltonen, J.Nissen.Geological mapping using GPR and differential GPS positioning.Ninth International Conference on Ground Penetrating Radar, Proceedings of SPIE, 2002,Vol.4758:207-210
    [27]B.Heincke, T.Spillmann, H.Horstmeyer, et al.3-D georadar surveying in areas of moderate topographic relief.Ninth International Conference on Ground Penetrating Radar, Proceedings of SPIE, 2002, Vol.4758:223-227
    [28]Charles T.Young.Estimating hydrogeologic parameters from radar data.Ninth International Conference on Ground Penetrating Radar, Proceedings of SPIE, 2002, Vol.4758:601-604
    [29]M.Camevale, J.Hager.Low frequency GPR in difficult terrain.2007 4th International Workshop on Advanced Groung Penetrating Radar,2007, pp:68-73
    [30]M.Bavusi, A.Giocoli, E.Rizzo, et al.Geophysical investigations in the Castle of Crotone (Calabria Region, Italy).2007 4th International Workshop on Advanced Groung Penetrating Radar,2007, pp:78-81
    [31]Qi Lu, Motoyuki Sato.Groundwater monitoring by GPR in Mongolia.Ninth International Conference on Ground Penetrating Radar, Proceedings of SPIE, 2002, Vol.4758:545-550
    [32]L.W.Galagedara, G.W.Parkin, J.D.Redman.An analysis of the ground-penetrating radar direct ground wave method for soil water content measurement.HYDROLOGICAL PROCESSES Hydrol.Process, 2003, 17:3615-3628
    [33]Yuji Takeshita, Hiroaki Kobayashi, Kazunori Tao, et al.Measurement of groundwater behavior in sandy soils using surface ground penetrating radar.Proceedings of the Tenth International Conference on Ground Penetrating Radar, 2004, pp :517-520
    [34]F.Nicollin, Y.Barbin, W.Kofinan, et al.An HF bi-phase shift keying radar: application to ice sounding in Western Alps and Spitsbergen glaciers.IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(5):1025-1033
    [35]C.Allen, B.Wohletz, S.Gogineni.Radar sounding of glaciers in Greenland.1996 IEEE International on Geoscience and Remote Sensing Symposium Proceedings(IGARSS '1996), Vol.4:1932-1934
    [36]S.E.Hamran, T.Guneriussen, J.O.Hagen, et al.Ground penetration radar and ERS SAR data for glacier monitoring.1997 IEEE International on Geoscience and Remote Sensing Symposium Proceedings(IGARSS'1997), Vol.2:634-636
    [37]Seiho Uratsuka, Hideo Maeno, Takeshi Suitz, et al.Development and field experiment of L-band high-resolution ice-radar.IEICE TRANS.COMMUN, 2000, E83-B(9):1969-1977
    [38]Kirsty Langley, Svein-Erik Hamran, Kjell Arild Hogda, et al.Use of C-band ground penetrating radar to determine backscatter sources within glaciers.IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(5):1236-1246
    [39]J.C.Ralston, D.W.Hainsworth.Application of ground penetrating radar for coal depth measurement.1999 IEEE International Conference on Acoustics, Speech, and Signal Processing(ICASSP'99), Vol.4:2275-2278.
    [40]Jan C.Franck(?), David C.Nobes.A preliminary evaluation of GPR for nickel laterite exploration.In Eighth Intl.Conference on Ground Penetrating Radar, SPIE, 2000,Vol.4084:7-12
    [41]Todd M.Meglich.The use of ground penetrating radar in detecting fossilized dinosaur.In Eighth Intl.Conference on Ground Penetrating Radar,SPIE, 2000, Vol.4084:536-541
    [42]L.Zanzi, M.Lualdi.An ultra high frequency radar sensor for Humanitarian Demining tested on different scenarios in 3D imaging mode.Ninth International Conference on Ground Penetrating Radar, Proceedings of SPIE, 2002, Vol.4758:240-245
    [43]Jay K Johnson, Bryan S.Haley.Remote sensing techniques in cultural resource management archaeology.Proceedings of SPIE, 2003,Vol.4881:648-659
    [44]Jung-Ho Kim, Myeong-Jong Yi, Jeong-Sul Son, et al.Effective 3-D GPR survey and its application to the exploration of old remains.2005 IEEE International Geoscience and Remote Sensing Symposium(IGARSS'05), Vol.1:364-367
    [45] P. M. Barone, E. Pettinelli, T. Bellomo, et al. Applications of GPR to archaeology and geology: the example of the regio III in Pompeii (Naples, Italy). 2007 4th International Workshop on Advanced Groung Penetrating Radar, pp:64-67
    [46] J. J. BERTHELIER, R. NEY, A. MEYER, et al. The GPR on mars netlander. In Eighth Intl. Conference on Ground Penetrating Radar, SPIE, 2000, Vol.4084:737-746
    [47] R. NEY, S. Bonaimk, F. Dolon, et al. A ground penetrating radar for mars exploration, the GPR experiment on netlander. 2003 Ninth International Conference on HF Radio Systems and Techniques, 2003, pp:283-287
    [48] Soon Sam Kim, Steven R. Carnes, Albert F. Haldemann, et al. Miniature ground penetrating radar, CRUX GPR. 2006 IEEE Aerospace Conference, 2006, pp:1-7
    [49] Elena Pettinelli, Paolo Burghignoli, Anna Rita Pisani, et al. Electromagnetic propagation of GPR signals in martian subsurface scenarios including material losses and scattering. IEEE Transactions on Geoscience and Remote Sensing, 2007,45(5): 1271-1281
    [50] M. Iorio, R. Mecozzi, R. Seu, et al. GPR missions on mars. 2007 IEEE International Geoscience and Remote Sensing Symposium(IGARSS'07), pp:4095-4100
    [51] Toru Kaneko. Radar image processing for locating underground linear objects. IEICE Trans. ,1991, E 74(10):3451-3458
    [52] Ce Liu, Liang C. Shen. Numerical simulation of subsurface radar for detecting buried pipes. IEEE Transactions on Geoscience and Remote Sensing, 1991,29(5):795-798
    [53] Yuji Nagashima, Hirotaka Yoshida, et al. Single-unit underground radar utilizing zero-crossed synthetic aperture. IEICE Trans. Commun, 1993, E76-B(10):1290-1303
    [54] Paolo Gamba, Simone Lossani. Neural detection of pipe signatures in ground penetrating radar images. IEEE Transactions on Geoscience and Remote Sensing, 2000,38(2):790-797
    [55] Barry J. Allred, Norman R. Fausey, Jeffrey J. Daniels, et al. GPR detection of drainage pipes in farmlands. Proceedings of the Tenth International Conference on Ground Penetrating Radar, 2004,pp:307-310
    [56] Q. Shan, S. R. Pennock, M. A. Redfern. Investigation of GPR configurations by ray-tracing methods. 2006 IEEE Conference on Radar, pp:335-341
    [57] L. A. Varyanitza-Roshchupkina, G. P. Pochanin. Strategy of GPR searching for low radar contrast plastic pipes in ground. IEEE Aerospace and Electronic System Magazine, 2006, 21(12):23-26
    [58]G.Farquharson, A.Langman, M.R.Inggs.Detection of water in an airport tarmac using SFCW ground penetrating radar.1999 IEEE International Geoscience and Remote Sensing Symposium(IGARSS'99), Vol.3:1749-1751
    [59]J.Hugenschmidt.Railway track inspection using GPR.Journal of Applied Geophysics, 2000, 43:147-155
    [60]Jeffrey H.Meloy, Charles H.Overman IV, James L.Kutz, et al.Ground penetrating radar signal processing techniques for airfield evaluations.Radar Sensor Technology and Data Visualization, Proceedings of SPIE, 2002, Vol.4744:37-47
    [61]Bouzid Choubane, Emmanuel Fernando, Stephen C.Ross, et al.Use of ground penetrating radar for asphalt thickness determination.Proceedings of SPIE, 2003, Vol.5045:230-240
    [62]Andrea Benedetto, Francesco Benedetto, Maria Rosaria De Blasiis, et al.Reliability of signal processing technique for pavement damages detection and classification using ground penetrating radar.IEEE Sensors Journal, 2005, 5(3):471-480
    [63]Andreas Loizos, Christina Plati.Accuracy of ground penetrating radar horn-antenna technique for sensing pavement subsurface.IEEE Sensors Journal, 2007, 7(5):842-850
    [64]Vincent Krause, Ikhlas Abdel-Qader, Osama Abudayyeh, et al.An image segmentation algorithm for the detection of rebar in bridge decks from GPR scans.IEEE International Conference on Electro/Information Technology, 2007, Vol.4:114-119
    [65]D.Ranalli, M.Scozzafava, M.Tallini, et al.GPR signal attenuation vs.depth on damaged flexible road pavements.2007 4th International Workshop on Advanced Groung Penetrating Radar, pp:300-305
    [66]Cedric Le Bastard, Vincent Baltazart, Yide Wang, et al.Thin-pavement thickness estimation using GPR with high-resolution and superresolution methods.IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(8):2511-2519
    [67]Andreas Loizos, Christina Plati.Ground penetrating radar: a smart sensor for the evaluation of the railway trackbed.2007 IEEE Instrumentation and Measurement Technology Conference Proceedings(IMTC'07), pp: 1-6
    [68]冯德山,戴前伟.高速公路路面厚度探地雷达检测.地球物理学进展,2008, 23(1):289-294
    [69]J.Fortuny-Guasch, A.J.Sieber, G.Nesti, et al.Detection of buried APLs using a forward looking ultrawide band SAR.In Detection and Remediation Technologies for Mines and Minelike Targets V, Proceedings of SPIE, 2000, Vol.4038:1261-1267
    [70]Yijun Sun, Jian Li.Plastic landmine detection using time-frequency analysis for forward-looking ground-penetrating radar.Detection and Remediation Technologies for Mines and Minelike Targets VIII, Proceedings of SPIE, 2003, Vol.5089:851-862
    [71]Y.Sun, J.Li.Time-frequency analysis for plastic landmine detection via forward-looking ground penetrating radar.lEE Proc.-Radar Sonar Navig., 2003, 150(4):253-261
    [72]Tsaipei Wang, Ozy Sjahputera, James M,et al.Feature analysis for forward-looking landmine detection using GPR.Detection and Remediation Technologies for Mines and Minelike Targets X, Proceedings of SPIE, 2005, Vol.5794:1233-1244
    [73]Yanwei Wang, Xi Li, Yijun Sun, et al.Adaptive imaging for forward-looking ground penetrating radar.IEEE Transactions on Aerospace and Electronic System, 2005,41(3):922-926
    [74]Tsaipei Wang, James M.Keller, Paul D.Gader, et al.Frequency subband processing and feature analysis of forward-looking ground-penetrating radar signals for land-mine detection.IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(3):718-729
    [75]W.Gregorwich.An Airborne ground penetrating radar system.IEEE Aerospace Applications Conference, 1996, Vol.1:157-161
    [76]Lam Nguyen, Karl Kappra, David Wong, et al.Mine detection performance in different soil conditions using data from an Ultra-Wideband Wide-Area surveillance radar.Part of the SPIE Conference on Detection and Remediation Technooqies for Mines and Minelike Targets Ⅳ, 1999, Vol.3710:930-941
    [77]Amir Fijany, James B.Collier, Ari Citak.Advanced Algorithms and High performance testbed for large scale site characterization and subsurface target detection using airborne ground penetrating SAR.Part of the SPIE Conference on Detection and Remediation Technooqies for Mines and Minelike Targets IV, 1999,Vol.3710:1106-1117.
    [78]Mark A.Poulter, Howard S.Tee.Remote minefield system(REMIDS): A UK programme for airborne minefield detection.2001 IEEE International Geoscience and Remote Sensing Symposium, Vol.1:243-245
    [79]Ph.Paillou, Th.August-Bernex.Sub-Surface imaging by combining airborne SAR and GPR: application to water detection in Arid zones.2001 IEEE International Geoscience and Remote Sensing Symposium, Vol.3:1384-1386
    [80]C.J.Leuschen, S.P.Gogineni.Simulation and design of ground-penetrating radar for Mars Exploration.2001IEEE International Geoscience and Remote Sensing Symposium, Vol.3:1524-1526
    [81]Roger S .Vickers.Design and applications of airborne radars in the VHF/UHF band.IEEE Aerospace and Electronic Systems Magazine, 2002, 17(6):26-29
    [82]William Aubry, Robert J.Bonneau, Russell D.Brown.Airborne sensor concept to image shallow-buried targets.Radar Conference, Proceedings of IEEE, 2002, pp:233-236
    [83]Mrinal K.Sen, Paul L.Stoffa, Roustam K.Seifoullaev.Numerical and field investigations of GPR: toward an airborne GPR.Subsurface Sensing Technologies and Applications, 2003, 4(1):41-60
    [84]Edwin M.Winter, Miranda Miller, Christopher Simi, et al.Mine detection experiments using hyperspectral sensors.Detection and Remediation Technologies for Mines and Minelike Targets Ⅸ, Proceedings of SPIE, 2004, Vol.5415:1035-1041
    [85]George Moussally, Robert Fries, Richard Bortins.Ground-penetrating, synthetic-aperture radar for wide-area airborne minefield detection.Detection and Remediation Technologies for Mines and Minelike Targets Ⅸ, Proceedings of SPIE, 2004, Vol.5415:1042-1052
    [86]Joel Kositsky, Peyman Milanfar.A forward-looking high-resolution GPR system.Part of the SPIE Conference on Detection and Remediation Technologies for Mines and Minelike Targets Ⅳ,SPIE,1999, Vol.3710:1052-1062
    [87]Lawrence Carin, Norbert Geng, Mark McClure, et al.Ultra-wide-band synthetic-aperture radar for mine-field detection.IEEE Antennas and Propagation Magazine, 1999, 41(1):18-33
    [88]J.Homer, H.T.Tang, I.D.Longstaff.Radar imaging of shallow buried objects.IEEE Internationl Geoscience and Remote Sensing Symposium, 1999, Vol.5:2477-2479
    [89]Ravinder Kapoor, Marc Ressler, Greg Smith.Forward-looking mine detection using an ultrawideband radar.In Detection and Remediation Technologies for Mines and Minelike Targets Ⅴ, Proceedings of SPIE, 2000, Vol.4038:1067-1076
    [90]Erik M.Rosen, Elizabeth Ayers, Darrell Bonn, et al.Analysis of Jaycor's forward-looking ground-penetrating radar data.In Detection and Remediation Technologies for Mines and Minelike Targets Ⅴ, Proceedings of SPIE, 2000, Vol.4038:1058-1066
    [91]Carey Rappaport, Stephen Azevedo, Tom Rosenbury, et al.Handheld forward-looking focused array mine detection with plane wave excitation.In Detection and Remediation Technologies for Mines and Minelike Targets Ⅴ, Proceedings of SPIE, 2000, Vol.4038:1118-1126
    [92]Gary H.Price.Change detection as a tool for the maintenance of mine-free trackways using a forward-looking ground-penetrating radar.In Detection and Remediation Technologies for Mines and Minelike Targets Ⅴ, Proceedings of SPIE, 2000, Vol.4038:1383-1391
    [93]Juan M.Lopez-Sanchez, Joaquim Fortuny-Guasch.3-D radar imaging using range migration techniques.IEEE Transactions on Antennas and Propagation, 2000, 48(5):728-737
    [94]Gary H.Price, Joel Kositsky.Application of change detection to the detection of buried mines.Detection and Remediation Technologies for Mines and Minelike Targets Ⅵ, Proceedings of SPIE, 2001, Vol.4394:712-719
    [95]Hilda I.Aponte, Stephen Campana, Meghan McGovern.Multi-sensor fusion for vehicle mounted mine detection.Detection and Remediation Technologies for Mines and Minelike Targets Ⅵ, Proceedings of SPIE, 2001, Vol.4394:934-942
    [96]Jo(e|¨)l Andrieu, Fr(?)deric Gallais, Vincent Mallepeyre, et al.Land mine detection with an ultra-wideband SAR system.Detection and Remediation Technologies for Mines and Minelike Targets Ⅶ, Proceedings of SPIE,2002, Vol.4742:237-247
    [97]Jie Cheng, Eric Miller.Model-based approach to the detection, classification, and characterization of subsurface targets from forward looking ground penetrating radar data.Detection and Remediation Technologies for Mines and Minelike Targets Ⅶ, Proceedings of SPIE,2002, Vol.4742:314-322
    [98]Joaquim Fortuny-Guasch.A novel 3-D subsurface radar imaging technique.IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(2):443-452
    [99]Lam Nguyen, Tuan Ton, David Wong, et al.Signal processing techniques for forward imaging using ultrawideband synthetic aperture radar.Unmanned Ground Vehicle Technology V, Proceedings of SPIE,2003, Vol.5083: 505-518
    [100]Guoqing Liu, Yanwei Wang, Jian Li, et al.SAR imaging for a forward-looking GPR system.Detection and Remediation Technologies for Mines and Minelike Targets VIII, Proceedings of SPIE,2003, Vol.5089:322-333
    [101]Marshall Bradley, Thomas Witten, Michael Duncan, et al.Mine detection with a forward-looking ground-penetrating synthetic aperture radar.Detection and Remediation TechnologiesforMinesandMinelike TargetsVIII,Proceedingsof SPIE,2003, Vol.5089:334-347
    [102]Peter Cooper, Giles Verwey, Christopher Purry.Ultra wideband endfire synthetic aperture radar for landmine detection.2003 IEEE Internationl Geoscience and Remote Sensing Symposium(IGRSS'03), Vol.2:752-754
    [103]D.Lloyd, I.D.Longstaff.Ultra-wideband multistatic SAR for the detection and location of landmines.IEE Proc-Radar Sonar Navig., 2003, 150(3):158-164
    [104]Marshall Bradley, Thomas Witten, Michael Duncan, et al.Anti-tank and side-attack mine detection with a forward-looking GPR.Detection and Remediation Technologies for Mines and Minelike Targets Ⅸ, Proceedings of SPIE, 2004, Vol.5415:421-432
    [105]G.C.Gaunaurd, L.H.Nguyen.Detection of land-mines using ultra-wideband radar data and time-frequency signal analysis.IEE Proc.-Radar Sonar Navig, 2004, 151(5):307-316
    [106]K.Gu, G.Wang, J.Li.Migration based SAR imaging for ground penetrating radar systems.IEE Proc.-Radar Sonar Navig.,2004,151(5):317-325
    [107]Y.Sun, X.Li, J.Li.Practical landmine detector using forwardlooking ground penetrating radar.Electronics Letters, 2005, 41(2):97-98
    [108]Erik M.Rosen, Frank S.Rotondo, Elizabeth Ayers.Testing and evaluation of forward-looking GPR countermine systems.Detection and Remediation Technologies for Mines and Minelike Targets Ⅹ, Proceedings of SPIE,2005, Vol.5794:901-911
    [109]Richard Harr, Michael Polcha.Preliminary investigation of the reststrahlen phenomenology at low-grazing angles.Detection and Remediation Technologies for Mines and Minelike Targets Ⅹ, Proceedings of SPIE,2005, Vol.5794:978-987
    [110]Tsaipei Wang, Ozy Sjahputera, James M.Keller, et al.Landmine detection using forward-looking GPR with object-tracking.Detection and Remediation Technologies for Mines and Minelike Targets Ⅹ, Proceedings of SPIE,2005, Vol.5794:1080-1088
    [111]Yijun Sun, Jian Li.Landmine detection using forward-looking ground penetrating radar.Detection and Remediation Technologies for Mines and Minelike Targets Ⅹ, Proceedings of SPIE,2005, Vol.5794:1089-1097
    [112]Yijun Sun, Jian Li.Adaptive learning approach to landmine detection.IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(3):973-985
    [113]T.Wang, J.M.Keller, M.Busch, et al.On the confidence level fusion of IR and forward-looking GPR.Detection and Remediation Technologies for Mines and Minelike Targets Ⅺ, Proceedings of SPIE, 2006, Vol.6217, 62172T: 1-9
    [114]K.Stone, J.Keller, K.C.Ho, et al.On the registration of FLGPR and IR data for a forward-looking landmine detection system and its use in eliminating FLGPR false alarms.Detection and Sensing of Mines, Explosive Objects, and Obscured Targets ⅩⅢ, Proceedings of SPIE, 2008, Vol.6953, 695314:1-12
    [115]胡进峰,周正欧.前视探地雷达合成孔径成像方法的研究.电子与信息学报,2006,28(12):2219-2223
    [116]胡进峰,周正欧,罗仁泽.一种前视探地雷达波速估计方法.电子学报,2007,35 (6):1113-1117
    [117]T.Jin, Z.Zhou, W.Chang.Modified wavefront reconstruction imaging formation for stand-off GPEN SAR.Electronics Letters, 2005, 41(10):63-64
    [118]王红岗,黄晓涛,金添.UWB SAR非均匀区域目标检测方法.现代雷达,2005, 27(7):35-38
    [119]金添,周智敏,常文革.折射对地表穿透合成孔径雷达成像影响定量分析.电子对抗,2005, 5 (104):16-21
    [120]金添,周智敏,常文革.基于两层均匀媒质的GPEN SAR地下目标成像方法及性能分析.信号处理,2006,22(2):238-243
    [121]金添,宋千,孙晓坤,等.地表穿透合成孔径雷达浅地表金属地雷二维电磁特征研究.电子学报,2006,34(12):2246-2249
    [122]周智敏,金添,宋千,等.超宽带SAR探雷试验系统.电子与信息学报,2007,29(8):1805-1808
    [123]金添,周智敏,宋千.超宽带浅地表地雷聚焦与定位技术.电子与信息学报,2007,29(10):2384-2387
    [124]金添,周智敏.一种超宽带SAR地雷散射方位不变特征提取新方法.电子学报,2007, 35(12):2272-2278
    [125]金添,周智敏,宋千,等.基于模糊超球面支持向量机的超宽带SAR地雷检测.兵工学报,2007, 28 (12):1447-1451
    [126]杨延光,周智敏,金添,等.基于Rail_GPSAR实测数据的地雷检测新方法.信号处理,2007,23(5):651-656
    [127]Joel Kositsky.Results from a forward-looking GPR mine detection system.In Detection and Remediation Technologies for Mines and Minelike Targets Ⅴ, Proceedings of SPIE, 2000,Vol.4038:1077-1087
    [128]Steven BjshOp, Stephen B.Campana, David A.Lang, et al.Close-in detection system for the Mine HunterKiller program.In Detection and Remediation Technologies for Mines and Minelike Targets Ⅴ, Proceedings of SPIE, 2000, Vol.4038:1204-1213
    [129]Chi-Chih Chen, Soumya Nag, Walter D.Bumside,et al.A standoff, focused-beam land mine radar.IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(1):507-514
    [130]Joel Kositsky, Charles Amazeen.Results from a forward-looking GPR mine detection system.Detection and Remediation Technologies for Mines and Minelike Targets VI, Proceedings of SPIE, 2001, Vol.4394:700-711
    [131]Joel Kositsky, Russell Cosgrove, Charles Amazeen, et al.Results from a forward-looking GPR mine detection system.Detection and Remediation Technologies for Mines and Minelike Targets Ⅶ, Proceedings of SPIE, 2002, Vol.4742:206-217
    [132]Philippe Delmote, Cyril Dubois, Jo(e|¨)l Andrieu, et al.The UWB SAR system PULSAR: new generator and antenna developments.Passive Millimeter-Wave Imaging Technology Ⅵ and Radar Sensor Technology VII, Proceedings of SPIE, 2003, Vol.5077:223-234
    [133]Y.Yamaguchi, M.Mitsumoto, M.Sengoku, et al.Synthetic aperture FM-CW radar applied to the detection of objects buried in snowpack.IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(1):11-18
    [134]J.Fortuny, A.J.Sieber.Fast algorithm for a near-field synthetic aperture radar processor.IEEE Transactions on Antennas and Propagation, 1994, 42(10):1458-1460
    [135]S.Vitebskiy, L.Carin, M.A.Ressler, et al.Ultra-wideband, short-pulse ground-penetrating radar: simulation and measurement.IEEE Transactions on Geoscience and Remote Sensing,1997, 35(3):762-772
    [136]T.Moriyama, H.Kasahara, Y.Yamaguchi, et at.Advanced polarimetric subsurface FM-CW radar.IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3):725-731
    [137]C.T.Allen, Kun Shi, R.G.Plumb.The use of ground-penetrating radar with a cooperative target.IEEE Transactions on Geoscience and RemoteSensing, 1998, 36(5):1821-1825
    [138]D.A.Noon, I.D.Longstaff, G.F.Stickley.Wideband quadrature error correction (using SVD) for stepped-frequency radar receivers.IEEE Transactions on Aerospace and Electronic Systems,1999, 35(4):1444-1449
    [139]Chi-Chih Chen, M.B.Higgins, K.O'Neill.Ultrawide-bandwidth fully-polarimetric ground penetrating radar classification of subsurface unexploded ordnance.IEEE Transactions on Geoscience and Remote Sensing, 2001,39(6):1221-1230
    [140]C.J.Leuschen, R.G.Plumb.A matched-filter-based reverse-time migration algorithm for ground-penetrating radar data.IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(5):929-936
    [141]Yanting Dong, P.R.Runkle, L.Carin, et al.Multi-aspect detection of surface and shallow-buried unexploded ordnance via ultra-wideband synthetic aperture radar.IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(6):1259-1270
    [142]方广有,张忠治,汪文秉.无载频脉冲探地雷达性能分析及其FD-TD法数值模拟计算.电波科学学报,1997, 12 (1) :44-50
    [143]方广有,张忠治,汪文秉.脉冲探地雷达的模拟计算.微波学报,1998, 14 (4) :288-295
    [144]方广有,张忠治,汪文秉.FDTD法分析无载频脉冲探地雷达特性.电子学报,1999,27(3):74-78
    [145]张安学,蒋延生,汪文秉,等.探地雷达扫频三维成像方法.电波科学学报,2000,15(3):313-316
    [146]陈文超,师振盛,汪文秉,等.小波变换在去除探地雷达信号直达波的应用.电波科学学报,2000,15(3):352-357
    [147]张安学,蒋延生,陈文超,等.探地雷达有效口径和扫描点间距的实验研究.电波科学学报,2001, 16(2):256-260
    [148]张安学,蒋延生,汪文秉.探地雷达交叉测线目标搜索和成像方法的研究.电波科学学报,2002,17(1):59-63
    [149]李太全,田茂,徐继生.复镜像法分析探地雷达天线阻抗特性.电波科学学报,2003, 18 (4) :423-427
    [150]张春城,周正欧.基于Stolt偏移的探地雷达合成孔径成像研究.电波科学学报,2004,19(3):316-320
    [151]孔令讲,周正欧.波速误差对浅地层探地雷达SAR算法影响的研究.电波科学学报,2005,20(6):819-823
    [156]张春城,周正欧.基于支持向量机的浅地层探地雷达目标分类识别研究.电子学报,2005,33(6):1091-1094
    [157]史凌峰,郭宝龙.基于三维序列探地雷达目标自动定位方法研究.电波科学学报,2007,22(2):342-346
    [158]毛钧杰,柴舜连,刘荧,等.微波技术与天线.北京:科学出版社,2006, 60-62
    [159]Richard Rau, James H.Mcclellan.Analytic models and postprocessing techniques for UWB SAR.IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(4):1058-1074
    [160]Erik M.Johansson, Jeffrey E.Mast.Three-dimensional ground-penetrating radar imaging using synthetic aperture time-domain focusing.SPIE, 1994, Vol.2275:205-213
    [161]Peter A.Torrione, Chandra S.Throckmorton, Leslie M.Collins.Performance of an Adaptive Feature-Based Processor for a Wideband Ground Penetrating Radar System.IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(2):644-658
    [162]Andria van der Merwe, Inder J.Gupta.A novel signal processing techniques for clutter reduction in GPR measurements of small shallow land mines.IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(6):2627-2637
    [163] A. van der Merwe, I. J. Gupta, L. Peters. A clutter reduction technique for GPR data from mine like targets. Part of the SPIE Conference on Detection and Remediation Technologies for Mines and Minelike Targets Ⅳ, Proceedings of SPIE, 1999, Vol.3710:1094-1105
    [164] L.van Kempen, H.Sahli, J.Brooks, et al. New results on clutter reduction and parameter estimation for landmine detection using GPR. In Eighth Intl. Conference on Ground Penetrating Radar, Proceedings of SPIE, 2000, Vol.4084:872-879
    [165] John W. Brooks, Luc van Kempen, Hichem Sahli. A primary study in adaptive clutter reduction and buried minelike target enhancement from GPR data. In Detection and Remediation Technologies for Mines and Minelike Targets Ⅴ, Proceedings of SPIE , 2000,Vol.4038:1183-1192
    [166] Kunlong Gu, Jian Li, Marshall Bradley, et al. Adaptive ground bounce removal. Detection and Remediation Technologies for Mines and Minelike Targets Ⅶ, Proceedings of SPIE , Vol. 4742:719-727
    [167] Yunxin Zhao, P. Gader, Ping Chen. Training DHMMs of mine and clutter to minimize landmine detection errors. IEEE Transactions on Geoscience and Remote Sensing, 2003,41(5):1016-1024
    [168] B. Karlsen, J. Larsen, H. B. D. Sorensen, et al. Comparison of PCA and ICA based clutter reduction in GPR systems for anti-personal landmine detection. Proceedings of the 11th IEEE Signal Processing Workshop on Statistical Signal Processing, 2001, pp:146-149
    [169] Brian Karlsen, Helge B.D.S rensen, Jan Larsen,et al. Independent component analysis for clutter reduction in ground penetrating radar data. Detection and Remediation Technologies for Mines and Minelike Targets Ⅶ, Proceedings of SPIE,2002, Vol.4742:378-389
    [170] Brian Karlsen, Kaj B. Jakobsen, Jan Larsenc, et al. Mine detection using SF-GPR: a signal processing approach for resolution enhancement and clutter reduction. Detection and Remediation Technologies for Mines and Minelike Targets Ⅵ, Proceedings of SPIE, 2001,Vol.4394:817-827
    [171] Ssu-Hsin Yu, Avinash Gandhe, Thomas R. Witten,et al. Real-time adaptable subspace method for automatic mine detection. Detection and Remediation Technologies for Mines and Minelike Targets Ⅶ, Proceedings of SPIE, 2002, Vol.4742:986-985
    [172] A. H. Gunatilaka, B. A. Baertlein. A subspace decomposition technique to improve GPR imaging of anti-personnel mines. In Detection and Remediation Technologies for Mines and Minelike Targets Ⅴ, Proceedings of SPIE , 2000, Vol.4038:1008-1018
    [173]Dragana Carevica.Clutter reduction and detection of minelike objects in ground penetrating radar data using wavelets.Subsurface Sensing Technologies and Applications, 2000, 1(1):101-118
    [174]John W.Brooks.Wavelet-based shape-feature extraction for GPR detection of non-metallic anti-personnel land mines.In Detection and Remediation Technologies for Mines and Minelike Targets V, Proceedings of SPIE,2000, Vol.4038:1028-1037
    [175]T.Sato, E.Fuse.Noise reduction of subsurface radar images using a 2-D parabolic wavelet transform.1998 IEEE International on Geoscience and Remote Sensing Symposium Proceedings(IGARSS'98), Vol.4:1760-1762
    [176]T.Sato,Y.Tada.Noise reduction and identification of subsurface radar images using recursive wavelet decomposition.2000 IEEE International on Geoscience and Remote Sensing Symposium Proceedings(IGARSS'2000), Vol.2:660-662
    [177]Satoshi EBIHARA.Blind separation for estimation of near-surface interface by GPR with time-frequency distribution.IEICE Trans.Commun.,2003, E86-B(10):3071-3081
    [178]Delphine Potin, Emmanuel Duflos, Philippe Vanheeghe.Landmines ground-penetrating radar signal enhancement by digital filtering.IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(9):2393-2406
    [179]Abdelhak M.Zoubir, Ian James Chant, Christopher L.Brown, et al.Signal processing techniques for landmine detection using impulse ground penetrating radar.IEEE Sensors Journal, 2002, 2(1):41-51
    [180]李禹,黄春琳,粟毅.基于MSE准则抑制SPR射频干扰的方法.国防科技大学学报, 2003,25(4):42-46
    [181]Luigia Nuzzo, Tatiana Quarta.Improvement in GPR coherent noise attenuation Using τ-p and wavelet transforms.GEOPHYSICS 2004, 69(3):789-802
    [182]Luigia Nuzzo.Coherent noise attenuation in GPR data by linear and parabolic Radon Transform techniques.ANNALS OF GEOPHYSICS, 2003, 46(3):533-547
    [183]K.C.Ho, Lawrence Carin, Paul D.Gader, et al.An investigation of using the spectral characteristics from ground penetrating radar for landmine/clutter discrimination.IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(4):1177-1191
    [184]Daren R.Wilcox, Russell M.Mersereau.Radon transform based landmine signatures extracted from ground penetrating radar imagery.Detection and Remediation Technologies for Mines and Minelike Targets Ⅷ, Proceedings of SPIE, Vol.5089:1095-1104
    [185]Jay A.Marble and Andrew E.Yagle.The hyperbola flattening transform.Detection and Remediation Technologies for Mines and Minelike Targets IX, Proceedings of SPIE, Vol.5415:781-790
    [186]Anthony C.Copeland, Gopalan Ravichandran, Mohan M.Trivedi.Localized Radon transform-based detection of ship wakes in SAR images.IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(1):35-45
    [187]牛滨华,孙春岩,张中杰,等.多项式Radon变换.地球物理学报,2001,44(2):263-271
    [187]张明友,吕幼新.信号与系统分析.成都:电子科技大学出版社,1999, 143-150
    [188]Carey M.Rappaport.Accurate determination of underground GPR wavefront and B-scan shape from above-ground point sources.IEEETransactions on Geoscience and Remote Sensing, 2007,45(8):2429-2434
    [189]Renbiao Wu, Kunlong Gu, Jian Li, et al.Propagation velocity uncertainty on GPR SAR processing.IEEE Transactions on Aerospace and Electronic Systems, 2003,39(3):849-861
    [190]冯德山,戴前伟.探地雷达小波域三维波动方程偏移.地球物理学报,2008,51(2):566-574
    [191]雷文太,粟毅,黄仕家.探地雷达近场三维距离偏移成像算法.电子与信息学报,2000, 15(3):1641-1646
    [192]张安学,蒋延生,汪文秉,等.探地雷达扫频三维成像方法.电子与信息学报,2003, 25 (12):313-1316
    [193]Moreira, A.An improved multi-look technique to produce SAR imagery.1990 IEEE International Radar Conference, pp:57-63
    [194]Grandchamp, M.,Cavassilas, J.F.Improved multilook technique applied to SAR images.1997 IEEE International Conference on Acoustics, Speech, and Signal Processing(ICASSP-97),Vol.4:2821-2824
    [195]金添,周智敏.车载前视地表穿透SAR多视处理中的关键技术研究.电子与信息学报,2008,30(4):925-928
    [196]N.Osuni, K.Ueno.Microwave holographic imaging method with improved resolution.IEEE Transactions on Antennas and Propagation, 1984, 32(10):1018-1026
    [197]N.Osuni, K.Ueno.Microwave holographic imaging of underground objects.IEEE Transactions on Antennas and Propagation, 1985, 33(2):152-159
    [198]保铮,邢孟道,王彤.雷达成像技术.北京:电子工业出版社,2006, 47-88
    [199]Enders A.Robinson.Migration of seismic data by the WKBJ method.Proceedings of the IEEE, 1986, 74(3):428-439
    [200]G.F.Margrave.Theory of nonstationary filtering in the Fourier domain with application to time-variant filtering.Geophysics, 1998, 63:244-259
    [201]张春城,周正欧.浅地层探地雷达自动目标检测与定位研究.电子与信息学报,2005,27(7):1065-1068
    [202]W.Al-Nuaimy, Y.Huang, S.Shihab.Automatic target detection in GPR data.Ninth International Conference on Ground Penetrating Radar, Proceedings of SPIE, 2002, Vol.4758:139-143
    [203]胡进峰.合成孔径探地雷达探测浅埋小目标的信号处理算法研究:[博士学位论文].成都:电子科技大学,2005
    [204]Hui Zhou, Motoyuki Sato, Hongjun Liu.Migration velocity analysis and prestack migration of common-transmitter GPR data.IEEETransactions on Geoscience and Remote Sensing, 2005, 43(1):86-91
    [205]David V.Blackham, Roger D.Pollard.An improved technique for perimittivity measurements using a csaxial probe.IEEE Transactions on Instrumentation and Measurment, 1997, 46(5):1093-1099
    [206]Y Huang, MTC Fang, VT Nguyen, et al.Dielectric properties of contaminated soil.Part of SPIE Conference on Subsurface Sensors and Applications, SPIE, 1999, Vol.3752:157-163
    [207]Reinke L.van Dam, Brian Borchers, Jan M.H.Hendrickx.Methods for prediction of soil dielectric properties: a review.Detection and Remediation Technologies for Mines and Minelike Targets X, Proceedings of SPIE, 2005, Vol.5794:188-197
    [208]Umberto Spagnolini.Permittivity Measurements of Multilayered Media With Monostatic Pulse Radar.IEEETransactions on Geoscience and Remote Sensing, 1997, 35(2):454-463
    [209]Joe G.Keranen, Jonathan Miller, Gregory Schultz, et al.Automated calibration methods for robotic multisensor landmine detection.Detection and Remediation Technologies for Mines and Minelike Targets XII, Proceedings of SPIE, 2007, Vol.6553, 65531F: 1-9
    [210]Toru Kaneko.Radar image processing for locating underground linear objects.IEICE Transactions, 1991, E74(10):3451-3458
    [211]W.Al-Nuaimy, Y.Huang, et al.Automatic detection of buried utilities and solid objects with GPR using neural networks and pattern recognition.Journal of Applied Geophysics, 2000, 43:157-165
    [212]孔令讲,周正欧.浅地层探地雷达波速测量方法的研究.电子学报,2002,30 (9):1330-1332
    [213]陈德莉,黄春琳,粟毅.用统计方法和Hough变换进行GPR目标检测与定位.电子学报,2004,32(9):1468-1471
    [214]Quan Zhu, Leslie M.Collins.Application of feature extraction methods for landmine detection using the Wichmann/Niitek ground-penetrating radar.IEEETransactions on Geoscience and Remote Sensing, 2005, 43(1):81-85
    [215]李廷军,周正欧,探地雷达中双曲线的提取及在波速估计中的应用.电波科学学报, 2008,23(1):124-128
    [216]张安学,蒋延生,汪文秉.探地雷达频率波数域速度估计和成像方法的实验研究.电子学报,2001,29(3):315-317
    [217]Xu X Y, Miller E L, Rappaport C M.Minimum entropy regularization in frequency-wavenumber migration to localize subsurface objects.IEEETransactions on Geoscience and Remote Sensing, 2003,41(8):1804-1812
    [218]徐建华.图像处理与分析[M].北京:科学出版社,1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700