尖孢镰刀菌诱导下的黄瓜SSH文库的构建及分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄瓜(Cucumis sativus L.)是一种世界性蔬菜,同时作为我国设施园艺栽培的第一大蔬菜作物,在蔬菜产业中地位均十分重要。由尖孢镰刀菌(Fusarium oxysporum)引起的黄瓜枯萎病是影响黄瓜产量和品质三大病害之一。随着黄瓜生产规模化、专业化、产量化的不断发展,在保持目前生产方式的前提下,黄瓜枯萎病等土传病害的危害日益严重,已经成为制约黄瓜持续高效生产的重要因素之一,生产上迫切需要解决枯萎病危害的问题。目前黄瓜枯萎病主要通过嫁接和施加农药的方式来防治,但分别存在费力和存在污染等缺点。深入研究黄瓜的抗病机制以及黄瓜与尖孢镰刀菌的互作关系,才可能建立经济有效的防治黄瓜枯萎病的方法。为了研究黄瓜接种尖孢镰刀菌后抗病相关基因的表达情况,本研究运用抑制消减杂交技术构建了cDNA文库,从分子水平来研究黄瓜的抗枯萎病机制。为进一步深入开展黄瓜抗枯萎病的抗病机制研究及利用抗性资源进行黄瓜抗病品种选育奠定基础。本试验主要试验结果如下:
     1.以黄瓜抗枯萎病品种中农13为材料,构建了黄瓜幼苗接种尖孢镰刀菌后12、36、72、120、144小时的抑制消减杂交cDNA文库,保存了1400个克隆。经菌落PCR和斑点杂交筛选后,随机挑选206个阳性克隆进行测序,获得188条高质量EST序列,序列聚类后共获得161个Unigenes,其中包括17个Contigs和144个Singlets。
     2.去除其中的真菌序列后,通过与GenBank数据库进行BLAST比较分析,发现有171条ESTs (96.6 %)可以找到已知的同源序列,6条ESTs (3.5 %)没有显著匹配结果,推测它们可能是新的抗病相关基因,或变异度较高的cDNA非编码区。其中有112条ESTs功能已知(63.3 %),65条功能未知(36.7 %)。功能已知的ESTs所编码的蛋白涉及黄瓜的能量代谢、信号转导、转录调控及抗病防卫等多方面。就BLAST对比同源性最高的基因的来源看,大部分来源于黄瓜、拟南芥、玉米、蓖麻、西瓜、南瓜、苜蓿和水稻等。
     3.通过对功能已知的基因分析,推测编码DnaJ、泛肽连接酶、WD-repeat蛋白、丝氨酸/苏氨酸激酶、锚蛋白重复序列、CBF4转录因子、锌指蛋白、NAC结构域等蛋白的基因是黄瓜经尖孢镰刀菌诱导后表达的细胞信号传递和转录调控的基因,可能在黄瓜抗病防卫反应基因的表达调控中起到重要作用;过氧化物酶、2-Cys peroxiredoxin、细胞色素P450、cupin超家族、Clp蛋白酶、半胱氨酸蛋白酶、Hsp70、金属硫蛋白等基因可能参与了黄瓜的主要抗病过程;在尖孢镰刀菌侵染过程中也出现了次生代谢相关基因,如编码肉桂酸-4-羟化酶、纤维素合成酶、肉桂酰辅酶A还原酶、玉米黄素环氧化酶等的基因。另外在所获得的ESTs中存在部分编码非生物胁迫诱导蛋白(如热休克蛋白、脱水响应蛋白、类金属硫蛋白等)的基因,说明生物机体对外界的胁迫反应存在某种协同机制。在获得的ESTs中还包括一些光合作用和能量代谢相关基因,说明这些基础代谢基因也与黄瓜的抗病机制相关。
     4.通过Gene Ontology方法对所得基因在分子功能、细胞组成及生物过程三个方面进行了功能分类和分析。结果表明经尖孢镰刀菌侵染后黄瓜在细胞组份及生物代谢中发生了明显的变化。生物过程方面,与代谢过程和细胞过程相关的基因得以大量表达,细胞的生理代谢和刺激反应加强;分子功能方面,许多具有绑定功能和催化功能的分子大量表达;同时细胞、细胞组分及细胞器等相关基因也大量表达,而这些基因的表达可能与黄瓜的枯萎病抗性相关。
As an economically important vegetable, cucumber (Cucumis sativus L.) is one of the most popular greenhouse plants. Fusarium wilt in cucumber, caused by Fusarium oxysporum, occurs worldwidely and can cause severe yield loss. Susceptible plants can be infected in all stages of their development. The pathogen infects the roots and then blocks the uptake of water and nutrients, killing the root and above ground tissue. Fusarium wilt is one of the three most severe diseases in cucumber production. With the scale and specialization production of cucumber, soil born diseases like Fusarium wilt are becoming more and more severe under the present production mode. So it is urgent to deal with Fusarium wilt. At present, grafting and using pestiside are main courses to control Fusarium wilt in cucumber production. But they are labour consuming or pollutive. So it is necessary to elucidate the resistance mechanism of cucumber to Fusarium wilt and the mechanism of action between cucumber and Fusarium oxysporum in developing ecologically sound strategies to overcome Fusarium wilt. In our study, a suppression subtractive hybridization (SSH) cDNA library was constructed with cucumber leaves induced by Fusarium oxysporum. And expression sequence tags (ESTs) and bioinformatics were used to analyze the expression of defence relating genes. This might set foundation for the further studies of resistance mechanisms of cucumber to Fusarium wilt and disease resistance breeding. Main conclusions of this paper are as follows:
     1. A suppression subtractive hybridization cDNA library was constructed with Fusarium wilt resistant cucumber cultivar (Zhongnong 13). Seedling root, picked 6, 12, 24, 36, 48 and 72 h after inoculating with Fusarium oxysporum were used as tester, and seedlings dipped with water were used as driver. And 1 400 cDNA library clones were conserved. 206 positive clones were selected and sequenced, and 188 high quality ESTs were obtained. And 161 Unigenes, including 17 Contigs and 144 Singlets, were obtained after clustering.
     2. Similarity analysis based on BLASTx and BLASTn softwares in GenBank was performed. 171 (96.6 %) of the ESTs could find encoding putative proteins. 6 (3.5 %) of the ESTs were found with no significant similarity and they might represent new genes or high variant non-coding regions of cDNAs. Function of 112 ESTs (63.3 %) were known, 65 (36.7 %) were unknown. The best matched protein sequences with those encoded by the 170 ESTs were from many plant species, such as cucumber, Arabidopsis thaliana, maize, Ricinus communis, watermelon and rice.
     3. DnaJ, WD-repeat protein, serine/threonine protein kinase, ubiquitin-conjugating enzyme, ankyrin repeat-containing protein, CBF4 transcription factor, NAC domain protein and HD-ZIP protein genes were supposed to function as signal transduction and transcription regulating genes in cucumber after inoculated with Fusarium oxysporum. Peroxydase, 2-Cys peroxiredoxin, cytochrome P450, enzyme of the cupin superfamily, Clp protease, cysteine protease and Hsp70 might be involved in the main resistant course of cucumber. Secondary metabolism relating genes also appeared, such as cinnamate-4-hydroxylase, cinnamoyl-CoA reductase, zeaxanthin epoxidase and cellulose synthase genes. Some abiotic stress induced genes, including dehydration-responsive protein and metallothionein-like protein coding genes, also occurred several times, which indicated that there was crosstalk between biotic and abiotic resistance. Photosynthesis and energy metabolism relating genes were also included in acquired ESTs, indicating primary metabolites, and they might function in cucumber resistance to Fusarium wilt.
     4. All of the acquired ESTs were analyzed with Gene Ontology in cellular component, molecular function and biological process. Results showed that sort and number of cucumber resistance relating genes induced by Fusarium oxysporum were significantly different. Genes relating to metabolic process and cellular process existed high expression, binding and catalytic molecules increased. And these led biological regulation and response stimulus enhanced; cell, cell part and organelle relating genes also expressed extensively. And these differencially expressed genes might be closely related to cucumber resistance to Fusarium wilt.
引文
常团结,朱祯. 2002.植物金属硫蛋白研究进展(一)-植物MT的分类、特征及其基因结构.生物技术通报. 3: 5~10
    陈金峰,王宫南,程素满. 2008.过氧化氢酶在植物胁迫响应中的功能研究进展.西北植物学报. 28(1): 0188~0193
    陈珉,汪国平,吴定华等. 2003.黄瓜枯萎病抗、感品种在病菌入侵后的病理组织学差异研究.华南农业大学学报(自然科学版). 24(4): 110~112
    丁国华,池春玉,王桂玲等. 2006.植物抗病基因同源序列研究进展. 1: 38~41
    丁国华,秦智伟. 2004.黄瓜的分子标记和连锁图谱研究进展.农业生物技术科学. 20(6): 14~18
    段红英,丁笑生. 2007.植物WD-repeat蛋白的研究进展.河南农业科学. 5: 11~13
    董霞,李文正,黄夸克等. 2008.水杨酸对烟草GRPs基因表达的影响.吉首大学学报(自然科学版). 29(2): 86~91
    方中达. 1998植病研究方法.北京:中国农业出版社. 63~64
    冯娟,杨足君,周建平. 2008.小麦玉米黄质环氧化酶ZEP cDNA的克隆及序列分析. 18(5): 603~607
    傅晓艺,刘桂茹,杨学举. 2005.植物病害中的信号传导.安徽农业科学. 5: 301~903
    郭喜英,韦正乙,邢少辰等. 2006.转录激活因子CBF与植物的抗胁迫能力.分子植物育种. 4(3): 419~424
    韩旭,营野绍雄. 1996.部分隐性基因控制黄瓜枯萎病抗性的试例.北方园艺. 2: 7~9
    何东苟,余新炳,吴忠道. 2003.全长cDNA文库的构建和新基因全长cDNA克隆的策略.热带医学杂志. 3(4): 473~476.
    何炜,叶冰莹,周平等. 2008.转录因子NAC的研究进展.亚热带农业研究. 4(4): 311~315
    侯安福,尹彦. 1995.黄瓜枯萎病抗性遗传规律的研究.李树德主编.中国主要蔬菜抗病育种进展.北京:科学出版社. 439~444
    胡英考. 2003.转座子标签法克隆分离植物基因的研究进展.生物技术通报. 2: 18~21
    霍秀文,米福贵,云锦凤等. 2005.转录因子CBF4诱导型启动子的克隆及分析.分子植物育种. 3(3): 363~368
    贾燕涛. 2003.植物抗病信号转导途径.植物学通报. 20(5): 602~608
    李波,梁颖,柴友荣. 2006.植物肉桂酰辅酶A还原酶(CCR)基因的研究进展.分子植物育种. 4(3):55~65
    李诚斌,施庆珊,疏秀林等. 2006. LTP在植物抗环境胁迫中的作用.生物技术通报. 6: 19~22
    李传宝. 2003.黄瓜枯萎病药剂防治试验.广西农业科学. 4: 40~41
    李广存. 2006.马铃薯青枯病抗性相关基因的分离及其功能分析.中国农业科学院博士学位论文. 8~16
    刘殿林,杨瑞环,哈玉洁. 2003.黄瓜抗枯萎病遗传特性的研究.天津农业科学9(2): 33~35
    刘天明. 2006.小麦抗条锈病相关基因的差异表达分析及其克隆研究.西北农林科技大学硕士学位论文
    刘志静,易图永,冯洁. 2008.植物抗病基因的研究进展.安徽农业科学. 13: 5342~5343, 5417
    罗文波,于淑娟,高大维. 2000.抑制性扣除杂交技术(SSH)及其研究进展.生物技术. 10(3): 37~40
    骆蒙,龙秀英,贾继增. 2000.几种cDNA差减文库构建方法的比较.生物技术通报. 6: 14~17
    马艳玲,吴凤芝. 2006.枯萎病菌对不同抗性黄瓜品种苯丙氨酸解氨酶的影响.沈阳农业大学学报. 37(3): 335~338
    苗则彦,赵奎华,刘长远等. 2004.不同抗、感枯萎病黄瓜品种不同生育时期根际微生物数量消长动态分析.沈阳农业大学学报. 35(1): 13~15
    宁顺斌,王玲,宋运淳. 2000.玉米(Zea mays L)过氧化物酶基因px和冷调控蛋白编码基因cld的物理定位.遗传学报. 27(8):719~724
    潘凯,吴凤芝. 2007.枯萎病不同抗性黄瓜(Cucumis sativus L.)根系分泌物氨基酸组分与抗病的相关性.生态学报. 27(5): 1945~1950
    强磊,林凡云,伦玮. 2006.抑制性消减杂交技术(SSH)及其在植物抗病性机制研究中的应用.陕西农业科学. 2: 29~30
    邱志鹏,王翀. 2006.抑制消减杂交及其应用.生物技术通报.增刊: 246~250
    桑新华,吴忠义,黄丛林等. 2004.植物逆境抗性相关转录因子的研究进展.植物学通报. 21(6): 700~708
    申贵. 2005.大豆疫霉侵染大豆早期差异表达基因的筛选与功能分析.南京农业大学博士学位论文
    石海燕. 2005.植物抗病基因的克隆技术.生命的化学. 4: 330~333
    史河秀. 2007. 2-Cys peroxiredoxins的研究进展. 29(5): 380~382
    史娟,邱艳,王红玲等. 2001.黄瓜几丁酶活性与其对枯萎病抗性的关系.宁夏农学院学报. 22(4): 4~5
    田爱梅,曹家树. 2008.植物脂质转移蛋白.细胞生物学杂志. 30:483~488
    田海燕. 2006.黄萎病菌诱导下棉花抗病品种冀种20 SSH文库的构建.河北农业大学硕士学位论文
    王生荣,朱克恭. 2002.植物系统获得抗病性研究进展.中国生态农业学报. 2: 32~35
    王守正,王海燕,李洪连. 2001.瓜类作物诱导抗病机制的研究.河南农业科学. 3: 20~23
    王晓萍,温玉琴,郭东林等. 2003.植物抗病分子机制研究进展.黑龙江农业科学. 5: 32~34
    王友红,张鹏飞,陈建群. 2005.植物抗病基因及其作用机理.植物学通报. 1: 92~99
    王玉成,禇延广,姜静等.2005.紫杆柽柳与其它物种脂质转运蛋白基因编码蛋白的同源性比较.植物生理学通讯. 41(1): 14~18
    翁祖信. 1989.黄瓜枯萎病菌生理小种研究初报.中国蔬菜. l: 19~21
    吴利民,李东屏. 2005.植物锚蛋白研究进展.生物技术通报. 6: 7~11
    吴耀荣,谢旗. 2006. ABA与植物胁迫抗性.植物学通报. 23(5): 511~518
    吴营昌,王守正,李洪连. 1995.黄瓜抗枯萎病鉴定及其方法研究.河北农业科学. 2: 22~24
    夏德习,管清杰,金淑梅等. 2007.拟南芥硫氧还蛋白M1型基因(AtTRX m1)与环境逆境之间的关系.分子植物育种. 5(1): 21~26
    徐建华,王建波,利容千. 1995.黄瓜不同抗病品种感染镰刀菌枯萎病菌后几种酶活性的变化.植物病理学报. 25(3): 239~242
    徐建华,王建波,利容千. 1997.黄瓜感染枯萎病后病理组织学的研究.植物病理学报.27(4): 349~352
    许兰珍,何永睿,姜国金等. 2007. cDNA文库构建及其在植物抗性研究中的应用.安徽农业科学. 3:660~662, 664
    许启新,余纪柱. 1994.黄瓜苗期过氧化物酶活性的变化规律及其与抗枯萎病的关系.上海农业学报. 10(3): 58~62
    许勇,朱其杰,陈晓莉. 1993.镰刀菌酸对黄瓜不同品种的致萎力与枯萎病致病力的相关性.中国蔬菜. 1: 19~20
    闫龙凤,杨青川,韩建国等. 2005.植物半胱氨酸蛋白酶研究进展.草业学报. 14(5): 11~19
    杨成君,王军. 2007. cDNA文库的构建策略及其应用.生物技术通报. 1:5~9
    杨传平,魏志刚,杨文慧. 2002.特异性表达基因克隆的策略.东北林业大学学报. 30(5): 1~4
    于凤池. 2005. EST技术及其应用综述.中国农学通报. 2: 62~66
    于天祥,张明方. 2004.西瓜枯萎病研究进展.中国西瓜甜瓜. 1: 17~19
    于秀梅. 2006.条锈菌诱导的小麦抑制差减杂交文库构建SSH及其表达序列标签ESTs研究.西北农林科技大学博士学位论文
    张海霞,张海英,于广建. 2006.与黄瓜抗枯萎病基因连锁的RAPD标记.华北农学报. 21(2): 121~123
    张海英,张海霞,张峰等. 2006.黄瓜枯萎病抗性基因的连锁分子标记.生物技术通报(增刊). 320~322
    张松贺. 2006.结球大白菜表达序列标签数据库构建与软腐病菌胁迫下的基因表达分析.南京农业大学博士学位论文
    赵利辉,邱德文,刘峥. 2006.植物SAR和ISR中的乙烯信号转导网络.生物技术通报. 3: 28~32
    郑琼,马旭俊,杨传平. 2006.硫氧还蛋白(Trx)的研究进展.分子植物育种. 4(6): 78~82
    钟军,李栒,官春云. 2002.植物抗病基因克隆的研究进展.生物技术通讯. 4: 308~311
    周金鑫,胡新文,张海文等. 2008.ABA在生物胁迫应答中的调控作用.农业生物技术学报. 16(1):169~174
    Armstrong G M, Armstrong J.K., Netzer D. 1978. Pathogenic races of the cucumber Wilt Fusarium. Plant Dis. 62: 824~827
    Baker S J, Newton A C, Gurr S J. 2000. Cellular characteristics of temporary partial breakdown of mloecular resistance in barley to powdery mildew .Physiological and Molecular plant pathology. 56(1): 1~11
    Balaji V, Gibly A, Debbie P et al. 2007. Transcriptional analysis of the tomato resistance response triggered by recognition of the Xanthomonas type III effector AvrXv3. Funct Integr Genomics. 7:305~316
    Barnab. 1983. The influence of nitrogen on the sensitivity of tomato plants to culture filtrates of Fusarium to fusaric acid. Physiol Plant Pathol. 23: 257~263
    Bassani M. Neumann P M. Gepstein S. 2004. Differential expression profiles of growth-related genes in the elongation zone of maize primary roots. Plant Molecular Biology. 56: 367~380
    Bessire M, Chassot C, Jacquat AC et al. 2007. A permeable cuticle in Arabidopsis leads to a strong resistance to Botrytis cinerea. EMBO J. 26: 2158~2168
    Bidisha C, Srivathsa C V, Saurabh K et al. 2008. Glycerol-3-phosphate levels are associated with basal resistance to the hemibiotrophic fungus Colletotrichum higginsianum in Arabidopsis. American Society of Plant Biologists. 147: 2017~2029
    
    Bleeker A B, Ethylene K H. 2000. A gaseous signal molecule in plant. Annu Rev Cell Dev Biol. 16: 1~18
    Bonas U, Lahaye T. 2002. Plant disease resistance triggered by pathogen-derived molecules: refined models of specific recognition. Current Opinion in Microbiology. 5(1): 44~50
    Brigitte M M, Felix M. 2005. The role of abscisic acid in plant–pathogen interactions. Current Opinion in Plant Biology. 8: 409~414
    Chandra-Shekara A C, Venugopal S C, Barman S R et al. 2007. Plastidial fatty acid levels regulate resistance gene-dependent defense signaling in Arabidopsis. Proc Natl Acad Sci USA. 104: 7277~7282
    Chen C, Belanger R R, Benhamou N. 1998. Induced Systemic Resistance (ISR) by Pseudomonas spp. Impairs pre- and post-infection development of Pythium aphanidermatum on cucumber roots. European Journal of Plant Pathology. 104: 877~886
    Chiba T. Yao J J. Higami Y et al. 2007. Identification of differentially expressed genes in senescence-accelerated mouse testes by suppression subtractive hybridization analysis. Mammalian Genome. 18: 105~112
    Cho S K, Jung K W, Jeung J U. et al. 2005. Analysis of differentially expressed transcripts from planthopper-infested wild rice (Oryza minuta). Plant Cell Rep. 24: 59~67
    Christmann A, Moes D, Himmelbach A et al. 2006. Integration of abscisic acid signaling into plant responses. Plant Biol(Stuttg) 8: 314~325
    Davisd. 1967. Fusaric acid in selective pathogenicity of Fusarium oxysporum. Phytopathol. 57:808
    Degenhardt J, Masri A N A, Kurkcuoglu S et al. 2005. Characterization by suppression subtractive hybridization of transcripts that are differentially expressed in leaves of apple scab-resistant and susceptible cultivars of Malus domestica. Mol Gen Genomics. 273: 326~335
    Delaney T P, Uknes S, Vernooij B et al.·1994. A central role of salicylic acid in plant disease resistance. Science. 18: 1247~1250
    Diatchenko L, Lau Y F, Campbell A P et al. 1996. Suppression subtractive hybridization: a method for generating differentially regulated or tissue specific cDNA probes and libraries. Proc. Natl. Acad. Sci. USA. 93: 6025~6030
    Dong X. 2004. NPR1, all things considered. Curr Opin Plant Biol 7: 547~552
    Flors V, Ton J, Jakab G et al. 2005. Abscisic acid and callose: Team players in defense against pathogens(J).Journal of Phytopathology. 153: 7~8
    Gao P, Wang G Y, Zhao H J et al. 2003. Isolation and identification of submergence induced genes in maize (Zea mays) seedlings by suppression subtractive hyridization. Acta Botaniea Sinica. 45(4): 479~483.
    Girel A, Saedler H. 1992. Plant transposable elements and gene tagging. Plant Mol. Biol. 19: 39~49·
    Glazebrook J. 2001. Genes controlling expression of defense response in Arabidopsis Status. Current Opinion in Plant Biology. 4: 301~308
    Goodman R N, Novacky A J. 1994. The hypersensitive reaction in plants to pathogens. APS Press
    Haake V, Cook D, Riechmann J L et al. 2002. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant physiology. 130(2): 639~648
    Harada T. Satoh S. Yoshioka T et al. 2007. Anoxia-enhanced expression of genes isolated by suppression subtractive hybridization from pondweed (Potamogeton distinctus A. Benn.) turions. Planta. 226: 1041~1052
    Hommon K K E, Jones J D G.. 1996. Resistance gene-dependent plant defense response. Plant Cell. 8: 1773~1791
    Hunt M, Ryals J. 1996. Systemic acquired resistance signal transduction. Crit. Rev. Plant Sci. 15:583~606.
    In O, Berberich T, Romdhane S et al. 2005. Changes in gene expression during dehardening of cold-hardened winter rye (Secale cereale L.) leaves and potential role of a peptide methionine sulfoxide reductase in cold-acclimation. Planta. 220: 941~950
    Johnson P R, Ecker J R. 1998. The ethylene gas signal transduction pathway: a molecular perspective. Annu Rev Genet. 32: 227~254
    Jose M B, Mar?a P L-G, Joaqu?n F et al. 2008. Induction of cinnamate 4-hydroxylase and phenylpropanoids in virus-infected cucumber and melon plants. Plant Science. 174: 524~533
    Kim J S, Park S J ,Kwak K J et al. 2007. Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in Escherichia coli. Nucleic Acids Research. 35(2): 506~516
    Kunkel B N, Brooks D M. 2002. Cross talk between signaling pathways in pathogen defense. Current Opinion in Plant Biology. 5: 325~331
    Lacombe E, Hawkins S, van Doorsselaere J et al. 1997. Cinnamoyl CoA reductase, the first committed enzyme of the lignin branch biosynthetic pathway: cloning, expression and phylogenetic relationships. The Plant Journal, 11(3): 429~441
    Li A L, Meng C S, Zhou R H et al. 2006. Assessment of lipid transfer protein(LTP1)gene in wheat powdery mildew resistance. Agricultural Sciences in China. 5(4): 241~249
    Lu G, Jantasuriyarat C, Zhou B et al. 2004. Isolation and characterization of novel defense response genes involved in compatible and incompatible interactions between rice and Magnaporthe grisea. Theor Appl Genet. 108: 525~534
    Manevich Y, Feinstein S I, Fisher A B. 2004. Activation of the antioxidant enzyme 1-CYS peroxiredoxin requires glutathionylation mediated by heterodimerization withπGST. Proc Natl Acad Sci U S A. 101(11): 3780~3785
    Masuda Y, Yamada T, Kuboyama T et al. 2007. Identification and characterization of genes involved in hybrid lethality in hybrid tobacco cells (Nicotiana suaveolens×N. tabacum) using suppression subtractive hybridization. Plant Cell Rep. 26: 1595~1604
    Meng C M, Cai C P, Zhang T Z et al. 2009. Characterization of six novel NAC genes and their responses to abiotic stresses in Gossypium hirsutum L. Plant Science. 176:352~359
    Mi G Q, Liu L Y, Dang J W et al. 2008. Identification of low-light induced genes in cucumber (Cucumis sativus) seedlings by suppression subtractive hybridization. Scientia Horticulturae. 117: 89~94
    Mills E N C, Jenkins J, Marigheto N. 2002. Allergens of the cupin superfamily. Plant Food Allergens. 30: 925~929
    Netzer D S, Niegro, Galun F. 1977. A dominant gene conferring resistance to fusarium wilts in cucumber. Phytopathology. 67: 525~527
    Neuenschwander U, Lawton K, Ryals J. 1996. Systemic acquired resistance. In Plant-Microbe Interactions. G.Stacey and N.T.Keen,eds (New York:Chapman and Hall). 1: 81~106
    Olsen A N, Ernst H A, Leggio L L et al. 2005. DNA-binding specificity and molecular functions of NAC transcription factors. Plant Science. 169: 785~797
    Olsen A N, Ernst H A, Leggio L L et al. 2005. NAC transcription factors: structurally distinct, functionally diverse. TRENDS in Plant Science. 10(2): 79~87
    Pieterse C M J, Van Pelt J A, Ton J et al. 2000. Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis requires sensitivity to jasmonate and ethylene but is not accompanied by an increase in their production. Physiological and Molecular Plant Pathology. 57: 123~134
    Pieterse C M J, VanWees SCM, Pelt JAV et al. 1998. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell. 10: 1571~1580
    Qi Y H, Yamauchi Y, Ling J Q et al. 2004. Cloning of a putative monogalactosyldiacylglycerol synthase gene from rice (Oryza sativa L.) plants and its expression in response to submergence and other stresses. Planta. 219: 450~458
    Ren B Z. 1993. Biochemistry and Clinical medcine. Changsha, Hunan Sience and Technical Press
    Reuveni M, Reuveni R. 2000. Prior inoculation with non-pathogenic fungi induces systemic resistance to powdery mildew on cucumber plants. European Journal of Plant Pathology. 106:633~638
    Rezzonico E, Flury N, Meins F Jr, Beffa R. 1998. Transcriptional downregulation by abscisic acid of pathogenesis-related beta-1,3- glucanase genes in tobacco cell cultures. Plant Physiol. 117:585~592
    Riechmann J L, Heard J, Martin G et al. 2000. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science. 290: 2105~2110
    Ross A F. 1991. Systemic acquired induced by localized virus infections in plants. Virology. 14:340-358.
    Ryals J A, Euenschwander U H, Willits M G et al. 1996. Systemic acquired resistance. Plant cell. 8: 1809~1819
    Saqlan N S M, Park K S, Yi S Y et al. 1998. A glycine rich RNA binding protein gene is differentially expressed during acute hypersensitive response following Tobacco Mosaic Virus infection in tobacco. Plant Molecular Biology. 37: 571~576
    Scheideler M, Schlaich NL, Fellenberg K et al. 2002. Monitoring the switch from housekeeping to pathogen defense metabolism in Arabidopsis thaliana using cDNA arrays. J Biol Chem. 277: 10555~10561
    Schweizer P, Buchala A, Silerman P et al. 1997. Jasmonate inducible genes are activated in rice by pathogen attack without a concomitant increase in endogenous jasmonic acid levels. Plant Physiology. 114: 79~88
    Shi C, Ingvardsen C, Thummler F et al. 2005. Identification by suppression subtractive hybridization of genes that are differentially expressed between near-isogenic maize lines in association with sugarcane mosaic virus resistance. Mol Gen Genomics. 273: 450~461
    Shim K S. Cho S K. Jeung J U et al. 2004. Identification of fungal(Magnaporthe grisea) stress-induced genes in wild rice(Oryza minuta). Plant Cell Rep. 22: 599~607
    Solomon P S, Tan K C, Oliver R P. 2003. The nutrient supply of pathogenic fungi: a fertile field for study. Mol Plant Pathol. 4: 203~210
    Stephen J R, Dent K C, Finch-Savage W E. 2003. A cDNA encoding a cold-induced glycine-rich RNA binding protein from Prunus avium expressed in embryonic axes. 320(27): 177~183
    Takumi S, Shimamura C, Kobayashi F. 2008. Increased freezing tolerance through up-regulation of downstream genes via the wheat CBF gene in transgenic tobacco. Plant Physiology and Biochemistry. 46: 205~211
    Tang D, Simonich M T, Innes R W. 2007. Mutations in LACS2, a long-chain acyl-coenzyme A synthetase, enhance susceptibility to avirulent Pseudomonas syringae but confer resistance to Botrytis cinerea in Arabidopsis. Plant Physiol 144: 1093~1103
    Vakalounkais D J. 1995. Inheritance and linkage of resistance in cucumber line SMR~18 to races 1 and 2 of Fusarium oxysporum f. sp. cucumerinum. Plant Pathology. 44: 169~172
    Van Wees S C M. Luijendijk M. Smoorenburg I et al. 1999. Rhizobacteria mediated induced systemic resistance (ISR) in Arabidopsisis not associated with a direct effect on known defense genes but stimulates the expression of the jasmonate inducible gene At vspupon challenge. Plant Molecular Biology. 41: 537~549
    Voronin D A, Kiseleva E V. 2008. Functional role of proteins containing ankyrin repeats. Cell and Tissue Biology. 2(1): 1~12
    Wang H G, Zhang H L, Gao F H et al. 2007. Comparison of gene expression between upland and lowland rice cultivars under water stress using cDNA microarray. Theor Appl Genet. 115: 1109~1126
    Ward E R, Uknes S J, Williams S C et al. 1991. Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell. 3: 1085~1094
    Wu Z G, Soliman K M, Bolton J J et al. 2008. Identification of differentially expressed genes associated with cotton fiber development in a chromosomal substitution line (CS-B22sh). Funct Integr Genomics. 8:165~174
    Xu B Y, Su W, Liu J H et al. 2007. Differentially expressed cDNAs at the early stage of banana ripening identified by suppression subtractive hybridization and cDNA microarray. Planta. 226: 529~539
    Xu Q, Wen X P, Tao N G et al. 2006. Extraction of high quality of RNA and construction of a suppression subtractive hybridization (SSH) library from chestnut rose (Rosa roxburghii Tratt). Biotechnology Letters. 28: 587~591
    Yao H Y, Jiao X D, Wu F Z. 2006. Effects of continuous cucumber cropping and alternative rotations under protected cultivation on soil microbial community diversity. Plant and Soil. 284: 195~203
    Zhang X C, Li D Y, Zhang H J. 2009. Molecular characterization of rice OsBIANK1, encoding a plasma membrane-anchored ankyrin repeat protein, and its inducible expression in defense responses. Mol Biol Rep. 2009 Mar 17. [Epub ahead of print]
    Zheng X N, Chen B, Lu G J. 2009. Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochemical and Biophysical Research Communications. 379: 985~989
    Zhou Y T. Wang H Y . Zhou L et al. 2008. Analyses of the floral organ morphogenesis and the differentially expressed genes of an apetalous flower mutant in Brassica napus. Plant Cell Rep. 27: 9~20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700