VEGF-A,VEGF-C及MMP-2表达调控胆管癌增殖、侵袭转移能力及细胞凋亡的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:胆管癌(cholangiocarcinoma)是较为少见的消化道恶性肿瘤,约占人类全部消化道恶性肿瘤病例总数的2~3%左右。最早由Durand Fardel于1840年报道,其来源于胆管上皮细胞,在肝脏及胆道系统的恶性肿瘤中较为常见,约占肝胆系统肿瘤的10%~15%左右。在世界范围内其发病率约为1.2/10万,但近十年来胆管癌的发病率有逐年升高的趋势,在我国其发病率以每年递增5%的速度上升,是消化道肿瘤中上升速度最快的肿瘤。尽管近年来外科手术、化疗、放疗、免疫治疗等在胆管癌的治疗上取得了长足的进步,但由于胆管癌特殊的病理特征和病灶特殊的解剖位置等诸多原因,导致胆管癌患者缺乏早期特异性临床表现及有效的早期诊断手段,当患者出现症状就诊时多数已处于中晚期,难以获得根治性切除,这使得手术后患者3年生存率仅为35%至50%,而5年生存率仅有不到10%,在我国仅有5%左右。因其缺乏有效的综合治疗手段,故诊治水平至今未取得突破性的进展,严重危害了我国人民的健康。因此,研究胆管癌发生、发展、侵袭转移的具体机制,了解胆管癌进展过程中可能的分子步骤,寻求胆管癌恶性转化的靶点及胆管癌的靶向治疗已成为当前研究的热点。
     血管内皮生长因子(vascular endothelial growth factor, VEGF)参与血管淋巴管生成的各个环节,是目前公认最有效也是最重要的一种促血管生长的特异性因子。在众多肿瘤的发生、发展过程中,VEGF都扮演极为重要的角色,而且是肿瘤血管形成最为成重要的始动因子之一。
     MMP-2基因是基质金属蛋白酶(matrix metalloproteinase, MMPs)家族中最主要也是分布最广的成员,其主要作用是降解细胞外基质,破坏肿瘤细胞侵袭过程中的组织学屏障,进而导致癌细胞突破细胞外基质及基底膜屏障,向临近纤维结缔组织浸润并发生远处转移。在肿瘤细胞的侵袭转移上发挥重要功能。
     RNAi是一种典型的转录后基因调控方法,因其作用机制为细胞内通过mRNA特异基因序列降解而使目的基因沉默(gene silencing),故具有极高的靶向性和有效性。目前RNAi技术己经被广泛应用于基因表达转录后调控、基因功能鉴定等热门研究领域,并在许多疾病的基因治疗上显示了巨大的应用前景。
     目的:第一部分,通过分别检测’VEGF-A、VEGF-C和MMP-2在胆管癌组织标本中的表达情况,分析VEGF-A、VEGF-C和MMP-2表达与胆管癌临床病理因素、临床预后的相关性。进一步检测胆管癌组织标本中微血管密度(microvascular density, MVD)和微淋巴管密度(micro lymphatic vessel density, MLVD),以此来说明VEGF-A、 VEGF-C和MMP-2蛋白表达在胆管癌的发生、发展和侵袭转移过程中所起到的作用。第二部分,通过RNAi技术构建特异性VEGF-siRNA表达载体抑制胆管癌细胞中VEGF基因的表达,并从中筛选出干扰效率最高的小RNA干扰表达质粒。第三部分,通过VEGF-siRNA表达载体下调QBC939胆管癌细胞中VEGF-A、VEGF-C和MMP-2基因的表达,从细胞水平探讨三者在胆管癌发生、发展及侵袭转移的作用机制。
     方法:
     1.采用免疫组织化学法检测47例胆管癌组织、40例邻近非癌胆管组织及15例正常胆管组织中VEGF-A、VEGF-C和MMP-2蛋白的表达情况,分析胆管癌组织中VEGF-A、VEGF-C和MMP-2的表达与胆管癌临床病理因素及患者预后之间的关系。
     2.用CD105和D2-40分别对47例胆管癌组织、40例邻近非癌胆管组织及15例正常胆管组织中的血管内皮细胞和淋巴管内皮细胞进行标记,并采用免疫组织化学法检测其中CD105和D2-40蛋白的表达情况。显微镜下分别对47例胆管癌组织、40例邻近非癌胆管组织及15例正常胆管组织的MVD和MLVD进行计数,以此分析MVD和MLVD与VEGF-A、VEGF-C及MMP-2间的相互关系,进一步说明VEGF-A、VEGF-C和MMP-2蛋白表达在胆管癌的发生、发展和侵袭转移过程中所起到的作用。
     3.构建特异性VEGF-siRNA表达载体,使用脂质体载体将其分别转染至胆管癌细胞系QBC939、HCCC-9810和RBE中,筛选出针对VEGF基因抑制效率最高的VEGF-siRNA序列。
     4.通过RT-PCR和Western blotting法分别检测VEGF-siRNA转染后胆管癌QBC939细胞中VEGF-A、VEGF-C及MMP-2mRNA和蛋白的表达水平。
     5.分别采用Transwell侵袭实验、MMT法和流式细胞分析技术(flow cytometry, FCM)检测VEGF-siRNA转染后胆管癌QBC939细胞侵袭转移和增殖的能力及肿瘤细胞发生凋亡的情况。
     结果:
     1.与邻近非癌胆管组织和正常胆管组织相比,VEGF-C及MMP-2蛋白在胆管癌组织中阳性表达率明显增多(P<0.01)。VEGF-A、VEGF-C蛋白高表达与胆管癌浸润深度、TNM分期、淋巴结转移密切相关。而MMP-2蛋白高表达胆管癌浸润深度、分化程度、TNM分期、淋巴结转移密切相关。对胆管癌组织中VEGF-A、VEGF-C和MMP-2的进行两两比较,其蛋白表达均为正相关(P值均<0.05)。Cox多因素分析结果发VEGF-A、VEGF-C和MMP-2的蛋白表达水平均是影响胆管癌患者预后的独立因素。
     2.胆管癌组织中MVD显著高于邻近非癌胆管组织及正常胆管组织(P<0.01),而胆管癌组织和邻近非癌胆管组织中MLVD均显著高于正常胆管组织(P<0.01)。MVD和MLVD计数水平的高低与胆管癌浸润深度、分化程度、TNM分期、淋巴结转移密切相关。VEGF-A和MMP-2的表达与MVD水平呈正相关,三者可作为反映胆管癌微血管生成状况的指标;VEGF-C和MMP-2的表达与MLVD水平呈正相关,三者可作为反映胆管癌微淋巴管生成状况的指标。
     3.成功构建了VEGF-siRNA表达载体并能高效的转染进胆管癌细胞系QBC93、HCCC-9810和RBE内。与空白对照组和阴性对照组相比,VEGF-siRNA表达载体能有效地抑制VEGF mRNA及蛋白在胆管癌细胞系QBC939、HCCC-9810和RBE中的表达。其中抑制效率最高的VEGF-siRNA-1干扰片段对VEGF基因mRNA和蛋白表达的抑制率分别达到86.37%和79.72%。
     4.当胆管癌QBC939细胞系中的VEGF基因被沉默后,其VEGF-A. VEGF-C及MMP-2mRNA和蛋白的表达水平较之空白对照组和阴性对照组也明显下调(P<0.01),并可诱导肿瘤细胞产生凋亡,使肿瘤细胞的增殖、侵袭和迁移的能力明显减弱。
     结论:
     1. VEGF-A、VEGF-C及MMP-2在胆管癌组织中呈高表达,并在胆管癌的发生、发展及浸润转移过程中可能起协同作用。
     2. VEGF-A、VEGF-C及MMP-2的高表达,与胆管癌浸润深度、分化程度、TNM分期、淋巴结转移等生物学行为关系密切。
     3. VEGF-A、VEGF-C及MMP-2参与调控胆管癌中微血管密度和微淋巴管密度的水平,并与之水平呈正相关,提示其在胆管癌新生血管和淋巴管形成过程中发挥重要作用。
     4. VEGF-siRNA表达载体能特异性抑制胆管癌细胞系QBC939、 HCCC-9810和RBE中VEGF基因,并下调其mRNA和蛋白的表达水平。
     5.当胆管癌QBC939细胞系中的VEGF基因被沉默后,其VEGF-A、 VEGF-C及MMP-2mRNA和蛋白的表达水平也同时下调。
     6. VEGF-siRNA表达载体可抑制胆管癌QBC939细胞的增殖,诱导其细胞的凋亡,并降低其细胞迁移和侵袭的能力。提示通过VEGF-siRNA治疗胆管癌在理论上是可行的。
     7. VEGF-A、VEGF-C及MMP-2蛋白和mRNA的表达水平,与胆管癌发生、发展、预后密切相关,联合测定这三者和CD105、D2-40的表达水平可能成为评价预后,判断复发的重要而有效的指标。
BACKGROUND:Cholangiocarcinoma is an uncommonly malign-nant neoplasm in digestive tract, and accounts for about2%~3%of all digestive tract cancers. This cancer was described firstly by Durand Fardel in1840, which was originating from the biliary epithelium (cholangiocytes), and was most usually in the tumor of liver and biliary tract system, the incidence rate reached10%~15%in the liver and biliary cancer. The incidence rate of this disease was about1/100,000in the worldwide, but in the near decade this rate tended to increase. In our country, this rate of increase account to5%every year, and this increase rate of development became to the fastest in the all of digestive tract cancers. Therapeutic approach as well as surgical technology, radiothe-rapy, chemotherapy, and immunity treatment advanced more than imagine. Because of especially pathological features and exceptive anatomical position for this tumor, the patient with cholangiocarcinoma lack of specific clinical symptoms and diagnostic technology on the early stage. When many patients appear clinical symptoms, the ill was on the progression or advanced stage, due to they have no chance to achieve radical operation. So that the3-year survival rate only was35%to50%on the post surgery, and the5-year survival rate less than10%worldwide, as well as5%in our country. Due to the diagnostic level and therapeutic efficacy have no conspicuously improved, so these neoplasms extremely threaten the health of people. For those reasons, it's vital significance to further investigation of mechanisms of cholangiocarcinoma carcinogen-nesis, progression, invasion and metastasis. Therefore, it is current research focus to understand cholangiocarcinoma pathogenesis in the molecular biology, and to seek the targets of malignant transformation of cholangiocarcinoma, as well as targeted therapy of this tumor.
     Vascular endothelial growth factor (VEGF) takes part in the most all of aspects of vessel and lymphatic formation. It was generally ackno-wledged a specificity factor, which was one of the most effectively and strongly to neo-angiogenesis of tumors. VEGF has been shown to make a most important contribution for the angiogenesis of a solid tumor and its metastasis, moreover to take an important initiation factor for angio-genesis.
     MMP-2gene was one of the most important and widely distributed members in the matrix metalloproteinase (MMPs) family. Its functions were to depredate extracellular matrix (ECM), to destroy the histological barriers in the process of invasion, and then to lead tumor cells breakthrough ECM and basilar membrane, infiltrate to closed fibrous connective tissue, take place in the metastasis. It plays a key role on the invasion and metastasis to tumor cells.
     RNA interference (RNAi) is the classic kind of post-transcriptional gene silencing method, which allows to specifically blocking the expres-sing of target genes at the mRNA level, so it have most of specificity and effectivity. RNAi is now being exploited as a powerful tool for reverse genetics, widely powerful tool for the analysis of gene function and shows great promise for therapeutic applications.
     OBJECTIVE:In part one, to investigate the expression of VEGF-A, VEGF-C and MMP-2in the samples of cholangiocarcinoma tissues and analyze the relationship between expression of VEGF-A, VEGF-C, MMP-2and clinicopathological features, prognosis of cholangiocar-cinoma. In order to further explain the functions of VEGF-A, VEGF-C and MMP-2protein in the process of carcinogenesis, invasion, metastasis of cholangiocarcinoma, we detect the microvascular density (MVD) and micro lymphatic vessel density (MLVD) in the samples of cholangiocar-cinoma tissues. In part two, we successfully design and synthesize siRNA sequences of targeting VEGF gene, and chose a most effective siRNA to the next experiments. In part three, we use VEGF-siRNA to down-regu-late the expression of VEGF-A, VEGF-C and MMP-2gene in QBC939cell line, in order to explore the molecular mechanism of these3genes in the angiogenesis, proliferation, invasion and metastasis of cholangiocar-cinoma.
     METHODS:
     1. The expression of VEGF-A, VEGF-C and MMP-2in47specimens of cholangiocarcinoma tissues,40adjacent non-cancer specimens and15normal biliary tissues was detected by immunohistochemistry. The relationship between expression of VEGF-A, VEGF-C, MMP-2and clinicopathological features, prognosis was statistically analyzed.
     2. We used CD105and D2-40to mark the vascular and lymphatic endothelial cells in47cholangiocarcinoma tissues specimens,40adjacent non-cancer specimens and15normal biliary tissues, respectively. And then to count the number of MVD and MLVD under microscope, in order to analyze the relationship between MVD, MLVD and VEGF-A, VEGF-C, MMP-2, so that further explain the function of VEGF-A, VEGF-C and MMP-2protein in the process of carcinogenesis, invasion, metastasis of cholangiocarcinoma.
     3. We designed and synthesized siRNA sequences of targeting VEGF gene, cholangiocarcinoma cell line QBC939, HCCC-9810and RBE were respectively transfected with VEGF-siRNA plasmids for48h by LipofectamineTM2000. After the transfection, we measured the inhibited efficiency in VEGF expression; choose the most efficient one and QBC939cell line for further study.
     4. After the transfection, the RT-PCR and Western blotting test were used to measure the expression levels of mRNA and protein of VEGF-A, VEGF-C and MMP2in the QBC939cell line, respectively.
     5. The cell invasion potential was preformed by Transwell invasion and migration assay, and MTT assay was employed to detect the proliferation of the cholangiocarcinoma cell. Flow cytometry was employed to evaluate cell apoptosis and death.
     RESULTS:
     1. The expression of VEGF-A, VEGF-C and MMP-2proteins in cholangiocarcinoma tissues was significantly higher than that in adjacent non-cancer tissues and normal biliary tissues (P<0.01). Overexpression of VEGF-A, VEGF-C was statistically significantly associated with the depth of invasion, TNM stage and lymphatic metastasis. Overexpression of MMP-2was statistically significantly associated with the depth of invasion, differentiation degree, TNM stage and lymphatic metastasis. There are positive correlation between the expressions of VEGF-A, VEGF-C and MMP-2on protein level (P<0.05). In Cox multivariate analysis, expression of VEGF-A, VEGF-C and MMP-2immunostaining is found to be independent prognostic factors.
     2. MVD in cholangiocarcinoma tissues was significantly higher than that in adjacent non-cancer tissues and normal biliary tissues (P<0.01); as well as MLVD in cholangiocarcinoma tissues and adjacent non-cancer tissues both significantly higher than that in normal biliary tissues (P<0.01). The number of MVD and MLVD was statistically significantly associated with the depth of invasion, differentiation degree, TNM stage and lymphatic metastasis. There are positive correlation between the expressions of VEGF-A, MMP-2and MVD; and these three parameters can reflect the status of neo-angiogenesis in cholangiocarcinoma. There are positive correlation between the expressions of VEGF-C, MMP-2and MLVD; and these three parameters can reflect the status of neo-lymphan-giogenesis in cholangiocarcinoma.
     3. We designed and synthesized siRNA sequences of targeting VEGF gene, cholangiocarcinoma cell line QBC939, HCCC-9810and RBE were successfully transfected with VEGF-siRNA plasmids, respecti-vely. Compared to negative control group and blank control group, the mRNA and protein level of VEGF in VEGF-siRNA-1group were reduced by86.37%and79.72%, respectively.
     4. After the transfection of VEGF-siRNA-1, we can observe both the mRNA and protein of VEGF-A, VEGF-C and MMP2were signify-cantly down-regulated in the QBC939cell line, whereas the invasion, migration and proliferation of tumor cells were decreased greatly. The rate of apoptosis of tumor cells was increased obviously in the VEGF-siRNA group compared with the blank control and negative control group (P<0.01).
     CONCLUSION
     1. VEGF-A, VEGF-C and MMP-2are overexpression in the cholangiocarcinoma tissues, and maybe have synergetic effect in the process of carcinogenesis, invasion, and metastasis of cholangiocar-cinoma.
     2. Overexpression of VEGF-A, VEGF-C and MMP-2have significantly associated with the depth of invasion, differentiation degree, TNM stage and lymphatic metastasis in the cholangiocarcinoma.
     3. VEGF-A, VEGF-C and MMP-2involve within the regulation of MVD and MLVD level in the cholangiocarcinoma, and they have significant positive correlation. Moreover, they make an important contribution to the angiogenesis and lymphangiogenesis in the cholangiocarcinoma.
     4. VEGF-siRNA can efficiently and specifically inhibit expression of VEGF gene on mRNA and protein level in cholangiocarcinoma cell line QBC939, HCCC-9810and RBE, respectively.
     5. When VEGF gene was silenced, we can observe both the mRNA and protein of VEGF-A, VEGF-C and MMP2were significantly down-regulated in the QBC939cell line.
     6. Blocking the expression of VEGF gene via VEGF-siRNA can effectively inhibit the invasion, migration, proliferation, and induce apoptosis in the QBC939cell line. These findings suggest that the RNAi approach targeting VEGF maybe an effective therapeutic strategy for cholangiocarcinoma and provide a new idea for the treatment.
     7. The expressions of VEGF-A, VEGF-C and MMP-2on mRNA and protein level have significantly associated with carcinogenesis, progression, and prognosis of cholangiocarcinoma. In addition, detection and administration the serum level associated with VEGF-A, VEGF-C, MMP2, MVD and MLVD maybe a useful and significant prognostic indicator.
引文
[1]Patel, T. Cholangiocarcinoma. Nat Clin Pract Gastroenterol Hepatol,2006; 3:33-42.
    [2]黄志强.肝门部胆管癌外科治疗的现状与展望.中国普外基础与临床杂志,2005;12:317-320.
    [3]Shen FZ, Zhang BY, Feng YJ, et al. Current research in perineural invasion of cholangiocarcinoma. J Exp Clin Cancer Res,2010; 29:24.
    [4]Blechacz B, Komuta M, Roskams T, et al. Clinical diagnosis and staging of cholangiocarcinoma. Nat Rev Gastroenterol Hepatol,2011; 8(9):512-522.
    [5]Yamamoto M, Ariizumi S. Surgical outcomes of intrahepatic cholangiocar-cinoma. Surg Today,2011; 41(7):896-902.
    [6]Lieu C, Heymach J, Overman M, et al. Beyond VEGF:inhibition of the fibroblast growth factor pathway and antiangiogenesis. Clin Cancer Res,2011; 17(19):6130-6139.
    [7]Linkous AG, Yazlovitskaya EM. Novel therapeutic approaches for targeting tumor angiogenesis. Anticancer Res,2012; 32(1):1-12.
    [8]Albiges L, Salem M, Rini B, et al. Vascular endothelial growth factor-targeted therapies in advanced renal cell carcinoma. Hematol Oncol Clin North Am, 2011;25(4):813-833.
    [9]Yang S, Zhao Z, Wu R, et al. Expression and biological relationship of vascular endothelial growth factor-a and matrix metalloproteinase-9 in gastric carcinoma. J Int Med Res,2011; 39(6):2076-2085.
    [10]Wang TB, Chen ZG, Wei XQ, et al. Serum vascular endothelial growth factor-C and lymphoangiogenesis are associated with the lymph node metastasis and prognosis of patients with colorectal cancer. ANZ J Surg,2011; 81(10):694-699.
    [11]Ito Y, Shibata MA, Eid N, et al. Lymphangiogenesis and Axillary Lymph Node Metastases Correlated with VEGF-C Expression in Two Immunocompetent Mouse Mammary Carcinoma Models. Int J Breast Cancer,2011; 2011:867152.
    [12]Acs G, Paragh G, Rakosy Z, er al. The extent of retraction clefts correlates with lymphatic vessel density and VEGF-C expression and predicts nodal metastasis and poor prognosis in early-stage breast carcinoma. Mod Pathol, 2012; 25(2):163-177.
    [13]Korpi JT, Hagstrom J, Lehtonen N, et al. Expression of matrix metallo-proteinases-2,-8,-13,-26, and tissue inhibitors of metalloproteinase-1 in human osteosarcoma. Surg Oncol,2011; 20(1):e18-22.
    [14]Fisher JF, Mobashery S. Mechanism-based profiling of MMPs. Methods Mol Biol,2010; 622:471-487.
    [15]Qian Q, Wang Q, Zhan P, et al. The role of matrix metalloproteinase 2 on the survival of patients with non-small cell lung cancer:a systematic review with meta-analysis. Cancer Invest,2010; 28(6):661-669.
    [16]Lehman N. RNA in evolution. Wiley Interdiscip Rev RNA,2010;1(2):202-213.
    [17]Ford LP, Toloue MM. Delivery of RNAi mediators. Wiley Interdiscip Rev RNA,2010;1(2):341-350.
    [18]Campeau E, Gobeil S. RNA interference in mammals:behind the screen. Brief Funct Genomics,2011; 10(4):215-226.
    [19]Pecot CV, Calin GA, Coleman RL, et al. RNA interference in the clinic: challenges and future directions. Nat Rev Cancer,2011; 11(1):59-67.
    [20]Suzuki S, Dobashi Y, Hatakeyama Y, et al. Clinicopathological significance of platelet-derived growth factor (PDGF)-B and vascular endothelial growth factor-A expression, PDGF receptor-β phosphorylation, and microvessel density in gastric cancer. BMC Cancer,2010; 10:659.
    [21]Jezierska A, Motyl T. Matrix metalloproteinase-2 involvement in breast cancer progression:a mini-review. Med Sci Monit,2009; 15(2):RA32-40.
    [22]Li Y, Ma J, Guo Q, et al. Overexpression of MMP-2 and MMP-9 in esophageal squamous cell carcinoma. Dis Esophagus,2009; 22(8):664-667.
    [23]Alakus H, Grass G, Hennecken JK, et al. Clinicopathological significance of MMP-2 and its specific inhibitor TIMP-2 in gastric cancer. Histol Histopathol, 2008; 23(8):917-923.
    [24]De Cicco C, Ravasi L, Zorzino L, et al. Circulating levels of VCAM and MMP-2 may help identify patients with more aggressive prostate cancer. Curr Cancer Drug Targets,2008; 8(3):199-206.
    [25]Adam L, Black PC, Kassouf W, et al. Adenoviral mediated interferon-alpha 2b gene therapy suppresses the pro-angiogenic effect of vascular endothelial growth factor in superficial bladder cancer. J Urol,2007; 177(5):1900-1906.
    [26]Delli Carpini J, Karam AK, Montgomery L. Vascular endothelial growth factor and its relationship to the prognosis and treatment of breast, ovarian, and cervical cancer. Angiogenesis,2010; 13(1):43-58. Erratum in:Angiogenesis. 2010; 13(3):279.
    [27]黄志强.肝门部胆管癌外科治疗的现状与我见.中国实用外科杂志,2007;27(5):341-346.
    [28]Sakurai T, Kudo M. Signaling pathways governing tumor angiogenesis. Onco-logy,2011; 81 Suppl 1:24-29.
    [29]Le Guelte A, Dwyer J, Gavard J. Jumping the barrier:VE-cadherin, VEGF and other angiogenic modifiers in cancer. Biol Cell,2011; 103(12):593-605.
    [30]Veeravagu A, Hsu AR, Cai W, et al. Vascular endothelial growth factor and vascular endothelial growth factor receptor inhibitors as anti-angiogenic agents in cancer therapy. Recent Pat Anticancer Drug Discov,2007; 2(1):59-71.
    [31]Burris H 3rd, Rocha-Lima C. New therapeutic directions for advanced pancreatic cancer:targeting the epidermal growth factor and vascular endothelial growth factor pathways. Oncologist,2008; 13(3):289-298.
    [32]Goh PP, Sze DM, Roufogalis BD. Molecular and cellular regulators of cancer angiogenesis. Curr Cancer Drug Targets,2007; 7(8):743-758.
    [33]Nagase H, Visse R, Murphy G. Structure and function of matrix metallopro-teinases and TIMPs. Cardiovasc Res,2006; 69(3):562-573.
    [34]Malemud CJ. Matrix metalloproteinases (MMPs) in health and disease:an overview. Front Biosci,2006; 11:1696-1701.
    [35]Flannery CR. MMPs and ADAMTSs:functional studies. Front Biosci,2006; 11:544-569.
    [36]Overall CM, Dean RA. Degradomics:systems biology of the protease web. Pleiotropic roles of MMPs in cancer. Cancer Metastasis Rev,2006; 25(1):69-75.
    [37]Dong W, Li H, Zhang Y, et al. Matrix metalloproteinase 2 promotes cell growth and invasion in colorectal cancer. Acta Biochim Biophys Sin (Shanghai),2011; 43(11):840-848.
    [38]Diamantopoulos N, Boutis AL, Koratzis I, et al. Matrix metalloproteinases and proangiogenic factors in testicular germ cell tumors. J BUON,2010; 15 (1):116-121.
    [39]Peng B, Cao L, Ma X, et al. Meta-analysis of association between matrix metalloproteinases 2,7 and 9 promoter polymorphisms and cancer risk. Mutagenesis,2010; 25(4):371-379.
    [40]Sasaki R, Murata S, Oda T, et al. Evaluation of UICC-TNM and JSBS staging systems for surgical patients with extrahepatic cholangiocarcinoma. Langen-becks Arch Surg,2010; 395(6):615-623.
    [41]Ribero D, Nuzzo G, Amisano M, et al. Comparison of the prognostic accuracy of the sixth and seventh editions of the TNM classification for intrahepatic cholangiocarcinoma. HPB (Oxford),2011; 13(3):198-205.
    [42]Yusuf MA, Kapoor VK, Kamel RR, et al. Modification and implementation of NCCN guidelines on hepatobiliary cancers in the Middle East and North Africa region. J Natl Compr Canc Netw,2010; 8 Suppl 3:S36-40.
    [43]De Oliveira ML, Cunningham SC, Cameron JL, et al. Cholangiocarcinoma: thirty-one-year experience with 564 patients at a single institution. Ann Surg, 2007; 245(5):755-762.
    [44]Huang LE,GU J, Schau M, ea tl. Regulation of hypoxia-inducible factor 1 alpha is mediated by an O2_dependent degradation domain via the ubiquitin-pathway. Proc Natl Acad Sci USA,1998; 85:7987-7992.
    [45]Mohsin SK, Zhang M, Clark GM, et al. Maspin expression in invasive breast cancer:association with other prognostic factors. J Pathol,2003; 199(4):432-435.
    [46]Weidner N, Semple JP, Welch WR, et al. Tumor angiogenesis and metastasis: correlation in invasive breast carcinoma. N Engl J Med,1991; 324(1):1-8.
    [47]Fox SB, Leek RD, Weekes MP, et al. Quantitation and prognostic value of breast cancer angiogenesis:comparison of microvessel density, Chalkley count, and computer image analysis. J Pathol,1995; 177(3):275-283.
    [48]姚美珍,谭布珍,胡炜华.CD105标记的微血管密度在卵巢恶性生殖细胞肿瘤组织中的表达及意义.实用临床医学,2007;8(7):15-17.
    [49]Fernandez-Ruiz E, St-Jacques S, Bellon T, et al. Assignment of the human endoglin gene (END) to 9q34-->qter. Cytogenet Cell Genet,1993; 64(3-4): 204-207.
    [50]Ren S, Abuel-Haija M, Khurana JS, et al. D2-40:an additional marker for myoepithelial cells of breast and the precaution in interpreting tumor lym-phovascular invasion. Int J Clin Exp Pathol,2011; 4(2):175-182.
    [51]Yokomori H, Oda M, Kaneko F, et al. Lymphatic marker podoplanin/D2-40 in human advanced cirrhotic liver-re-evaluations of microlymphatic abnormali-ties. BMC Gastroenterol,2010; 10:131.
    [52]Lillemoe KD, Cameron JL. Surgery for hilar cholangiocarcinoma:the Johns Hopkins approach. J Hepatobiliary Pancreat Surg,2000; 7(2):115-121.
    [53]Blechacz BR, Gores GJ. Cholangiocarcinoma. Clin Liver Dis,2008; 12 (1):131-150.
    [54]Khan SA, Thomas HC, Davidson BR, et al. Cholangiocarcinoma. Lancet,2005; 366(9493):1303-1314.
    [55]Tang HH, Chang S, Wang XW, et al. Diagnostic and surgical therapeutic features of extrahepatic bile duct carcinoma without jaundice. World J Gast-roenterol,2004; 10(20):3060-3061.
    [56]Gatto M, Bragazzi MC, Semeraro R, et al. Cholangiocarcinoma:update and future perspectives. Dig Liver Dis,2010; 42(4):253-260.
    [57]Friman S. Cholangiocarcinoma--current treatment options. Scand J Surg,2011; 100(1):30-34.
    [58]Huang JL, Biehl TR, Lee FT, et al. Outcomes after resection of cholan-giocellular carcinoma. Am J Surg,2004; 187(5):612-617.
    [59]Capussotti L, Vigano L, Ferrero A, et al. Local surgical resection of hilar cholangiocarcinoma:is there still a place? HPB (Oxford),2008; 10(3):174-178.
    [60]Hattori M, Nagino M, Ebata T, et al. Prospective study of biliary cytology in suspected perihilar cholangiocarcinoma. Br J Surg,2011; 98(5):704-709.
    [61]Tugues S, Koch S, Gualandi L, et al. Vascular endothelial growth factors and receptors:anti-angiogenic therapy in the treatment of cancer. Mol Aspects Med, 2011;32(2):88-111.
    [62]Ahmed Z, Bicknell R. Angiogenic signalling pathways. Methods Mol Biol, 2009; 467:3-24.
    [63]Niu G, Chen X. Vascular endothelial growth factor as an anti-angiogenic target for cancer therapy. Curr Drug Targets,2010; 11(8):1000-1017.
    [64]Azam F, Mehta S, Harris AL. Mechanisms of resistance to antiangiogenesis therapy. Eur J Cancer,2010; 46(8):1323-1332.
    [65]Sullivan LA, Brekken RA. The VEGF family in cancer and antibody-based strategies for their inhibition. MAbs,2010; 2(2):165-175.
    [66]Ferrara N. VEGF-A:a critical regulator of blood vessel growth. Eur Cytokine Netw,2009; 20(4):158-163.
    [67]Langer C, Soria JC. The role of anti-epidermal growth factor receptor and anti-vascular endothelial growth factor therapies in the treatment of non-small-cell lung cancer. Clin Lung Cancer,2010; 11(2):82-90.
    [68]Flaherty KT, Puzanov I. Building on a foundation of VEGF and mTOR targeted agents in renal cell carcinoma. Biochem Pharmacol,2010; 80(5): 638-646.
    [69]Hubbard J, Grothey A. Antiangiogenesis agents in colorectal cancer. Curr Opin Oncol,2010; 22(4):374-380.
    [70]Botelho F, Pina F, Lunet N. VEGF and prostatic cancer:a systematic review. Eur J Cancer Prev,2010; 19(5):385-392.
    [71]陈颖,张磊,刘翔宇,等.HIF-1α、VEGF和Sema4D蛋白在卵巢癌组织中的表达及其临床意义.中华妇产科杂志,2011;46(10):786-788.
    [72]Karkkainen MJ, Petrova TV. Vascular endothelial growth factor receptors in the regulation of angiogenesis and lymphangiogenesis. Oncogene,2000; 19(49):5598-5605.
    [73]Makinen T, Norrmen C, Petrova TV. Molecular mechanisms of lymphatic vascular development. Cell Mol Life Sci,2007; 64(15):1915-1929.
    [74]Otrock ZK, Makarem JA, Shamseddine AI. Vascular endothelial growth factor family of ligands and receptors:review. Blood Cells Mol Dis,2007; 38(3):258-268.
    [75]Roskoski R Jr. Vascular endothelial growth factor (VEGF) signaling in tumor progression. Crit Rev Oncol Hematol,2007; 62(3):179-213.
    [76]Su JL, Yen CJ, Chen PS, et al. The role of the VEGF-C/VEGFR-3 axis in cancer progression. Br J Cancer,2007; 96(4):541-545.
    [77]Boden G, Song WW. Effects of insulin and free fatty acids on matrix metal-loproteinases. Curr Diab Rep,2008; 8(3):239-242.
    [78]Morley ME, Riches K, Peers C, et al. Hypoxic inhibition of human cardiac fibroblast invasion and MMP-2 activation may impair adaptive myocardial remodelling. Biochem Soc Trans,2007; 35(Pt 5):905-907.
    [79]Santos-Martinez MJ, Medina C, Jurasz P, et al. Role of metalloproteinases in platelet function. Thromb Res,2008; 121(4):535-542.
    [80]肖梅,周宁新,黄志强,等.肝门部胆管癌中MMP-2/TIMP-2比值半定量研究的临床意义.消化外科,2003;2(5):310-313.
    [81]肖广发,汤恢焕.基质金属蛋白酶-2在胆管癌组织中的表达及与预后的关系.第四军医大学学报,2008;29(17):1611-1613.
    [82]Zucker S, Mica H, Conner CE, et al. Vascular endothelial growth factor induce tissue factor and matrix metalloproteinase production in endothelial cells conversion of prothrombin results in progelatinase a activation and cell proliferation. Int Cancer,1998; 75:780-786.
    [83]Sounni NE,Devy L, Hajitou A, et al. MT1-MMP expression promotes tumor growth and angiogenesis through an up-regulation of vascular endothelial growth factor expression. FASEB J,2002,16(6):555-564.
    [84]Garzetti GG, Ciavattini A, Lucarini G, et al. Expression of vascular endothelial growth factor related to 72-kilodalton metalloproteinase immunostaining in patients with serous ovarian tumors. Cancer,1999; 85(10):2219-2225.
    [85]Tolnay E, Wiethege T, Kuhnen C, et al. Expression of type IV collagenase correlates with the expression of vascular endothelial growth factor in primary non-small cell lung cancer. J Cancer Res Clin Oncol,1997; 123(11-12):652-658.
    [86]周军,汤恢焕.胆管癌微血管计数和VEGF及MMP2的表达及其意义.中国普通外科杂志,2003;12(2):122-124.
    [87]Ohno Masakazu, Takeshi N, Yukihiro K, et al. Lymphangiogenesis correlates with expression of vascular endothelial growth factor-C in coloreclal cancer. Oncology Reports,2003; 10:939-943.
    [88]Judah Folkman, Ezio Merler, Charles Abemathy, et al. Isolation of a tumor factor responsible for angiogenesis. J. Exp. Med,1971; 133:275-288.
    [89]Williams CS, Leek RD, Robson AM, et al. Absence of lymphangiogenesis and intratumoral lymph vessels in human metastatic breast cancer. J Pathol, 2003; 200(2):195-206.
    [90]Astekar M, Joshi A, Ramesh G, et al. Expression of vascular endothelial growth factor and microvessel density in oral tumorigenesis. J Oral Maxillofac Pathol,2012; 16(1):22-26.
    [91]Declercq HA, Forsyth RG, Verbruggen A, et al. CD34 and SMA expression of superficial zone cells in the normal and pathological human meniscus. J Orthop Res,2012; 30(5):800-808.
    [92]Margaritescu C, Pirici D, Simionescu C, et al. The utility of CD44, CD 117 and CD133 in identification of cancer stem cells (CSC) in oral squamous cell carcinomas (OSCC). Rom J Morphol Embryol,2011; 52(3 Suppl):985-993.
    [93]Ruan J, Hajjar K, Rafii S, et al. Angiogenesis and antiangiogenic therapy in non-Hodgkin's lymphoma. Ann Oncol,2009; 20(3):413-424
    [94]Bishop-Bailey D. Tumour vascularisation:a druggable target. Curr Opin Phar-macol,2009; 9(2):96-101.
    [95]Farnsworth RH, Achen MG, Stacker SA. Lymphatic endothelium:an impor-tant interactive surface for malignant cells. Pulm Pharmacol Ther,2006; 19(1): 51-60.
    [96]Aoki Y, Tosato G. Lymphatic regeneration:new insights from VEGFR-3 block-ade. J Natl Cancer Inst,2005; 97(1):2-3.
    [97]Kahn HJ, Marks A. A new monoclonal antibody, D2-40, for detection of lymphatic invasion in primary tumors. Lab Invest,2002; 82(9):1255-1257.
    [98]Ji RC. Lymph node lymphangiogenesis:a new concept for modulating tumor metastasis and inflammatory process. Histol Histopathol,2009; 24(3):377-384.
    [99]Yang LP, Fu LC, Guo H, et al. Expression of vascular endothelial growth factor C correlates with lymphatic vessel density and prognosis in human gastroeso- phageal junction carcinoma. Onkologie,2012; 35(3):88-93.
    [100]Pengchong H, Tao H. Expression of IGF-1R, VEGF-C and D2-40 and their correlation with lymph node metastasis in endometrial adenocarcinoma. Eur J Gynaecol Oncol,2011; 32(6).660-664.
    [101]Imamura Y, Watanabe M, Nagai Y, et al. Lymphatic vessel invasion detected by the D2-40 monoclonal antibody is an independent prognostic factor in node-negative esophageal squamous cell carcinoma. Surg Oncol,2012; 105(3): 277-283.
    [102]Heinzelbecker J, Kempf KM, Kurz K, et al. mph vessel density in semino-matous testicular cancer assessed with the specific lymphatic endothelium cell markers D2-40 and LYVE-1:Correlation with pathologic parameters and clinical outcome. Urol Oncol,2011 Oct 3.
    [103]de Oliveira AT, Reis RM, Afonso J, et al. Lymphangiogenic VEGF-C and VEGFR-3 expression in genetically characterised gastrointestinal stromal tumours. Histol Histopathol,2011; 26(12):1499-1507.
    [104]da Costa HO, Sotto MN, Valente NY, et al. Microvascular lymphatic density analysis in cutaneous regressive and nonregressive superficial spreading melanomas using the lymphatic marker D2-40. Am J Dermatopathol.2011; 33(7):669-674.
    [105]Rahier JF, De Beauce S, Dubuquoy L, et al. Increased lymphatic vessel density and lymphangiogenesis in inflammatory bowel disease. Aliment Pharmacol Ther,2011;34(5):533-543.
    [106]Colmenares SU, Buker SM, Buhler M, et al. Coupling of double-stranded RNA synthesis and siRNA generation in fission yeast RNAi. Mol Cell,2007; 27(3):449-461.
    [107]Lehman N. RNA in evolution. Wiley Interdiscip Rev RNA,2010; 1(2): 202-213.
    [108]Portnoy V, Huang V, Place RF, et al. Small RNA and transcriptional upregulation. Wiley Interdiscip Rev RNA,2011; 2(5):748-760.
    [109]Pais H, Moxon S, Dalmay T, et al. Small RNA discovery and characterisation in eukaryotes using high-throughput approaches. Adv Exp Med Biol,2011; 722:239-254.
    [110]Elbashir SM, Harborth J, Weber K, et al. Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods,2002; 26(2):199-213.
    [111]Tuschl T. Expanding small RNA interference. Nat Biotechnol,2002; 20(5): 446-448.
    [112]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001;25(4):402-408.
    [113]Halper J. Growth factors as active participants in carcinogenesis:a perspective. Vet Pathol,2010; 47(1):77-97.
    [114]Tsao JI, Nimura Y, Kamiya J, et al. Management of Hilar Cholangiocarcinoma: comparison of an American and a Japanese experience. Ann Surg,2000; 232(2):166-174.
    [115]McCaffrey AP, Meuse L, Pham TT, et al. RNA interference in adult mice. Nature,2002; 418(6893):38-39.
    [116]Petrocca F, Lieberman J. Promise and challenge of RNA interference-based therapy for cancer. J Clin Oncol,2011; 29(6):747-754.
    [117]Addepalli MK, Ray KB, Kumar B, et al. RNAi-mediated knockdown of AURKB and EGFR shows enhanced therapeutic efficacy in prostate tumor regression. Gene Ther,2010; 17(3):352-359.
    [118]Cuevas EP, Escribano O, Monserrat J, et al. RNAi-mediated silencing of insulin receptor substrate-4 enhances actinomycin D- and tumor necrosis factor-alpha-induced cell death in hepatocarcinoma cancer cell lines. J Cell Biochem,2009; 108(6):1292-1301.
    [119]Varnholt H. The role of microRNAs in primary liver cancer. Ann Hepatol, 2008; 7(2):104-113.
    [120]Heinonen JE, Smith CI, Nore BF. Silencing of Bruton's tyrosine kinase (Btk) using short interfering RNA duplexes (siRNA). FEBS Lett,2002; 527(1-3): 274-278.
    [121]Clemens JC, Worby CA, Simonson-Leff N, et al. Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc Natl Acad Sci USA,2000; 97(12):6499-6503.
    [122]Makimura H, Mizuno TM, Mastaitis JW, et al. Reducing hypothalamic AGRP by RNA interference increases metabolic rate and decreases body weight without influencing food intake. BMC Neurosci,2002; 3(1):18.
    [123]Hamasaki K, Nakao K, Matsumoto K, et al. Short interfering RNA-directed inhibition of hepatitis B virus replication. FEBS Lett,2003;543(1-3):51-54.
    [124]Farazi TA, Spitzer JI, Morozov P, et al. miRNAs in human cancer. J Pathol, 2011;223(2):102-115.
    [125]Vazquez-Vega S, Contreras-Paredes A, Lizano-Soberon M, et al. RNA interference (RNAi) and its therapeutic potential in cancer. Rev Invest Clin, 2010; 62(1):81-90.
    [126]Lares MR, Rossi JJ, Ouellet DL. RNAi and small interfering RNAs in human disease therapeutic applications. Trends Biotechnol,2010; 28(11):570-579.
    [127]Irie N, Sakai N, Ueyama T, et al. Subtype-and species-specific knockdown of PKC using short intering RNA. Biochemical and Biophysical Research Com-munications,2002; 298:738-743.
    [128]Tijsterman M, Plasterk RH. Dicers at RISC; the mechanism of RNAi. Cell, 2004; 117(1):1-3.
    [129]Agrawal N, Dasaradhi P V, Mohmmed A, et al. RNA interference:biology, mechanism, and app lications. Microbiol Mol Biol Rev,2003; 67(4):657-685
    [130]Sabine B. Antisense-RNA regulation and RNA interference. Biochemica et Biophysica Acta,2002; 1575(23):15-25.
    [131]Van RP, Brand AH. Spreding silence with sid. Genome Biol,2004; 5(2):208.
    [132]Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature,1998; 391(6669): 806-811.
    [133]Ferrara N, hetzel WJ. Pituitary follicular cells secrete a novel heparin binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Comm,1989; 142:715-719.
    [134]Munaut C, Noel A, Hougrand O, et al. Vascular endothelial growth factor expression correlates with matrix metalloproteinases MT1-MMP, MMP-2 and MMP-9 in human glioblastomas. Int J Cancer,2003; 106:848-855.
    [135]Foda HD, Zucker S. Matrix metalloproteinases in cancer invasion, metastasis and angiogenesis. Drug Discov Today,2001; 6:478-482.
    [136]ZHOU J, GAN N, ZHANG W, et al. Proliferation suppression and apoptosis of ovarian carcinoma cells induced by small interfering RNA against vascular endothelial growth factor. J Obstet Gynaecol Res,2010; 36(2):232-238.
    [137]Wang s, Liu H, Ren L, et al. Inhibiting colorectal carcinoma growth and metastasis by blocking the expression of VEGF Using RNA interference. Neoplasia,2008; 10(4):399-409.
    [138]Chen G, Wang Y, Zhou M, et al. EphAl receptor silencing by small interfering RNA has antiangiogenic and antitumor efficacy in hepatocellular carcinoma. Oncol Rep,2010; 23:563-570.
    [1]Jasmine L H, Thomas R B, Faye TL, et al. Outcomes after resection of cholangiocellular carcinoma [J]. Am J Surg,2004,187 (5):612-617.
    [2]邹声泉,刘小方,郭仁宣,等.乙型肝炎和丙型肝炎病毒感染与胆管癌相关因素的调查分析[J].中华外科杂志,2003,41(6):417-419.
    [3]Okuda K, Nakanuma Y, Miyazaki M. Cholangiocarcinoma:recent progress [J]. J Gastroent erol Hepatol,2002,17(10):1056-1063.
    [4]Kobayashi M, Ikeda K, Saitoh S, et al. Incidence of Primary cholangiocellular carcinoma of the liver in Japanese patients with hepatitis C virus-related cirrhosis [J]. Cancer,2000,88(11):2471-2477.
    [5]屈振亮,邹声泉,魏国红,等.肝外胆管癌组织中HBx mRNA的原位检测和临床病理意义[J].中华外科杂志,2004,42(2):88-91.
    [6]陈汝福,李志花,陈积圣,等.丙型肝炎病毒核心蛋白诱导人胆管上皮细胞转化及成瘤实验[J].中华外科杂志,2005,43(3):153-156.
    [7]陈澎周,陈玉泉,施沈平,等.胆道肿瘤组织中p62和p21表达的临床意义[J].中华肝胆外科杂志,2001,7(2):94-97.
    [8]Voravud N, Foster C S, Gilbertson J A, et al. Oncogene expression in Cholangiocarcinoma and in normal hepatic development [J]. Hum Pathol, 1989,20(12):1163-1168.
    [9]Su WC, Shiesh SC, Liu HS, et,al. Expression of oncogene products HER/Neu and Ras and fibrosis related growth factors bFGF, TGF-beta, and PDGF in bile from biliary malignancies and inflammatory disorders [J]. Dig Dis Sei,2001, 46(7):1387-1392.
    [10]Boberg KM, Schrumpf E, Bergquist A, et al. Cholangiocarcinoma in primary selerosing cholangitis:K-ras mutations and Tp53 dysfunction are implicated in the neoplastic development [J]. J Hepatol,2000,32(3):374-380.
    [11]Isa T, Tomita S, Nakachi A, et al. Analysis of microsatellite instability, K-ras Genemutation and P53 protein over expression in intrahepatic cholangiocar- cinoma [J]. Hepatogastroenterology,2002,49(45):604-608
    [12]Li SM, Yao SK, Yamamura N, et al. Expression of Bel-2 and Bax in extrahepatic biliary tract carcinoma and dysplasia [J]. World J Gastroenterol, 2003,9(11):2579-2582.
    [13]Ito Y, Takeda T, Sakon M, et al. Expression and clinical implications of bcl-2 in extrahepatic bile duct carcinoma:its relationship with biological features [J]. Anticancer Res,2000,20(5):3891-3895.
    [14]Mikami T, Yanagisawa N, Baba H, et al. Association of Bel-2 Protein expression with gallbladder carcinoma differentiation and Progression and its relation to apoptosis [J]. Cancer.1999,85(2):318-325.
    [15]Yoon JH, Wemeburg NW, Higuchi H, et al. Bile aids inhibit Mel-1 Protein turnover via an epidermal growth factor receptor/Rafl-dependent mechanism [J]. Cancer Res,2002,62(22):6500-6505.
    [16]Su W C, Shiesh SC, Liu HS, et al. Expression of oncogene Products HER/Neu and Ras and fibrosis-related growth factors bFGF, TGF-beta, and PDGF in bile from biliary malignancies and inflammatory disorders [J]. Dig Dis Sci,2001,46(7):1387-1392.
    [17]Ukita Y, Kato M, Terada T. Gene amplification and mRNA and Protein over-expression of c-erbB-2(HER22/neu) in human intrahepatic cholangiocar-cinoma as detected by fluorescence in situ hybridization, in situ hybridization, and in immunohistochemistry[J]. J Hepatol,2002,36(6):780-785.
    [18]Rijken AM, Offerhaus GJ, polad MM, et al. p53 expression as aprognostic determinant in resected distal bile duct carcinoma[J]. Eur J Surg Oncol,2007, 25(3):297-301.
    [19][19] LimPaiboon T, Sripa B, Wongkam S, et al. Anti-P53 antibodies and P53 Protein Expression in cholangiocarcinoma [J]. Hepatogastroenterology,2004, 51(55):25-28.
    [20]Wang Y, Yamaguchi Y, Watanabe H, et al. Usefulness of p53 gene mutations in the supernatant of bile for diagnosis of biliary tract carcinoma:comparison with K-ras mutation [J]. J Gastroenterol,2002,37(10):831-839.
    [21]Yoshida T, Sugai T, Habano W, et al. Microsatellite instability in gallbladder carcinoma:two independent genetic pathways of gallbladder carcinogenesis [J]. J Gastroenterol,2000,35(10):768-774.
    [22]李大江,王曙光,陈长宏,等.nm3-H1基因转染对人胆管癌细胞系QBC939 体外浸润能力的影响[J].第三军医大学学报,2002,24(10):1196-1198.
    [23]Aigani P, Shaukat A, Kaushal M, et al. Differing rates of loss of DPC4 expression and of P53 over expression among carcinomas of the proximal and distal bile ducts [J]. Cancer,2001,91(7):1332-1341.
    [24]Tang Z, Zou S, Hao Y, et al. Frequency of loss expression of the DPC4 protein in various locations of biliary tract carcinoma[J]. Zhonghua Yu Fang Yi Xue Za Zhi,2002,36(7):481-484.
    [25]Fan YZ, Zhang JT, Yang HC, et al. Expression of MMP-2, TIMP-2 protein and the ratio of MMP-2/TIMP-2 in gallbladder carcinoma and their significance [J]. World J Gastroenterol,2002,8(6):1138-1143.
    [26]郑秀海,王曙光,喻智勇,等.整合素单克隆抗体对人胆管癌肿瘤血管生成的抑制作用[J].中华实验外科杂志,2002,19(5):396-397.
    [27]Endo K, Ashida K, Miyake N, et al. E-cadherin gene mutations in human intrahepatic cholangiocarcinoma [J]. J Pathol,2001,193(3):310-317.
    [28]Bjomsson E, Kilander A, Olsson R. CA-199 and CEA are unreliable markers for cholangiocarcinoma in patients with primary selerosing cholangitis [J]. Live, 1999,19(6):501-508.
    [29]汪正广,孟翔凌.肿瘤标志物CEA、CA-199、CA50联合检测在胆管癌诊治中的作用[J].肝胆外科杂志,2003,11(3):187-188.
    [30]Chen CY, Shiesh SC, Tsao HC, et al. The assessment of biliary CA125, CA-199 and CEA in diagnosing cholangiocarcinoma the influence of sampling time and hepatolighiasis [J]. Hepatogastroenterology,2002,49(45):16-20.
    [31]Okuda K, Nakanuma Y, Miyazaki M. Cholangiocarcinoma:recent progress Part2:molecular pathology and treatment [J]. J Gastroenterol Hiptol.2002, 17(10):1056-1063
    [32]Watanabe H, Enjoji M, Nakashima M, et al. Clinical significance of serum RCAS1 levels detected by monoclonal antibody 22-1-1 in patients with cholangiocellular carcinoma [J]. J HePatol,2003,39(4):559-563.
    [33]Enjoji M, Yamaguchi K, Nakamuta M, et al. Movement of anovel serum tumour maker, RCAS1, in Patients with biliary diseases [J]. Dig Liver Dis,2004. 36(9):622-627.
    [34]Hanahan D, Folkman J. Patterns and emerging mechanisms of the antiogenic switch during tumorigenesis [J]. Cell,1996,86(3):353-364.
    [35]Benckert C, Jonas S, Cramer T, et al. Transforming growth factor Beta 1 stimulate vascular endothelial growth factor gene transcription in human cholangiocellular carcinoma cells [J]. Cancer Res,2003,63(5):1083-1092.
    [36]Kawahara N, Ono M, Taguehi K, et al. Enhanced expression of Thrombo-spondin-1 and hypovascularity in human cholangiocarcinoma [J]. Hepatology, 1998,28(6):1512-1517.
    [37]Ogasawara S, Yano H, Higaki K, et al. Expression of angiogenic factors, basic fibroblast growth factor and vascular endothelial growth factor, in human biliary tract carcinoma cell lines [J]. Hepatol Res,2001,20(1):97-113.
    [38]Su WC, Shiesh SC, Liu HS, et al. Expression of oncogene products HER2/Neu and Ras and fibrosis-related growth factors bFGF, TGF2 beta, and PDGF in bile from biliary malignancies and inflammatory disorders [J]. Dig Dis Sei,2001,46(7):1387-1392.
    [39]Nagakawa T, Mori K, Nakano T, et,al. Perincural invasion of carcinoma of the Pancreas and biliary tract [J]. Br J Surg1993,80:619-621.
    [40]Bhuiya MR, Nimura Y, Kamiya J, et al. Clinicopathologic studies on perincural invasion of bile duct carcinoma [J]. Ann Surg1992:215:344-349.
    [41]Nakagawara A. Trk receptor tyrosine kinases:a bridge between cancer and neural development [J]. Cancer Lett,2001,169(2):107-114.
    [42]郭伟,李占飞,张萌,等.神经生长因子与人胆管癌神经浸润转移的相关性分析[J].临床外科杂志.2006,14(2):93-94.
    [43]Murakawa K, Tada M, Takada M, et al. Prediction of lymph node metastasis and Perincural invasion of biliary tract cancer by selected features from cDNA array data [J]. J Surg Res,2004,122(2):184-194.
    [44]郭伟,邹声泉.神经生长因子对人胆管癌细胞增殖作用的影响[J].中国普通外科杂志,2005,14(8):595-598.
    [45]TanakaS, SugimachiK, KameyamaT, et al. HumanWISPlv, a member of the CCN family, is associated with invasive cholangiocarcinoma [J]. HePatology, 2003,37(5):1122-1129.
    [46]Ogura Y, Matsuda S, Itho M, et al. Inhibitory effect of loxiglumide(CR1505), a cholecystokinin receptor antagonist, on N-nitrosobis (2-oxopropy 1) amine-induced biliary carcinogenesis in Syrian hamsters [J]. World J Surg, 2002,26(3):359-365.
    [47]Kanno N, Glaser S, Chowdhury U, et al. Gastrin inhibits cholangiocarcinoma growth through increased apoptosis by activation of Ca2+ dependent protein kinase C-alpha [J]. J Heatol,2001,34(2):284-291.
    [48]Caplin M, Khan K, Savage K, et al. Expression and processing of gastrin in hepatocellular carcinoma, fibrolamellar carcinoma and cholangiocarcinoma [J]. J HePatol,1999,30(3):519-526.
    [49]Zhao B, Zhao H, Zhao N, et al. Cholangiocarcinoma cells express somatostatin receptor subtype 2 and respond to octreotide treatment [J]. J Hepatobiliary Pancreat Surg,2002,9(4):497-502.
    [50]Shiraishi K, Okita K, Harada T, et al. Comparative genomic hybridization analysis of genetic aberrations associated with development and progression of biliary tract carcinomas [J]. Cancer,2001,91(3):570-577.
    [51]丛文铭,吴孟超.肝内胆管癌的微卫星不稳定性和杂合性缺失特点团[J].中华肿瘤杂志,2002,24(2):141.
    [52]Chen YJ, Tang QB, Zou S Q. Inactivation of RASSF1 A, the tumor suppressor gene at 3p21.3 in extrahepatic cholangiocarcinoma [J]. World J Gastroenterol, 2005,11(9):1333-1338.
    [53]Yang B, House MG, Guo M, et al. Promoter methylation profiles of tumor suppressor genes in intrahepatic and extrahepatic cholangiocarcinoma [J]. Mod Pathol,2005,18(3):412-420.
    [54]鲁建国,林晨,黄志强,等.腺病毒介导的p16和p53的联合应用对胆管癌细胞QBC939的生长抑制作用[J].解放军医学杂志,2001,26(6):393-395.
    [55]Freytag SO, Rogulski KR., Paielli DL, et al. A novel three pronged approach to kill cancer cells selectively:concomitant viral, double suicide gene, and radiotherapy [J]. Hum Gene Ther,1998,9(9):1323-1333.
    [56]Pederson LC, Viekers SM, Buehsbaum DJ, et al. Combined cytosine deaminase expression,5-fluorocytosine exposure, and radiotherapy increases cytotoxicity tocholangiocarcinoma cells [J]. J Gastrointest Surg,1998,2(3):283-291.
    [57]Nagi P, Viekers SM, DaVydova J, et al. Development of a therapeutic adenoviral vector for cholangiocarcinoma combining tumor restricted gene expression and infectivity enhancement [J]. Journal of Gastrointestinal Surgery, 2003,7(3):364-371.
    [58]Tanaka S, Iwai M, Harada Y, et al. Targeted killing of carcinoembryonic antigen (CEA) producing cholangiocarcinoma cells by polyamidoamine dendrimer-mediated transfer of an Epstein Barr virus(EBV) based Plasmid vector carrying the CEA Promoter [J]. Cancer Gene Ther,2000,7(9):1241-1250.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700