乙烯反应因子OsDERF1调控水稻耐逆性的分子机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物激素影响植物的生长发育与对环境胁迫的应答反应。乙烯是植物重要的激素之一,它不仅参与植物种子的萌发、根的生长、叶片及花的形成与发育、果实的成熟乃至植物衰老与凋亡等发育过程,而且还参与植物对低温、干旱、高盐的适应以及抵抗病原菌侵染等生物和非生物胁迫应答过程。植物体内乙烯水平的变化是调控植物生长发育与逆境胁迫应答反应的前提条件之一,研究乙烯生物合成的调控机理对阐明乙烯的生物学功能及其信号传导与调控机理具有重要的意义。研究表明转录和转录后水平调控在乙烯生物合成中具有重要的作用。通过转录水平和转录后水平的协同调控作用,植物便可调节乙烯的生物合成和信号转导途径开闭调节乙烯的功能,协调乙烯信号途径与其它激素信号途径的互作,完成各种生命活动和适应各种胁迫反应。水稻是重要的粮食作物,水稻乙烯合成的调控虽然取得了一定的研究进展,但有关转录调控的分子机理还有待进一步的探讨。本研究通过分析转录组基因表达数据库,发现了一组干旱应答的ERF基因(Rice drought-responsive ERF genes, OsDERF),并对其中的一个新的转录激活子OsDERF1开展了系统的功能分析。它通过激活乙烯应答相关抑制子的表达负调控乙烯合成和干旱胁迫反应。本研究OsDERF1,这个基因的表达受干旱、ABA和ACC诱导。过量表达OsDERF1(OE)降低水稻对干旱胁迫的耐受性,而OsDERF1(RI)增加水稻对干旱胁迫的耐受性。过量表达OsDERF1植株中可溶性糖、脯氨酸和叶绿素的含量比野生型中高,而丙二醛的含量比对野生型低,OsDERF1(RI)中则相反,在干旱胁迫条件下这种差异更加明显。OsDERFl在渗透适应性反应中的负调控也验证了其在干旱胁迫中的负调控的功能。本研究通过Affymetrix GeneChip的方法寻找OsDERF1下游目标基因,以求阐明其在干旱耐受反应中的分子机理,结果发现OsDERF1激活了许多逆境相关的负调控因子,包括ERF抑制子。通过生化和分子的研究方法发现OsDERF1能够直接同ERF抑制子OsERF3和OsAP2-39基因启动子区域的GCC box结合。深入的研究表明乙烯合成相关基因在OsDERF1过量表达植株中下调,而在OsDERF1(RI)植株中升高,这也使得乙烯的释放量发生了相应的变化。过量表达OsERF3/OsAP2-39抑制乙烯合成相关基因的表达和乙烯释放,而ACC处理能够恢复OsERF3过量表达植株对干旱的敏感表型,这证明了乙烯在水稻干旱胁迫应答过程中起到非常重要的作用。本研究认为OsDERF1通过转录激活OsERF3/OsAP2-39的表达抑制了乙烯合成基因的表达,从而负调控乙烯的释放和干旱胁迫反应,以上数据揭示了一个ERF转录调控复合体通过控制乙烯的合成来调控干旱逆境反应,此结果深化了我们对ERF蛋白参与调控乙烯合成相关的干旱胁迫反应方面的理解。
     此外,为了更深入的了解OsDERF1的功能,通过筛选酵母表达库,得到几个OsDERF1的互作蛋白,其中有一个是C3H2C3环指蛋白将它命名为DEIP1(OsDERF1Interacting Protein1),DEIP1的表达模式和OsDERF1非常类似,它可能参与到OsDERF1的降解。酵母中的实验初步证明了它们之间的相互作用,DEIP1和OsDERF1都定位在细胞核。
Phytohormone function as signal molecules regulated a variety of developmental processes and stress responses in plants. Ethylene is one of the important hormones not only involved in plant development, such as seeds germination, root growth, and fruit rippeness, but also participated in plant biotic and abiotic stress response, like low temperature, drought, high salt and pathogen infect. It is important to elucidate the biological function of ethylene and the mechanism of ethylene signal transduction by studying the regulation mechanism of ethylene biosynthesis. Ethylene biosynthesis is modulated by many factors or regulators at both transcriptional and post-transcriptional levels. Combining the regulations at both transcriptional and post-transcriptional levels of ethylene synthesis and transduction, plant can coordinate the ethylene signal pathways and other hormone signaling pathway, keep their life and adapt various stresses. Rice is an important food crop, and studies in rice ethylene synthesis have made great progress in recent years. However, the detail regulatory mechanisms are limited that ethylene production is transcriptionally regulated in rice. In the present research, using genomic transcriptional data in the websites of rice massively parallel signature sequencing,12drought-responsive ERF genes (DERF) were identified. One of the DERF genes, OsDERF1(Os08g35240), is located in rice chromosome8. It is a novel transcriptional activator that modulates the expression of ethylene response factor (ERF) repressors, the ethylene synthesis and the drought tolerance in rice. Through analysis of transcriptional data, one of the drought-responsive ERF genes (DERF), OsDERF1, was identified for its activation in drought, ABA and ethylene precursor ACC. Transgenic plants overexpressing OsDERF1(OE) led to deduced while knockdown the expressing OsDERF1(RI) conferred enhanced tolerance to drought stress in rice seedling and tilling stages. And this regulation was supported by negative modulation in osmotic adjustment response. To elucidate the molecular basis of drought tolerance, we identified the target genes of OsDERF1using the Affymetrix GeneChip, which activated the expression of cluster stress-related negative regulators including ERF repressors. Biochemical and molecular approaches evidenced that OsDERF1at least directly interacted with the GCC box in the promoters of ERF repressors OsERF3and OsAP2-39. Further investigations showed that the expression of ethylene synthesis genes reduced in OE seedlings while enhanced in RI seedlings, thereby resulting in the changes of ethylene production. Moreover, overexpression of OsERF3/OsAP2-39suppressed the ethylene synthesis. In addition, application of ACC recovered the drought sensitive phenotype in overexpression of OsERF3transgenic lines, evidencing that the ethylene production contributes to the drought response in rice. Thus our data reveal that ERF transcriptional complex modulates drought response through controlling the ethylene synthesis, deepening our understanding of ERF protein regulation in ethylene synthesis-related drought response.
     In addition, in order to deepen our understanding on OsDERF1, we identified several OsDERF1interacting proteins by screening yeast expression library, one of those was a C3H2C3Ring finger protein DEIP1(OsDERF1-Interacting Protein1), the expression pattern of DEIP1was similar with OsDERF1, and it might participate in the degradation of OsDERF1. Experiments in yeast demonstrated that DEIP1could interact with OsDERF1, DEIP1and OsDERF1were both located in the nucleus.
引文
1. Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311,91-94.
    2. Agarwal PK, Agarwal P, Reddy MK, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25,1263-1274.
    3. Alexander L and Grierson D (2002) Ethylene biosynthesis and action in tomato:a model for climacteric fruit ripening. J Exp Bot 53,2039-2055.
    4. Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR (1999) EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284:2148-2152.
    5. Barry CS, Blume B, Bouzayen M, Cooper W, Hamilton AJ, Grierson D (1996) Differential expression of the 1-aminocyclopropane-1-carboxylate oxidase gene family of tomato. Plant J 9, 525-535.
    6. Bates LS, Waldren RP, and Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant and Soil 39,205-207.
    7. Blume B, Barry CS, Hamilton AJ, Bouzayen M, Grierson D (1997) Identification of transposon-like elements in non-coding regions of tomato ACC oxidase genes. Mol Gen Genet 254, 297-303.
    8. Bowler C, Benvenuto G, Laflamme P, Molino D, Probst AV, Tariq M, Paszkowski J (2004) Chromatin techniques for plant cells. Plant J 39,776-789.
    9. Berrocal-Lobo M, Molina A, Solano R (2002) Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J 29, 23-32.
    10. Chae HS, Faure F, Kieber JJ (2003) The etol, eto2, and eto3 mutations and cytokinin treatment increase ethylene biosynthesis in Arabidopsis by increasing the stability of ACS protein. Plant Cell 15,545-559.
    11. Cancel JD and PB Larsen (2002) Loss-of-function mutations in the ethylene receptor ETR1 cause enhanced sensitivity and exaggerated response to ethylene in Arabidopsis. Plant Physiol 129, 1557-1567.
    12. Chen JB, Wang SM, Jing RL, Mao XG (2009) Cloning the PvP5CS gene from common bean (Phaseolus vulgaris) and its expression patterns under abiotic stresses. J Plant Physiol 166,12-19.
    13. Chung MY, Vrebalov J, Alba R, Lee J, McQuinn R, Chung JD, Klein P, Giovannoni J (2010) A tomato (Solanum lycopersicum) APETALA2/ERF gene, SlAP2a, is a negative regulator of fruit ripening. Plant J 64,936-947.
    14. Cristiana TA, Maureen H, Joseph JK (2007) Regulation of Ethylene Biosynthesis. J Plant Growth Regul 26,92-105.
    15. Cao WH, Liu J, He XJ, Mu RL, Zhou HL, Chen SY, Zhang JS (2007) Modulation of ethylene responses affects plant salt-stress responses. Plant Physiol 143,707-719.
    16. Cao WH, Liu J, Zhou QY, Cao YR, Zheng SF, Du BX, Zhang JS, Chen SY (2006a) Expression of tobacco ethylene receptor NTHK1 alters plant responses to salt stress. Plant Cell Environ 7, 1210-1219.
    17. Cao Y, Song F, Goodman RM, Zheng Z (2006b) Molecular characterization of four rice genes encoding ethylene-responsive transcriptional factors and their expressions in response to biotic and abiotic stress. J Plant Physiol 163,1167-1178.
    18. Chague V, Danit LV, Siewers V, Schulze-Gronover C, Tudzynski P, Tudzynski B, Sharon A (2006) Ethylene Sensing and Gene Activation in Botrytis cinerea:A Missing Link in Ethylene Regulation of Fungus-Plant Interactions? Mol Plant Microbe Interact 19,33-42.
    19. Chakravarthy S, Tuori RP, D'Ascenzo MD, Fobert PR, Despres C, Martin GB (2003) The tomato transcription factor Pti4 regulates defense-related gene expression via GCC box and non-GCC box cis elements. Plant Cell 15,3033-3050.
    20. Chang C and Shockey J.A (1999) The ethylene-response pathway: signal perception to gene regulation. Curr. Opin. Plant Bio 2,352-358.
    21. Chang C and Stadler R (2001) Ethylene hormone receptor action in Arabidopsis. Bioessays 23, 619-627.
    22. Chang H, Jones ML, Banowetz GM, Clark DG (2003) Overproduction of cytokinins in petunia flowers transformed with PSAG12-IPT delays corolla senescence and decreases sensitivity to ethylene.Plant Physiol 132,2174-2183.
    23. Chao Q, Rothenberg M, Solano R, Roman G, Terzaghi W, Ecker JR (1997) Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins, Cell 89,1133-1144.
    24. Clark KL, Larsen PB, Wang X, Chang C (1998) Association of the Arabidopsis CTR1 Raf-like kinase with the ETR1 and ERS ethylene receptors. Proc Natl Acad Sci 95,5401-5406.
    25. Dong CJ and Liu JY. (2010) The Arabidopsis EAR-motif-containing protein RAP2.1 functions as an active transcriptional repressor to keep stress responses under tight control. BMC Plant Biol 10, 47.
    26. Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M (2000) Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12,393-404.
    27. FukaoT, Yeung E, Bailey-Serres J (2011) The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. Plant Cell 23,412-427.
    28. Gao L and Xiang CB (2008) The genetic locus Atlg73660 encodes a putative MAPKKK and negatively regulates salt tolerance in Arabidopsis. Plant Mol Biol 67,125-134.
    29. Gao S, Zhang H, Tian Y, Li F, Zhang Z, Lu X, Chen X, Huang R (2008) Expression of TERF1 in rice regulates expression of stress-responsive genes and enhances tolerance to drought and high-salinity. Plant Cell Rep 27,1787-1795.
    30. Gazzarrini S and McCourt P (2003) Cross-talk in plant hormone signalling: what Arabidopsis mutants are telling us? Ann Bot 91,605-612.
    31. Gonzalez-Lamothe R, Boyle P, Dulude A, Roy V, Lezin-Doumbou C, Kaur GS, Bouarab K, Despres C, Brisson N (2008) The transcriptional activator Pti4 is required for the recruitment of a repressosome nucleated by repressor SEBF at the potato PR-10a gene. Plant Cell 20,3136-3147.
    32. Guo H and Ecker JR (2004) The ethylene signaling pathway: new insights. Curr Opin Plant Biol 7, 40-49.
    33. Gu YQ, Wildermuth MC, Chakravarthy S, Loh YT, Yang C, He X, Han Y, Martin GB (2002) Tomato transcription factors pti4, pti5, and pti6 activate defense responses when expressed in Arabidopsis. Plant Cell 14,817-831.
    34. Guo H and Ecker JR (2003) Plant responses to ethylene gas are mediated by SCFEBF1/EBF2-dependent proteolysis of EIN3 transcription factor. Cell 115,667-677
    35. Gutterson N and Reuber TL (2004) Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr. Opin. Plant Biol 7,465-471.
    36. Hattori Y, Nagai K, Furukawa S, Song XJ, Kawano R, Sakakibara H, Wu J, Matsumoto T, Yoshimura A, Kitano H, Matsuoka M, Mori H, Ashikari M (2009) The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460,1026-1030.
    37. Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207,604-611.
    38. Huang W, Bi T, Sun W (2010) Comparative analysis of panicle proteomes of two upland rice varieties upon hyper-osmotic stress. Frontiers in Biology 5,546-555.
    39. Huang XY, Chao DY, Gao JP, Zhu MZ, Shi M, Lin HX (2009) A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes Dev 23,1805-1817.
    40. Huang Z, Zhang Z, Zhang X, Zhang H, Huang D, Huang R (2004) Tomato TERF1 modulates ethylene response and enhances osmotic stress tolerance by activating expression of downstream genes. FEBS Lett 573,110-116.
    41. He XJ, Zhang ZG, Yan DQ, Zhang JS, Chen SY (2004) A salt-responsive receptor-like kinase gene regulated by the ethylene signaling pathway encodes a plasma membrane serine/threonine kinase. Theor Appl Genet 109,377-383.
    42. Hua J, Sakai H, Nourizadeh S, Chen QG, Bleecker AB, Ecker JR, Meyerowitz EM (1998) EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. Plant Cell 10, 1321-1332.
    43. Iwai T, Miyasaka A, Seo S, Ohashi Y (2006) Contribution of ethylene biosynthesis for resistance to blast fungus infection in young rice plants. Plant Physiol 142,1202-1215.
    44. Jaglo-Ottosen KR, Gilmour SJ, Zarka DG Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1Overexpression Induces COR Genes and Enhances Freezing Tolerance. Science 280, 104-106
    45. Ito Y, Kitagawa M, Ihashi N, Yabe K, Kimbara J, Yasuda J, Ito H, Inakuma T, Hiroi S, Kasumi T (2008) DNA-binding specificity, transcriptional activation potential, and the rin mutation effect for the tomato fruit-ripening regulator RIN. Plant J 55,212-223.
    46. Kagale S, Links MG, Rozwadowski K (2010) Genome-wide analysis of ethylene-responsive element binding factor-associated amphiphilic repression motif-containing transcriptional regulators in Arabidopsis. Plant Physiol 152,1109-1134.
    47. Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17,287-291.
    48. Koh S, Lee SC, Kim MK, Koh JH, Lee S, An G, Choe S, Kim SR (2007) T-DNA tagged knockout mutation of rice OsGSKl, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses. Plant Mol Biol 65,453-466.
    49. Koyama T, Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M (2010) TCP transcription factors regulate the activities of ASYMMETRIC LEAVES1 and miR164, as well as the auxin response, during differentiation of leaves in Arabidopsis. Plant Cell 22,3574-3588.
    50. Kepinski S and Leyser O (2003) Plant responses to ethylene gas are mediated by SCF (EBFl/EBF2)-dependent proteolysis of EIN3 transcription factor. Cell 115,667-677.
    51. Kim CY, Liu Y, Thome ET, Yang H, Fukushige H, Gassmann W, Hildebrand D, Sharp RE, Zhang S (2003) Activation of a stress-responsive mitogen-activated protein kinase cascade induces the biosynthesis of ethylene in plants. Plant Cell 15,2707-2718.
    52. Kim KJ, Park CJ, Ham BK, Choi SB, Lee BJ, Paek KH (2006) Induction of a cytosolic pyruvate kinase 1 gene during the resistance response to Tobacco mosaic virus in Capsicum annuum. Plant Cell Rep 25,359-64.
    53. Kitajima S and Sato F (1999) Plant pathogenesis-related proteins:molecular mechanisms of gene expression and protein function. J. Biochem. (Tokyo) 125,1-8.
    54. Kizis D and Pages M (2002) Maize DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought-responsive element in an ABA-dependent pathway. Plant J 30(6), 679-689.
    55. Knoester M, Pieterse CM, Bol JF, Van Loon LC (1999) Systemic resistance in Arabidopsis induced by rhizobacteria requires ethylene-dependent signaling at the site of application. Mol Plant Microbe Interact 12,720-727.
    56. Kunkel BN and Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5,325-331.
    57. Lichtenthaler FW (1987) Karl Freudenberg, Burckhardt Helferich, Hermann O. L. Fischer: a centennial tribute. Carbohydr Res 164,1-22.
    58. Livak KJ and Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) Method. Methods 25,402-408.
    59. Liu H, Zhang H, Yang Y, Li G, Yang Y, Wang X, Basnayake BM, Li D, Song F (2008) Functional analysis reveals pleiotropic effects of rice RING-H2 finger protein gene OsBIRF1 on regulation of growth and defense responses against abiotic and biotic stresses. Plant Mol Biol 68(1-2),17-30.
    60. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10,1391-1406.
    61. Lorenzo O, Piqueras R, Sanchez-Serrano JJ, Solano R (2003) ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15, 165-178
    62. Ma Q, Dai X, Xu Y, Guo J, Liu Y, Chen N, Xiao J, Zhang D, Xu Z, Zhang X, Chong K (2009) Enhanced tolerance to chilling stress in OsMYB3R-2 transgenic rice is mediated by alteration in cell cycle and ectopic expression of stress genes. Plant Physiol 150,244-256.
    63. Marsch-Martinez N, Greco R, Becker JD, Dixit S, Bergervoet JH, Karaba A, de Folter S, Pereira A (2006) BOLITA, an Arabidopsis AP2/ERF-like transcription factor that affects cell expansion and proliferation/differentiation pathways. Plant Mol. Biol.,2006,62,825-843
    64. Menke FL, Champion A, Kijne JW, Memelink J (1999) A novel jasmonate-and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate-and elicitor-inducible AP2-domain transcription factor, ORCA2. EMBO J 18(16),4455-4463.
    65. Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140,411-432.
    66. Nakashima K, Tran LS, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51, 617-630.
    67. Niu X, Helentjaris T, Bate NJ (2002) Maize ABI4 binds coupling elementl in abscisic acid and sugar response genes. Plant Cell 14,2565-2575.
    68. Novillo F, Alonso JM, Ecker JR, Salinas J (2004) CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis.Proc Natl Acad Sci U S A 101,3985-90.
    69. Oeller PW, Lu MW, Taylor LP, Pike DA, Theologis A (1991) Reversible inhibition of tomato fruit senescence by antisense RNA.. Science 254,437-439.
    70. Ohta M, Matsui K, Hiratsu K, Shinshi H, Ohme-Takagi M (2001) Repression domains of class Ⅱ ERF transcriptional repressors share an essential motif for active repression. Plant Cell 13, 1959-1968.
    71. Oetiker JH, Olson DC, Shiu OY, Yang SF (1997) Differential induction of seven 1-aminocyclopropane-1-carboxylate synthase genes by elicitor in suspension cultures of tomato (Lycopersicon esculentum). Plant Mol Biol 34,275-286.
    72. Ohme-Takagi M and Shinshi H (1995) Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7,173-182.
    73. Ohme-Takagi M, Suzuki K, Shinshi H (2000) Regulation of Ethylene-Induced Transcription of Defense Genes. Plant Cell Physiol 41,1187-1192
    74. Onate-Sanchez L, Anderson JP, Young J, Singh KB (2007) AtERF14, a Member of the ERF Family of Transcription Factor, Plays a Nonredundant Role in Plant Defense. Plant Physiol 143,400-409
    75. Park JM, Park CJ, Lee SB, Ham BK, Shin R, Paek KH (2001) Overexpression of the tobacco Tsil gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell 13,1035-1046.
    76. Parvanova D, Ivanov S, Konstantinova T, Karanov E, Atanassov A, Tsvetkov T, Alexieva V, Djilianov D (2004) Transgenic tobacco plants accumulating osmolytes show reduced oxidative damage under freezing stress. Plant Physiol Biochem 42,57-63.
    77. Prasad ME, and Stone SL (2010) Further analysis of XBAT32, an Arabidopsis RING E3 ligase, involved in ethylene biosynthesis. Plant Signal Behav 5,1425-9.
    78. Prasad ME, Schofield A, Lyzenga W, Liu H, Stone SL (2010) Arabidopsis RING E3 ligase XBAT32 regulates lateral root production through its role in ethylene biosynthesis. Plant Physiol 153,1587-1596.
    79. Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu G (2000) Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes.Science 290,2105-2110.
    80. Quan R, Hu S, Zhang Z, Zhang H, Zhang Z, Huang R (2010) Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance. Plant Biotechnol J 8,476-488.
    81. Sakamoto T, Kobayashi M, Itoh H, Tagiri A, Kayano T, Tanaka H, Iwahori S, Matsuoka M (2001) Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transition in rice. Plant Physiol 125,1508-1516.
    82. Sakamoto T, Morinaka Y, Ishiyama K, Kobayashi M, Itoh H, Kayano T, Iwahori S, Matsuoka M, Tanaka H (2003) Genetic manipulation of gibberellin metabolism in transgenic rice. Nat Biotechnol 21,909-913.
    83. Schweighofer A, Hirt H, Meskiene I (2004) Plant PP2C phosphatases:emerging functions in stress signaling. Trends Plant Sci 9,236-243.
    84. Sharma P, Sharma N, Deswal R (2005) The molecular biology of the low-temperature response in plants. Bioessays 27,1048-1059.
    85. Smirnoff N and Bryant JA (1999) DREB takes the stress out of growing up. Nat Biotechnol 17, 229-230.
    86. Singh K, Foley RC, Onate-Sanchez L (2002) Transcription factors in plant defense and stress responses. Curr. Opin. Plant Biol 5,430-436.
    87. Solano R, Stepanova A, Chao Q, Ecker JR (1998) Nuclear events in ethylene signaling:a transcriptional cascade mediated by ETHYLENE-INSENSTVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev 12,3703-3714.
    88. Song CP, Agarwal M, Ohta M, Guo Y, Halfter U, Wang P, Zhu JK (2005) Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell 17,2384-2396.
    89. Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in reponse to low temperature and water deficit. Proc Natl Acad Sci 94,1035-1040
    90. Tian Y, Zhang H, Pan X, Chen X, Zhang Z, Lu X, Huang R (2011) Overexpression of ethylene response factor TERF2 confers cold tolerance in rice seedlings. Transgenic Res (DOI 10.1007/s 11248-010-9463-9).
    91. Thomma BP, Eggermont K, Tierens KF, Broekaert WF (1999) Requirement of functional ethylene-insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiol 121,1093-10102.
    92. Umezawa T, Sugiyama N, Mizoguchi M, Hayashi S, Myouga F, Yamaguchi-Shinozaki K, Ishihama Y, Hirayama T, Shinozaki K (2009) Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc Natl Acad Sci 106,17588-17593.
    93. Verslues PE and Bray EA (2006) Role of abscisic acid (ABA) and Arabidopsis thaliana ABA-insensitive loci in low water potential-induced ABA and proline accumulation. J Exp Bot 57, 201-212.
    94. Voetberg GS and Sharp RE (1991) Growth of the Maize Primary Root at Low Water Potentials:III. Role of Increased Proline Deposition in Osmotic Adjustment. Plant Physiol 96,1125-1130.
    95. Van der Fits L and Memelink J (2000) ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289,295-297
    96. Van der Fits L and Memelink J (2001) The jasmonate-inducible AP2/ERF-domain transcription factor ORCA3 activates gene expression via interaction with a jasmonate-responsive promoter element. Plant J 25,43-53
    97. Van der Graaff E, Dulk-Ras AD, Hooykaas PJ, Keller B (2000) Activator tagging of the LEAFY PETIOLE gene affects leaf petiole development in Arabidopsis thaliana. Development 127:4971-4980.
    98. Wang KL, Li H, Ecker JR (2002) Ethylene biosynthesis and signaling networks. Plant Cell 14 Suppl, S131-151.
    99. Wang KL, Yoshida H, Lurin C, Ecker JR (2004) Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein. Nature 428,945-950.
    100. Wang Q, Guan Y, Wu Y, Chen H, Chen F, Chu C (2008) Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol 67,589-602.
    101. Wilson K, Long D, Swinburne J, Coupland G. (1996) A Dissociation insertion causes a semidominant mutation that increases expression of TINY, an Arabidopsis gene related to APETALA2. Plant Cell 8,659-671.
    102. Wu L, Chen X, Ren H, Zhang Z, Zhang H, Wang J, Wang XC, Huang R (2007) ERF protein JERF1 that transcriptionally modulates the expression of abscisic acid biosynthesis-related gene enhances the tolerance under salinity and cold in tobacco. Planta 226,815-825.
    103. Wu Y, Wang Q, Ma Y, Chu C (2005) Isolation and expression analysis of salt up-regulated ESTs in upland rice using PCR-based subtractive suppression hybridization method. Plant Science 168, 847-853.
    104. Wang H, Huang Z, Chen Q, Zhang Z, Zhang H, Wu Y, Huang D, Huang R (2004a) Ectopic overexpression of tomato JERF3 in tobacco activates downstream gene expression and enhances salt tolerance. Plant Mol Biol 55,183-192.
    105. Wang K L-C, Li H, Ecker JR (2002) Ethylene Biosynthesis and Signaling Networks. Plant Cell 14, S131-151.
    106. Wang KL, Yoshida H, Lurin C, Ecker JR (2004b) Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein. Nature 428,945-950.
    107. Xiang Y, Tang N, Du H, Ye H, Xiong L (2008) Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol 148,1938-1952.
    108. Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald PC, Mackill DJ (2006) Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442,705-708.
    109. Xue T, Wang D, Zhang S, Ehlting J, Ni F, Jakab S, Zheng C, Zhong Y (2008) Genome-wide and expression analysis of protein phosphatase 2C in rice and Arabidopsis. BMC Genomics 9,550
    110. Yaish MW, El-Kereamy A, Zhu T, Beatty PH, Good AG, Bi YM, Rothstein SJ (2010) The APETALA-2-like transcription factor OsAP2-39 controls key interactions between abscisic acid and gibberellin in rice. PLoS Genet 6(9), e1001098. doi:10.1371/journal.pgen.1001098
    111. Yang SF and Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Annu. Rev. Plant Physiol 35,155-189.
    112. Yang Z, Tian L, Latoszek-Green M, Brown D, Wu K (2005) Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. Plant Mol Biol 58,585-596.
    113. Yamaguchi-Shinozaki K and Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57,781-803
    114. Yan J, Wang J, Li Q, Hwang JR, Patterson C, Zhang H (2003) AtCHIP, a U-box-containing E3 ubiquitin ligase, plays a critical role in temperature stress tolerance in Arabidopsis. Plant Physiol 132,861-869.
    115. Yu XM, Griffith M, Wiseman SB (2001) Ethylene induces antifreeze activity in winter rye leaves. Plant Physiol 126,1232-1240.
    116. Zhang H, Yang Y, Zhang Z, Chen J, Wang XC, Huang R (2008) Expression of the ethylene response factor gene TSRF1 enhances abscisic acid responses during seedling development in tobacco. Planta 228,777-787.
    117. Zhang H, Zhang D, Chen J, Yang Y, Huang Z, Huang D, Wang XC, Huang R (2004a) Tomato stress-responsive factor TSRF1 interacts with ethylene responsive element GCC box and regulates pathogen resistance to Ralstonia solanacearum. Plant Mol Biol 55,825-834.
    118. Zhang H, Liu W, Wan L, Li F, Dai L, Li D, Zhang Z, Huang R (2010a) Functional analyses of ethylene response factor JERF3 with the aim of improving tolerance to drought and osmotic stress in transgenic rice. Transgenic Res 19,809-818.
    119. Zhang H, Huang Z, Xie B, Chen Q, Tian X, Zhang X, Zhang H, Lu X, Huang D, Huang R (2004b) The ethylene-, jasmonate-, abscisic acid-and NaCl-responsive tomato transcription factor JERF1 modulates expression of GCC box-containing genes and salt tolerance in tobacco. Planta 220, 262-270.
    120. Zhang X, Zhang Z, Chen J, Chen Q, Wang XC, Huang R (2005) Expressing TERF1 in tobacco enhances drought tolerance and abscisic acid sensitivity during seedling development. Planta 222, 494-501.
    121. Zhang Y, Yang C, Li Y, Zheng N, Chen H, Zhao Q, Gao T, Guo H, Xie Q (2007) SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis. Plant Cell 19,1912-1929.
    122. Zhang YY, Li Y, Gao T, Zhu H, Wang DJ, Zhang HW, Ning YS, Liu LJ, Wu YR, Chu CC, Guo HS, Xie Q (2008) Arabidopsis SDIR1 enhances drought tolerance in crop plants. Biosci Biotechnol Biochem 72,2251-2254.
    123. Zhang Z and Huang R (2010) Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor TERF2/LeERF2 is modulated by ethylene biosynthesis. Plant Mol Biol 73,241-249.
    124. Zhang Z, Zhang H, Quan R, Wang XC, Huang R (2009) Transcriptional regulation of the ethylene response factor LeERF2 in the expression of ethylene biosynthesis genes controls ethylene production in tomato and tobacco. Plant Physiol 150,365-377.
    125. Zhang Z, Li F, Li D, Zhang H, Huang R (2010) Expression of ethylene response factor JERF1 in rice improves tolerance to drought. Planta 232,765-774.
    126. Zhao XC and Schaller GE (2004) Effect of salt and osmotic stress upon expression of the ethylene receptor ETR1 in Arabidopsis thaliana. FEBS Lett 562,189-192.
    127. Zhou J, Zhang H, Yang Y, Zhang Z, Zhang H, Hu X, Chen J, Wang XC, Huang R (2008) Abscisic acid regulates TSRF1-mediated resistance to Ralstonia solanacearum by modifying the expression of GCC box-containing genes in tobacco. J Exp Bot 59,645-652.
    128. Zhong GV and Burns JK (2003) Profiling ethylene-regulated gene expression in Arabidopsis thaliana by microarray analysis. Plant Mol Biol 53,117-131.
    129. Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol.,2002,
    130. Zou M, Guan Y, Ren H, Zhang F, Chen F (2008) A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Mol Biol 66,675-683.
    131. Zuo KJ, Qin J, Zhao JY, Ling H, Zhang LD, Cao YF, Tang KX (2007) Over-expression GbERF2 transcription factor in tobacco enhances brown spots disease resistance by activating expression of downstream genes. Gene 391,80-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700