水稻T-DNA插入突变体库侧翼序列的分离和OsBC1L家族基因的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着水稻基因组测序的完成,水稻基因组学研究已经步入功能基因组学时代。为了在基因组或系统水平上全面分析水稻基因的功能,最直接有效的方式是构建大量的突变群体,然后利用正向遗传学或反向遗传学策略进行基因功能的研究。对于T-DNA或转座子等插入型突变体的基因克隆,无论采用正向遗传学方法或采用反向遗传学方法,都必须分离插入位点的侧翼序列。通过建立侧翼序列数据库,人们可以很容易地检索到目的基因的突变体,从而进行基因克隆。
     本研究以本实验室的T-DNA插入突变体库为材料,完成了12,432份T0代转基因植株的PCR阳性检测工作,利用TAIL-PCR技术分离得到T-DNA插入位点侧翼序列5,082条。COBRA-like蛋白在植物纤维素合成和细胞扩张中具有重要的作用,本研究采用正向遗传学与反向遗传学相结合的方法,研究鉴定了水稻中两个COBRA-like基因OsBC1L4和OsBC1L5的生物学功能。本研究还克隆了一个影响水稻分蘖数的基因LTWl并进行了功能分析。
     本研究获得的主要研究结果如下:
     1.完成12,432份水稻T-DNA插入突变体库TO代转基因植株的PCR阳性检测工作,其中10,770个家系为T-DNA插入阳性植株,T-DNA阳性率约为86.6%。
     2.对T-DNA插入阳性的家系分离侧翼序列,共计得到T-DNA插入位点侧翼序列5,082条,其中的2,644条序列与水稻基因组匹配较好(E-value<10-5),基因组定位率约为52.0%。
     3.通过对分蘖突变表型的正向筛选,获得2个T-DNA侧翼序列和分蘖突变性状共分离的家系04Z11EM13 (OsBC1L4)和LTWl。
     4.对水稻OsBC1L家族成员进行了分子特征、染色体位置、系谱关系及表达分析,并通过反向遗传学策略,搜集了5个OsBC1L基因的插入家系,发现OsBC1L5基因参与水稻花粉的发育。
     5.在04Z11EM13家系中,T-DNA插入到OsBC1L4基因的第4个外显子中,造成了分蘖少、矮化的突变表型。通过共分离检测和互补实验克隆了OsBC1L4基因。经光学显微镜和扫描电镜观察,发现osbc1l4突变体具有不正常的细胞扩张、降低的次生壁厚度和增加的淀粉积累。通过测定纤维素和木质素含量,发现osbcll4突变体的纤维素含量下降了24%。采用RT-PCR和组织原位杂交技术分析了OsBC1L4基因的表达模式,发现该基因在薄壁组织和厚壁组织都有表达。通过进行OsBC1L4蛋白的亚细胞定位,发现该蛋白主要位于细胞壁和细胞膜上。通过表达相关性分析,发现OsBC1L4基因与初生壁形成相关的纤维素合成酶基因共表达。用real-time方法检测了纤维素合成相关基因和OsBC1L基因在osbc1l4突变体与野生型中的表达量,发现纤维素合成相关基因的表达在osbc1l4突变体中升高了,这可能反映了纤维素合成过程中的一种反馈机制,即通过升高其它纤维素合成相关基因的表达来弥补osbc1l4突变体中的纤维素损失。
     6.在OsBC1L5家系中,T-DNA插入到OsBC1L5基因的唯一的外显子中。该Tos17插入家系无纯合单株。通过杂合植株与野生型植株的正反杂交,发现osbc1l5基因型的雄配子缺陷。经体外花粉萌发实验,发现OsBC1L5基因可能参与水稻花粉的萌发。通过RNAi抑制实验,发现OsBC1L5基因对水稻花粉壁的发育可能也有影响。
     7.在LTWl家系中,T-DNA插入到LTWl基因的唯一的外显子中,造成了分蘖少、易枯萎的突变表型。通过共分离检测和互补实验克隆了LTWl基因。另外,在韩国POSTECH突变体库找到了一个LTWl基因的等位突变体,发现它具有与LTWl家系相同的突变表型,并且这种突变表型与在LTWl基因内的T-DNA插入也是共分离的。通过对韩国等位突变体(promoter trap line)的GUS染色,研究了LTW1基因的表达模式。
With the finish of the rice genome sequencing project, the study on rice genomics has stepped into the era of functional genomics. In order to analyze the function of rice genes on the genome scale, a best way is to generate lots of mutants by which people can analyze the function of genes by forward genetics or reverse genetics strategies. For the cloning of T-DNA or Tos17 inserted genes, the isolation of flanking sequence is necessary. Using the flanking sequence database, people can find easily the mutant of interested gene and clone it.
     In this study, I finished the PCR positive test of 12,432 T0 T-DNA inserted lines in our mutant library. By TAIL-PCR, I isolated 5,082 flanking sequences of T-DNA. COBRA-like proteins play important roles in cellulose synthesis and cell expansion, so I studied the biological function of two COBRA-like genes, OsBC1L4 and OsBC1L5, by both the forward genetics and reverse genetics methods in this research. In addition, I also cloned a gene which affects the tiller number of rice and analyze its function.
     The detail results in this study were summarized as follows:
     1. I finished the PCR tests of 12,432 T0 T-DNA inserted lines and found 10,770 (86.6%) lines were T-DNA positive.
     2. Employing TAIL-PCR method, I isolated 5,082 flanking sequences of T-DNA,2,644 (52%) of which can be located onto the rice genome (E-value<10-5).
     3. By screening the tiller mutants in the field, we obtained two cosegregation lines, 04Z11EM13 (OsBC1L4) and LTW1.
     4. I analyzed the molecular characterization, chromosomal location, phylogenetic relationships and expression patterns of rice OsBC1L family members. In addition, I obtained 5 OsBC1L inserted lines and found that OsBC1L5 was involved in the development of rice pollen.
     5. In the 04Z11EM13 line, T-DNA was inserted into the fourth exon of OsBC1L4 gene and caused the mutant phenotype of less tiller and dwarf. We cloned this gene by cosegregation and complementation experiments. The mutation of OsBC1L4 results in abnormal cell expansion, decreased secondary cell wall thickness, and increased starch accumulation. By measuring the content of crystal cellulose, I found a 24% reduction of cellulose in osbc1l4 mutants. I analyzed the expression pattern of OsBC1L4 by RT-PCR and in situ hybridization and found that OsBC1L4 was expressed in both the sclerenchyma and parenchyma cells. OsBC1L4 protein is mainly located in the cell wall and plasma membrane. Correlation coefficient analysis indicated that the expression of OsBC1L4 was highly correlated to that of several primary wall-forming cellulose synthase genes (CESAs). Moreover, the expression level of several cellulose-related genes is increased in osbc1l4 mutants, which suggests that a feedback mechanism may exist to compensate for the reduced cellulose production in osbc1l4 mutants by increasing the expression of other cellulose-related genes during cellulose synthesis.
     6. In the OsBC1L5 line, T-DNA was inserted into the single exon of OsBC1L5 gene. This line has no homozygous plant of OsBC1L5 insertion. I performed reciprocal cross between OsBC1L5/osbcll5 heterozygous and the wild type plants and found the osbcll5 male gametophyte had a severe defect. By in vitro pollen germination, I found OsBC1L5 gene might be involved in the germination of rice pollen. I investigated the phenotype of OsBC1L5 RNAi plants and found OsBC1L5 gene might also affect the development of pollen wall in rice.
     7. In the LTW1 line, T-DNA was inserted into the single exon of LTW1 gene and caused a less tiller and wilted mutant phenotype. I cloned this gene by cosegregation and complementation experiments. In addition, I obtained an allelic mutant from POSTECH mutant library, which had the same mutant phenotype with LTW1 and also showed the cosegregation of the mutant phenotype and T-DNA insertion. By GUS staining of the POSTECH promoter trap line, I investigated the expression pattern of LTW1 gene.
引文
1. 曹应龙.水稻抗白叶枯病基因xa26和xa4的遗传和功能研究.[博士学位论文].武汉:华中农业大学图书馆,2007
    2. 代明球.水稻苗顶端器官形成的分子机制.[博士学位论文].武汉:华中农业大学图书馆,2007
    3. 林拥军,陈浩,曹应龙,吴昌银,文静,李亚芳,华红霞.农杆菌介导的牡丹江8号高效转基因体系的建立.作物学报,2002,28:294-300
    4. 王晓华,郝怀庆,王钦丽,郑茂钟,林金星.花粉管细胞结构与生长机制研究进展.植物学通报,2007,24:340-354
    5. 吴昌银.水稻T-DNA插入突变体库及其Enhancer trap系的创建.[博士学位论文].武汉:华中农业大学图书馆,2003
    6. 袁斌.OsMPK6双向调控水稻抗病反应.[博士学位论文].武汉:华中农业大学图书馆,2007
    7. 张健.水稻T-DNA插入突变体库侧翼序列的分离与分析及控制杂合单株低育性基因Osfbox的功能研究.[博士学位论文].武汉:华中农业大学图书馆,2007
    8. 张卫明,史劲松,顾龚平.生物质能的利用和能源植物的开发.南京师大学报,2007,30:68-74
    9. Agrawal G K, Yamazaki M, Kobayashi M, Hirochika R, Miyao A, Hirochika H. Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion. Tagging of a zeaxanthin epoxidase gene and a novel OsTATC gene. Plant Physiol,2001,125:1248-1257
    10. Albersheim P, An J, Freshour G, Fuller M S, Guillen R, Ham K S, Hahn M G, Huang J, O'Neill M, Whitcombe A, Williams M V, York W S, Darvill A. Structure and function studies of plant cell wall polysaccharides. Biochem Soc Trans,1994,22:374-378
    11. Alonso J M, Stepanova A N, Leisse T J, Kim C J, Chen H, Shinn P, Stevenson D K, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers C C, Parker H, Prednis L, Ansari Y, Choy N, Deen H et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science,2003,301:653-657
    12. An G, Lee S, Kim S H, Kim S R. Molecular genetics using T-DNA in rice. Plant Cell Physiol, 2005,46:14-22
    13. Appenzeller L, Doblin M, Barreiro R, Wang H Y, Niu X M, Kollipara K, Carrigan L, Tomes D, Chapman M, Dhugga K S. Cellulose synthesis in maize:isolation and expression analysis of the cellulose synthase (CesA) gene family. Cellulose,2004,11:287-299
    14. Arioli T, Peng L, Betzner A S, Burn J, Wittke W, Herth W, Camilleri C, Hofte H, Plazinski J, Birch R, Cork A, Glover J, Redmond J, Williamson R E. Molecular analysis of cellulose biosynthesis in Arabidopsis. Science,1998,279:717-720
    15. Ashikari M, Wu J, Yano M, Sasaki T, Yoshimura A. Rice gibberellin-insensitive dwarf mutant gene Dwarf1 encodes the α-subunit of GTP-binding protein. Proc Natl Acad Sci USA,1999, 96:10284-10289
    16. Beeckman T, Przemeck G K H, Stamatiou G, Lau R, Terryn N, De Rycke R, Inze D, Berleth T. Genetic complexity of cellulose synthase a gene function in Arabidopsis embryogenesis. Plant Physiology,2002,130:1883-1893
    17. Bendtsen J D, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol,2004,340:783-795
    18. Benfey P N, Linstead P J, Roberts K, Schiefelbein J W, Hauser M T, Aeschabacher R A (1993). Root development in Arabidopsis:four mutants with dramatically altered root morphogenesis. Development,1993,119:57-70
    19. Boisson M, Gomord V, Audran C, Berger N, Dubreucq B, Granier F, Lerouge P, Faye L, Caboche M, Lepiniec L. Arabidopsis glucosidase 1 mutants reveal a critical role of n-glycan trimming in seed development. EMBO Journal,2001,20:1010-1019
    20. Bowling A J, Brown R M Jr. The cytoplasmic domain of the cellulose-synthesizing complex in vascular plants. Protoplasma,2008,233:115-127
    21. Brady S M, Song S, Dhugga K S, Rafalski J A, Benfey P N. Combining expression and comparative evolutionary analysis:the COBRA gene family. Plant Physiol,2007,143:172-187
    22. Brocard-Gifford I, Lynch T J, Garcia M E, Malhotra B, Finkelstein R R. The Arabidopsis thaliana abscisic acid-insensitive locus encodes a novel protein mediating abscisic acid and sugar responses essential for growth. Plant Cell,2004,16:406-421
    23. Brown D M, Zeef L A, Ellis J, Goodacre R, Turner S R. Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell,2005,17:2281-2295
    24. Burn J E, Hurley U A, Birch R J, Arioli T, Cork A, Williamson R E. The cellulose-deficient Arabidopsis mutant rsw3 is defective in a gene encoding a putative glucosidase Ⅱ, an enzyme processing n-glycans during ER quality control. Plant Journal,2002,32:949-960
    25. Burton R A, Shirley N J, King B J, Harvey A J, Fincher G B. The Cesa gene family of barley. Quantitative analysis of transcripts reveals two groups of co-expressed genes. Plant Physiology, 2004,134:224-236
    26. Burton R A, Wilson S M, Hrmova M, Harvey A J, Shirley N J, Medhurst A, Stone B A, Newbigin E J, Bacic A, Fincher G B. Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1,3;1,4)-beta-D-glucans. Science,2006,311:1940-1942
    27. Campbell M M, Sederoff R R. Variation in lignin content and composition:mechanism of control and implications for the genetic improvement of plants. Plant Physiol,1996,110:3-13
    28. Cano-Delgado A, Penfield S, Smith C, Catley M, Bevan M. Reduced cellulose synthesis invokes lignification and defense responses in Arabidopsis thaliana. Plant Journal,2003,34:351-362
    29. Carpita N C, Gibeaut D M. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J, 1993,3:1-30
    30. Carpita N, McCann M. The cell wall. In:Buchanan B, Gruissem W, Jones R, eds., Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists, Rockville, MD,2000. 52-108
    31. Ching A, Dhugga K S, Appenzeller L, Meeley B, Bourret T M, Howard R J, Rafalski A. Brittle stalk 2 encodes a putative glycosylphosphatidylinositol-anchored protein that affects mechanical strength of maize tissues by altering the composition and structure of secondary cell. Planta,2006, 224:1174-1184
    32. Colbert T, Till B J, Tompa R, Reynolds S, Steine M N, Yeung A T, McCallum C M, Comai L, Henikoff S. High-throughput screening for induced point mutations. Plant Physiol,2001,126: 480-484
    33. Cosgrove D J. Relaxation in a high-stress environment:the molecular bases of extensible cell walls and cell enlargement. Plant Cell,1997,9:1031-1041
    34. Cosgrove D J. Water uptake by growing cells:an assessment of the controlling roles of wall relaxation, solute uptake, and hydraulic conductance. Int J Plant Sci,1993,154:10-21
    35. Crowell E F, Bischoff V, Desprez T, Rolland A, Stierhof Y D, Schumacher K, Gonneau M, Hofte H, Vernhettes S. Pausing of Golgi bodies on microtubules regulates secretion of cellulose synthase complexes in Arabidopsis. Plant Cell,2009,21:1141-1154
    36. De Block M, Debrouwer D. RNA-RNA in situ hybridization using digoxigenin-labeled probes: the use of high-molecular-weight polyvinyl alcohol in the alkaline phosphatase indoxyl-nitroblue tetrazolium reaction. Anal Biochem,1993,215:86-89
    37. Delmer D P, Amor Y. Cellulose biosynthesis. Plant Cell,1995,7:987-1000
    38. Desprez T, Juraniec M, Crowell E F, Jouy H, Pochylova Z, Parcy F, Hofte H, Gonneau M, Vernhettes S. Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA,2007,104:15572-15577
    39. Dhugga K S, Barreiro R, Whitten B, Stecca K, Hazebroek J, Randhawa G S, Dolan M, Kinney A J, Tomes D, Nichols S, Anderson P. Guar seed beta-mannan synthase is a member of the cellulose synthase super gene family. Science,2004,303:363-366
    40. Eisenhaber B, Bork P, Eisenhaber F. Sequence properties of GPI-anchored proteins near the omega-site:constraints for the polypeptide binding site of the putative transamidase. Protein Eng, 1998,11:1155-1161
    41. Ellis C, Karafyllidis I, Wasternack C, Turner J G. The Arabidopsis mutant cevl links cell wall signaling to jasmonate and ethylene responses. Plant Cell,2002,14:1557-1566
    42. Fagard M, Desnos T, Desprez T, Goubet F, Refregier G, Mouille G, McCann M, Rayon C, Vernhettes S, Hofte H. Procustel encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis. Plant Cell,2000, 12:2409-2424
    43. Feng Q, Zhang Y, Hao P, Wang S, Fu G, Huang Y, Li Y, Zhu J, Liu Y, Hu X, Jia P, Zhang Y, Zhao Q, Ying K, Yu S, Tang Y, Weng Q, Zhang L, Lu Y, Mu J et al. Sequence and analysis of rice chromosome 4. Nature,2002,420:316-320
    44. Gillmor C S, Poindexter P, Lorieau J, Palcic M M, Somerville C. a-glucosidase I is required for cellulose biosynthesis and morphogenesis in Arabidopsis. Journal of Cell Biology,2002, 156:1003-1013
    45. Goff S A, Ricke D, Lan T H, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange B M, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, et al. A Draft Sequence of the rice genome (Oryza sativa L. ssp. japonica). Science,2002,296:92-100
    46. Gough J, Karplus K, Hughey R, Chothia C (2001) Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J Mol Biol 313:903-919
    47. Grant S G, Jessee J, Bloom F R, Hanahan D. Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci USA,1990, 87:4645-4659
    48. Haga K, Takano M, Neumann R, Iino M. The rice COLEOPTILE PHOTOTROPISM1 gene encoding an ortholog of arabidopsis NPH3 is required for phototropism of coleoptiles and lateral translocation of auxin. Plant Cell,2005,17:103-115
    49. Han M J, Jung K H, Yi G, Lee D Y, An G. Rice Immature Pollen 1 (RIP]) is a regulator of late pollen development. Plant Cell Physiol,2006,47:1457-1472
    50. Hauser M T, Morikami A, Benfey P N. Conditional root expansion mutants of Arabidopsis. Development,1995,121:1237-1252
    51. Hazen S P, Scott-Craig J S, Walton J D. Cellulose synthase-like genes of rice. Plant Physiol, 2002,128:336-340
    52. Hernandez-Blanco C, Feng D X, Hu J, Sanchez-Vallet A, Deslandes L, Llorente F, Berrocal-Lobo M, Keller H, Barlet X, Sanchez-Rodriguez C, Anderson L K, Somerville S, Marco Y, Molina A. Impairment of cellulose synthases required for Arabidopsis secondary cell wall formation enhances disease resistance. Plant Cell,2007,19:890-903
    53. Hiei Y, Ohta S, Komari T, Kumashiro T. Efficient transformation of rice(Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J,1994, 6:271-282
    54. Hieter P, Boguski M. Functional Genomics:it's all how you read it. Science,1997,278:601-602
    55. Hirochika H, Guiderdoni E, An G, Hsing Y I, Eun M Y, Han C D, Upadhyaya N, Ramachandran S, Zhang Q, Pereira A, Sundaresan V, Leung H. Rice mutant resources for gene discovery. Plant Mol Biol,2004,54:325-334
    56. Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M. Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci USA,1996,93:7783-7788
    57. Hirochika H. Contribution of the Tos17 retrotransposon to rice functional genomics. Curr Opin Plant Biol,2001,4:118-122
    58. Hochholdinger F, Wen T J, Zimmermann R, Chimot-Marolle P, da Costa e Silva O, Bruce W, Lamkey K R, Wienand U, Schnable P S. The maize (Zea mays L.) roothairless 3 gene encodes a putative GPI-anchored, monocot-specific, COBRA-like protein that significantly affects grain yield. Plant J,2008,54:888-898
    59. Hofte H, Staehelin L A. Plant cells do it differently. Curr Opin Plant Biol,2000,3:447-449
    60. Holland N, Holland D, Helentjaris T, Dhugga K S, Xoconostle-Cazares B, Delmer D P. A comparative analysis of the plant cellulose synthase (CesA) gene family. Plant Physiol,2000, 123:1313-1323
    61. Hsing Y I, Chem C G, Fan M J, Lu P C, Chen K T, Lo S F, Sun P K, Ho S L, Lee K W, Wang Y C, Huang W L, Ko S S, Chen S, Chen J L, Chung C I, Lin Y C, Hour A L, Wang Y W, Chang Y C, Tsai M W et al. A rice gene activation/knockout mutant resource for high throughput functional genomics. Plant Mol Biol,2007,63:351-364
    62. International rice genome sequencing project. The map-based sequence of the rice genome. Nature,2005,436:793-800
    63. Inukai Y, Sakamoto T, Ueguchi-Tanaka M, Shibata Y, Gomi K, Umemura I, Hasegawa Y, Ashikari M, Kitano H, Matsuoka M. Crown rootless I, which is essential for crown root formation in rice, is a target of an auxin response factor in auxin signaling. Plant Cell,2005,17:1387-1396
    64. Izawa T, Shimamoto K. Becoming a model plant:The importance of rice to plant science. Thends. Plant Sci,1996,1:95-99
    65. Jefferson R A. Assaying chimeric genes in plant:The GUS gene fusion system. Plant Mol Biol Rep,1987,5:387-405
    66. Jeon J S, An G. Gene tagging in rice:a high throughput system for functional genomics. Plant Sci, 2001,161:211-219
    67. Jeon J S, Lee S, Jung K H, Jun S H, Jeong D H, Lee J, Kim C, Jang S, Yang K, Nam J, An K, Han M J, Sung R J, Choi H S, Yu J H, Choi J H, Cho S Y, Cha S S, Kim S I, An G. T-DNA insertional mutagenesis for functional genomics in rice. Plant J,2000,22:561-570
    68. Jeong D H, An S, Kang M G, Moon S, Han J J, Park S, Lee H S, An K, An G. T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiol,2002,130:1636-1644
    69. Jeong D H, An S, Park S, Kang H G, Park G G, Kim S R, Sim J, Kim Y O, Kim M K, Kim S R, Kim J, Shin M, Jung M, An G. Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice. Plant J,2006,45:123-132
    70. Jones M A, Raymond M J, Smirnoff N. Analysis of the roothair morphogenesis transcriptome reveals the molecular identity of six genes with roles in root-hair development in Arabidopsis. Plant J,2006,45:83-100
    71. Joshi C P, Bhandari S, Ranjan P, Kalluri U C, Liang X, Fujino T, Samuga A. Genomics of cellulose biosynthesis in poplars. New Phytol,2004,164:53-61
    72. Jung K H, Han M J, Lee D Y, Lee Y S, Schreiber L, Franke R, Faust A, Yephremov A, Saedler H, Kim Y W, Hwang I, An G. Wax-deficient anther1 is involved in cuticle and wax production in rice anther walls and is required for pollen development. Plant Cell,2006,18:3015-3032
    73. Jung K H, Han M J, Lee Y S, Kim Y W, Hwang I, Kim M J, Kim Y K, Nahm B H, An G. Rice Undeveloped Tapetuml is a major regulator of early tapetum development. Plant Cell,2005, 17:2705-2722
    74. Jung K H, Hur J, Ryu C H, Choi Y, Chung Y Y, Miyao A, Hirochika H, An G. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol, 2003,44:463-472
    75. Jung Y H, Lee J H, Agrawal G K, Rakwal R, Kim J A, Shim J K, Lee S K, Jeon J S, Koh H J, Lee Y H, Iwahashi H, Jwa N S. The rice (Oryza sativa) blast lesion mimic mutant, blm, may confer resistance to blast pathogens by triggering multiple defense-associated signaling pathways. Plant Physiol Biochem,2005,43:397-406
    76. Kang H G, Park S, Matsuoka M, An G. White-core endosperm floury endosperm-4 in rice is generated by knockout mutations in the C-type pyruvate orthophosphate dikinase gene (OsPPDKB). Plant J,2005,42:901-911
    77. Kardailsky I, Shukla V K, Ahn J H, Dagenais N, Christensen S K, Nguyen J T, Chory J, Harrison M J, Weigel D. Activation tagging of the floral inducer FT. Science,1999,286:1962-1965
    78. Kikuchi S, Satoh K, Nagata T, Kawagashira N, Doi K, Kishimoto N, Yazaki J, Ishikawa M, Yamada H, Ooka H, Hotta I, Kojima K, Namiki T, Ohneda E, Yahagi W, Suzuki K, Li C J, Ohtsuki K, Shishiki T, Otomo Y et al. Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science,2003,301:376-379
    79. Kim C Y, Koo Y D, Jin J B, Moon B C, Kang C H, Kim S T, Park B O, Lee S Y, Kim M L, Hwang I, Kang K Y, Bahk J D, Lee S Y, Cho M J. Rice C2-domain proteins are induced and translocated to the plasma membrane in response to a fungal elicitor. Biochemistry,2003, 14:11625-11633
    80. Kim C Y, Lee S H, Park H C, Bae C G, Cheong Y H, Choi Y J, Han C, Lee S Y, Lim C O, Cho M J. Identification of rice blast fungal elicitor-responsive genes by differential display analysis. Mol Plant Microbe Interact,2000,13:470-474
    81. Kim Y C, Kim S Y, Choi D, Ryu C M, Park J M. Molecular characterization of a pepper C2 domain-containing SRC2 protein implicated in resistance against host and non-host pathogens and abiotic stresses. Planta,2008,227:1169-1179
    82. Kimura S, Laosinchai W, Itoh T, Cui X, Linder C R, Brown R M Jr. Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant Vigna angularis. Plant Cell,1999,11:2075-2086
    83. Kirk T K, Obst J R. Lignin determination. Methods Enzymol,1988,161:87-101
    84. Ko J H, Kim J H, Jayanty S S, Howe G A, Han K H. Loss of function of COBRA, a determinant of oriented cell expansion, invokes cellular defence responses in Arabidopsis thaliana. J Exp Bot, 2006,57:2923-2936
    85. Koh S, Lee S C, Kim M K, Koh J H, Lee S, An G, Choe S, Kim S R. T-DNA tagged knockout mutation of rice OsGSK1, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses. Plant Mol Biol,2007,65:453-466
    86. Kong H, Landherr L L, Frohlich M W, Leebens-Mack J, Ma H, dePamphilis C W. Patterns of gene duplication in the plant SKP1 gene family in angiosperms:evidence for multiple mechanisms of rapid gene birth. Plant J,2007,50:873-885
    87. Kopka J, Pical C, Hetherington A M, Muller-Rober B. Ca2+/phospholipid-binding (C2) domain in multiple plant proteins:novel components of the calcium-sensing apparatus. Plant Mol Biol, 1998,36:627-637
    88. Kotilainen M, Helariutta Y, Mehto M, Pollanen E, Albert V A, Elomaa P, Teeri T H. GEG participates in the regulation of cell and organ shape during corolla and carpel development in Gerbera hybrida. Plant Cell,1999,11:1093-1104
    89. Krishnan A, Guiderdoni E, An G, Hsing Y I, Han C D, Lee M C, Yu S M, Upadhyaya N, Ramachandran S, Zhang Q, Sundaresan V, Hirochika H, Leung H, Pereira A. Mutant resources in rice for functional genomics of the grasses. Plant Physiol,2009,49:165-170
    90. Kumar S, Tamura K, Nei M. MEGA3:integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform,2004,5:150-163
    91. Kurek I, Kawagoe Y, Jacob-Wilk D, Doblin M, Delmer D. Dimerization of cotton fiber cellulose synthase catalytic subunits occurs via oxidation of the zinc-binding domains. Proc Natl Acad Sci USA,2002,99:11109-11114
    92. Kurusu T, Yagala T, Miyao A, Hirochika H, Kuchitsu K. Identification of a putative voltage-gated Ca2+ channel as a key regulator of elicitor-induced hypersensitive cell death and mitogen-activated protein kinase activation in rice. Plant J,2005,42:798-809
    93. Kyte J, Doolittle R F. A simple method for displaying the hydropathic character of a protein. J Mol Biol,1982,157:105-132
    94. Lane D R, Wiedemeier A, Peng L, Hofte H, Vernhettes S, Desprez T, Hocart C H, Birch R J, Baskin T I, Burn J E, Arioli T, Betzner A S, Williamson R E. Temperature-sensitive alleles of rsw2 link the korrigan endo-1,4-β-glucanase to cellulose synthesis and cytokinesis in Arabidopsis. Plant Physiology,2001,126:278-288
    95. Lee H, Suh S S, Park E, Cho E, Ahn J H, Kim S G, Lee J S, Kwon Y M, Lee I. The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev,2000,14:2366-2376
    96. Lee S, Jung K H, An G, Chung Y Y. Isolation and characterization of a rice cysteine protease gene, OsCP1, using T-DNA gene-trap system. Plant Mol Biol,2004a,54:755-765
    97. Lee S, Kim J, Han JJ, Han MJ, An G Functional analyses of the flowering time gene OsMADS50, the putative SUPPRESSOR OF OVEREXPRESSION OF CO I/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in rice. Plant J,2004b,38:754-764
    98. Lee S, Kim J, Son J S, Nam J, Jeong D H, Lee K, Jang S, Yoo J, Lee J, Lee D Y, Kang H G, An G. Systematic reverse genetic screening of T-DNA tagged genes in rice for functional genomic analyses:MADS-box genes as a test case. Plant Cell Physiol,2003,44:1403-1411
    99. Lertpiriyapong K, Sung Z R. The elongation defective 1 mutant of Arabidopsis is impaired in the gene encoding a serine-rich secreted protein. Plant Molecular Biology,2003,53:581-595
    100. Li T, Bai G. Lesion mimic associates with adult plant resistance to leaf rust infection in wheat. Theor Appl Genet,2009a,119:13-21
    101. Li X, Song Y, Century K, Straight S, Ronald P, Dong X, Lassner M, Zhang Y. A fast neutron deletion mutagenesis-based reverse genetics system for plants, Plant J,2001,27:235-242
    102. Li X, Yang Y, Yao J, Chen G, Li X, Zhang Q, Wu C. FLEXIBLE CULM 1 encoding a cinnamyl-alcohol dehydrogenase controls culm mechanical strength in rice. Plant Mol Biol, 2009b,69:685-697
    103. Li Y, Qian Q, Zhou Y, Yan M, Sun L, Zhang M, Fu Z, Wang Y, Han B, Pang X,Chen M, Li J. BRITTLE CULM1, which encodes a COBRA-like protein, affects the mechanical properties of rice plants. Plant Cell,2003,15:2020-2031
    104. Liepman A H, Wilkerson C G, Keegstra K. Expression of cellulose synthase-like (Csl) genes in insect cells reveals that CslA family members encode mannan synthases. Proc Natl Acad Sci USA, 2005,102:2221-2226
    105. Lister R, Gregory B D, Ecker J R. Next is now:new technologies for sequencing of genomes, transcriptomes, and beyond. Curr Opin Plant Biol,2009,12:107-118
    106. Liu K D, Wang J, Li H B, Xu C G, Liu A M, Li X H, Zhang Q. A genome-wide analysis of wide compatibility in rice and the precise location of the S5 locus in the molecular map. Theor Appl Genet,1997,95:809-814
    107. Liu Y G, Mitsukawa N, Oosumi T, Whittier R F. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J,1995,8:457-463
    108. Liu Y G, Whittier R F. Thermal asymmetric interlaced PCR:Automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics, 1995,25:674-681
    109. Lu T, Huang X, Zhu C, Huang T, Zhao Q, Xie K, Xiong L, Zhang Q, Han B. RICD:a rice indica cDNA database resource for rice functional genomics. BMC Plant Biol,2008,8:118
    110. Lukowitz W, Nickle T C, Meinke D W, Last R L, Conklin P L, Somerville C R. Arabidopsis cytl mutants are deficient in a mannose-1-phosphate guanylyltransferase and point to a requirement of n-linked glycosylation for cellulose biosynthesis. Proc Natl Acad Sci USA,2001,98:2262-2267
    111. Lynch M, Conery J S. The evolutionary fate and consequences of duplicate genes. Science,2000, 290:1151-1155
    112. Martienssen R A. Functional genomics:probing plant gene function and expression with transposons. Proc Natl Acad Sci USA,1998,95:2021-2026
    113. Martin C, Bhatt K, Baumann K. Shaping in plant cells. Curr Opin Plant Biol,2001,4:540-549
    114. Matsumura H, Nirasawa S, Terauchi R. Transcript profiling in rice (Oryza sativa L.) seedlings using serial analysis of gene expression (SAGE). Plant J,1999,20:719-726
    115. McCann M C, Roberts K. Changes in cell wall architecture during cell elongation. J Exp Bot, 1994,45:1683-1691
    116. Meinke D W, Meinke L K, Showalter T C, Schissel A M, Mueller L A, Tzafrir I. A sequence-based map of Arabidopsis genes with mutant phenotypes. Plant Physiol,2003, 131:409-418
    117. Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seki M, Shinozaki K, Ohme-Takagi M. NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell,2007,19:270-280
    118. Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M. The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. Plant Cell,2005,17:2993-3006
    119. Miyao A, Tanaka K, Murata K, Sawaki H, Takeda S, Abe K, Shinozuka Y, Onosato K, Hirochika H. Target site specificity of the Tosl7 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome. Plant Cell,2003, 15:1771-1780
    120. Moon S, Giglione C, Lee DY, An S, Jeong DH, Meinnel T, An G. Rice peptide deformylase PDF1B is crucial for development of chloroplasts. Plant Cell Physiol,2008,49:1536-1546
    121. Mou Z, He Y, Dai Y, Liu X, Li J. Deficiency in fatty acid synthase leads to premature cell death and dramatic alterations in plant morphology. Plant Cell,2000,12:405-418
    122. Mueller S C, Brown R M Jr. Evidence for an intramembrane component associated with a cellulose microfibrilsynthesizing complex in higher plants. J Cell Biol,1980,84:315-326
    123. Nalefski E A, Falke J J. The C2 domain calcium-binding motif:structural and functional diversity. Protein Sci,1996,5:2375-2390
    124. Nicol F, His I, Jauneau A, Vernhettes S, Canut H, Hofte H. A plasma membrane-bound putative endo-1,4-β-D-glucanase is required for normal wall assembly and elongation in Arabidopsis. EMBO Journal,1998,17:5563-5576
    125. Niwa Y, Goto S, Nakano M, Hirano T, Tsukaya H, Komeda Y, kobayashi H. Arabidopsis mutants by activation tagging in which photosynthesis genes are expressed in dedifferentiated calli. Plant Cell Physiol,2006,47:339-331
    126. Nonomura K, Nakano M, Fukuda T, Eiguchi M, Miyao A, Hirochika H, Kurata N. The novel gene HOMOLOGOUS PAIRING ABERRATION IN RICE MEIOSIS1 of rice encodes a putative coiled-coil protein required for homologous chromosome pairing in meiosis. Plant Cell,2004a, 16:1008-1020
    127. Nonomura K, Nakano M, Murata K, Miyoshi K, Eiguchi M, Miyao A, Hirochika H, Kurata N. An insertional mutation in the rice PAIR2 gene, the ortholog of Arabidopsis ASY1, results in a defect in homologous chromosome pairing during meiosis. Mol Genet Genomics,2004b,271:121-129
    128. Noutoshi Y, Kuromori T, Wada T, Hirayama T, Kamiya A, Imura Y, Yasuda M, Nakashita H, Shirasu K, Shinozaki K. Loss of Necrotic Spotted Lesions 1 associates with cell death and defense responses in Arabidopsis thaliana. Plant Mol Biol,2006,62:29-42
    129. Nuhse T S, Stensballe A, Jensen 0 N, Peck S C. Phosphoproteomics of the Arabidopsis plasma membrane and a new phosphorylation site database. Plant Cell,2004,16:2394-405
    130. Ochman H, Gerber A S, Hartl D L. Genetic applications of an inverse polymerase chain reaction. Genetics,1988,120:621-623
    131. Osborne B I, Baker B. Movers and shakers:maize transposons as tools for analyzing other plant genomes. Curr Opin Cell Biol,1995,7:406-413
    132. Pagant S, Bichet A, Sugimoto K, Lerouxel O, Desprez T, McCann M, Lerouge P, Vernhettes S, Hofte H. Kobitol encodes a novel plasma membrane protein necessary for normal synthesis of cellulose during cell expansion in Arabidopsis. Plant Cell,2002,14:2001-2013
    133. Paredez A, Somerville C R, Ehrhardt D. Dynamic visualization of cellulose synthase demonstrates functional association with cortical microtubules. Science,2006,312:1491-1495
    134. Parker J S, Cavell A C, Dolan L, Roberts K, Grierson C S. Genetic interactions during root hair morphogenesis in Arabidopsis. Plant Cell,2000,12:1961-1974
    135. Pear J R, Kawagoe Y, Schreckengost W E, Delmer D P, Stalker D M. Higher plants contain homologs of the bacterial CelA genes encoding the catalytic subunit of cellulose synthase. Proc Natl Acad Sci USA,1996,93:12637-12642
    136. Peng L, Hocart C H, Redmond J W, Williamson R E. Fractionation of carbohydrates in Arabidopsis root cell walls shows that three radial swelling loci are specifically involved in cellulose production. Planta,2000,211:406-414
    137. Peng L, Kawagoe Y, Hogan P, Delmer D. Sitosterol-β-glucoside as primer for cellulose synthesis in plants. Science,2002,295:147-150
    138. Pereira A. A transgenic perspective on plant functional genomics. Transgenic Res,2000, 9:245-260
    139. Persson S, Paredez A, Carroll A, Palsdottir H, Doblin M, Poindexter P, Khitrov N, Auer M, Somerville C R. Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis. Proc Natl Acad Sci USA,2007,104:15566-15571
    140. Persson S, Wei H, Milne J, Page G P, Somerville C R. Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets. Proc Natl Acad Sci USA, 2005,102:8633-8638
    141. Perucho M, Hanahan D, Lipsich L, Wigler M. Isolation of the chicken thymidine kinase gene by plasmid rescue. Nature,1980,285:207-210
    142. Raes J, Vandepoele K, Simillion C, Saeys Y, Van de Peer Y. Investigating ancient duplication events in the Arabidopsis genome. J Struct Funct Genomics,2003,3:117-129
    143. Rice Chromosome 10 Sequencing Consortium. In-depth view of structure, activity and evolution of rice chromosome 10. Science,2003,300:1566-1569
    144. Richmond T. Higher plant cellulose synthases. Genome Biol,2000,4:30011-30016
    145. Rizo J, Sudhof T C. C2-domains, structure and function of a universal Ca2+-binding domain. J Biol Chem,1998,273:15879-15882
    146. Robert S, Mouille G, Hofte H. The mechanism and regulation of cellulose synthesis in primary walls:lessons from cellulose-deficient Arabidopsis mutants. Cellulose,2004,11:351-364
    147. Roberts K. Structures at the plant cell surface. Curr Opin Cell Biol,1990,2:920-928
    148. Rosenthal A, Jones D S. Genomic walking and sequencing by oligo-cassette mediated polymerase chain reaction. Nucleic Acids Res,1990,18:3095-3096
    149. Rosso M, Li Y, Strizhov N, Reiss B, Dekker K, Weisshaar B. An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics. Plant Mol Biol,2003,53:247-259
    150. Roudier F, Fernandez A G, Fujita M, Himmelspach R, Borner G H H, Schindelman G, Song S, Baskin T I, Dupree P, Wasteneys G O, Benfey P N. COBRA, an Arabidopsis extracellular lycosyl-phosphatidyl inositolanchored protein, specifically controls highly anisotropic expansion through its involvement in cellulose microfibril orientation. Plant Cell,2005,17:1749-1763
    151. Roudier F, Schindelman G, DeSalle R, Benfey P N. The COBRA family of putative GPI-anchored proteins in Arabidopsis:a new fellowship in expansion. Plant Physiol,2002, 130:538-548
    152. Sallaud C, Gay C, Larmande P, Bes M, Piffanelli P, Piegu B, Droc G, Regad F, Bourgeois E, Meynard D, Perin C, Sabau X, Ghesquiere A, Glaszmann J C, Delseny M, Guiderdoni E. High throughput T-DNA insertion mutagenesis in rice:a first step towards in silico reverse genetics. Plant J,2004,39:450-464
    153. Samson F, Brunaud V, Balzergue S, Dubreucq B, Lepiniec L, Pelletier G, Caboche M, Lecharny A. FLAGdb/FST:a database of mapped flanking insertion sites (FSTs) of Arabidopsis thaliana T-DNA transformants. Nucl Acids Res,2002,30:94-97
    154. Samuga A, Joshi C P. Differential expression patterns of two new primary cell wall-related cellulose synthase cDNAs, PtrCesA6 and PtrCesA7 from aspen trees. Gene,2004,9:73-82
    155. Sasaki T, Burr B. International rice genome sequencing project:the effort to completely sequence the rice genome. Curr Opin Plant Biol,2000,3:138-141
    156. Sasaki T, Matsumoto T, Yamamoto K, Sakata K, Baba T, Katayose Y, Wu J, Niimura Y, Cheng Z, Nagamura Y, Antonio BA, Kanamori H, Hosokawa S, Masukawa M, Arikawa K, Chiden Y, Hayashi M, Okamoto M, Ando T, Aoki H et al. The genome sequence and structure of rice chromosome 1. Nature,2002,420:312-316
    157. Sasaki T, Sedero R R. Genome studies and molecular genetics:the rice genome and comprehensive genomics of higher plants. Curr Opin Plant Biol,2003,6:97-100
    158. Sasaki T. The rice genome project in japan. Proc Natl Acad Sci USA,1998,95:2027-2028
    159. Sato S, Kato T, Kakegawa K, Ishii T, Liu Y-G, Awano T, Takabe K, Nishiyama Y, Kuga S, Nakamura Y, Tabata S, Shibata D. Role of the putative membrane-bound endo-1,4-β-glucanase korrigan in cell elongation and cellulose synthesis in Arabidopsis thaliana. Plant Cell Physiology, 2001,42:251-263
    160. Sato Y, Sentoku N, Miura Y, Hirochika H, Kitano H, Matsuoka M. Loss-of-function mutations in the rice homeobox gene OSH15 affect the architecture of internodes resulting in dwarf plants. EMBO J,1999,18:992-1002
    161. Saxena I M, Brown R M Jr, Fevre M, Geremia R A, Henrissat B. Multidomain architecture of beta-glycosyl transferases:implications for mechanism of action. Journal of Bacteriology,1995, 177:1419-1424
    162. Scheible W R, Eshed R, Richmond T, Delmer D, Somerville C. Modifications of cellulose synthase confer resistance to isoxaben and thiazolidinone herbicides in Arabidopsis Ixrl mutants. Proc Natl Acad Sci USA,2001,98:10079-10084
    163. Schindelman G, Morikami A, Jung J, Baskin T I, Carpita N C, Derbyshire P, McCann M C, Benfey P N. COBRA encodes a putative GPI-anchored protein, which is polarly localized and necessary for oriented cell expansion in Arabidopsis. Genes Dev,2001,15:1115-1127
    164. Sessions A, Bruke E, Presting G, Aux G, McElver J, Patton D, Dietrich B, Ho P, Bacwaden J, Ko C, Clarke J D, Cotton D, Bullis D, Snell J, Miguel T, Hutchison T, Kimmerly B, Mitzel T, Katagiri F, Glazebrook J et al. A high-throughput Arabidopsis reverse genetics system. Plant Cell, 2002,14:2985-2994
    165. Shin J H, Kim S R, An G. Rice aldehyde dehydrogenase7 is needed for seed maturation and viability. Plant Physiol,2009,149:905-915
    166. Simillion C, Vandepoele K, Van Montagu M C, Zabeau M, Van De Peer Y. The hidden duplication past of Arabidopsis thaliana. Proc Natl Acad Sci USA,2002,99:13627-13632
    167. Sindhu A, Langewisch T, Olek A, Multani D S, McCann M C, Vermerris W, Carpita N C, Johal G. Maize Brittle stalk2 encodes a COBRA-like protein expressed in early organ development but required for tissue flexibility at maturity. Plant Physiol,2007,145:1444-1459
    168. Smith L G. Cytoskeletal control of plant cell shape:getting the fine points. Curr Opin Plant Biol, 2003,6:63-73
    169. Somerville C R, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Pare-dez A, Persson S, Raab T, Vorwerk S, Youngs H. Toward a systems approach to understanding plant cell walls. Science,2004,306:2206-2211
    170. Somerville C. Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol,2006,22:53-78
    171. Springer P S. Gene trap:Tools for plant development and genomics. Plant Cell,2000, 12:1007-1020
    172. Steiner-Lange S, Unte U S, Eckstein L, Yang C, Wilson Z A, Schmelzer E, Dekker K, Saedler H. Disruption of Arabidopsis thaliana MYB26 results in male sterility due to nondehiscent anthers. Plant Journal,2003,34:519-528
    173. Sun Q, Zhou D X. Rice jmjC domain-containing gene JMJ706 encodes H3K9 demethylase required for floral organ development. Proc Natl Acad Sci USA,2008,105:13679-13684
    174. Szyjanowicz P M J, McKinnon I, Taylor N G, Gardiner J, Jarvis M C, Turner S R. The irregular xylem 2 mutant is an allele of korrigan that affects the secondary cell wall of Arabidopsis thaliana. Plant Journal,2004,37:730-740
    175. Tabuchi M, Sugiyama K, Ishiyama K, Inoue E, Sato T, Takahashi H, Yamaya T. Severe reduction in growth rate and grain filling of rice mutants lacking OsGS1;1, a cytosolic glutamine synthetase 1;1. Plant J,2005,42:641-651
    176. Taiz L. Plant cell expansion:regulation of cell wall mechanical properties. Annu Rev Plant Physiol,1984,35:585-657
    177. Takano M, Kanegae H, Shinomura T, Miyao A, Hirochika H, Furuya M. Isolation and characterization of rice phytochrome A mutants. Plant Cell,2001,13:521-534
    178. Tanaka K, Murata K, Yamazaki M, Onosato K, Miyao A, Hirochika H. Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall. Plant Physiol,2003,133:73-83
    179. Tani H, Chen X, Nurmberg P, Grant J J, SantaMaria M, Chini A, Gilroy E, Birch P R, Loake G J. Activation tag-ging in plants:a tool for gene discovery. Funct Integr Genomics,2004,4:258-266
    180. Taylor N G, Howells R M, Huttly A K, Vickers K, Turner S R. Interactions among three distinct CesA proteins essential for cellulose synthesis. Proc Natl Acad Sci USA,2003,100:1450-1455
    181. Taylor N G, Laurie S, Turner S R. Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis. Plant Cell,2000,12:2529-2539
    182. Taylor N G, Scheible W-R, Cutler S, Somerville C R, Turner S R. The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. Plant Cell, 1999,11:769-780
    183. Taylor N G, Turner S R. Cellulose synthesis in the Arabidopsis secondary cell wall. In:Brown R M, Saxena I M, eds., Cellulose:molecular and structural biology. Dordrecht, the Netherlands: Springer,2007.49-59
    184. Taylor N G. Cellulose biosynthesis and deposition in higher plants. New Phytol,2008, 178:239-252
    185. Thompson J D, Gibson T J, Plewniak F, Jeanmougin F, Higgins D J. The CLUSTAL_X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res,1997,25:4876-4882
    186. Triglia T, Peterson M G, Kemp D J. A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences. Nucleic Acids Res,1988,16:81-86
    187. Updegraff D M. Semimicro determination of cellulose in biological materials. Anal Biochem, 1969,32:420-424
    188. Urbanowicz B R, Catala C, Irwin D, Wilson D B, Ripoll D R, Rose J K. A tomato endo-beta-1,4-glucanase, SlCel9C1, represents a distinct subclass with a new family of carbohydrate binding modules (CBM49). J Biol Chem,2007,282:12066-12074
    189. Velculescu V E, Zhang L, Vogelstein B, Kinzler K W. Serial analysis of gene expression. Science, 1995,270:484-487
    190. Vergara C E, Carpita N C. β-D-glycan synthases and the CesA gene family:lessons to be learned from the mixed-linkage(1,3),(1,4)β-D-glucan synthase. Plant Mol Biol,2001,47:145-60
    191. Wang X, Shi X, Hao B, Ge S, Luo J. Duplication and DNA segmental loss in the rice genome: implications for diploidization. New Phytol,2005,165:937-946
    192. Weigel D, Ahn J H, Blazquez M A, Borevitz J O, Christensen S K, Fankhauser C, Ferrandiz C, Kardailsky I, Malancharuvil E J, Neff M M, Nguyen J T, Sato S, Wang Z Y, Xia Y, Dixon R A, Harrison M J, Lamb C J, Yanofsky M F, Chory J. Activation tagging in Arabidopsis. Plant Physiol,2000,122:1003-1013
    193. Woo Y M, Park H J, Su'udi M, Yang J I, Park J J, Back K, Park Y M, An G. Constitutively wilted 1, a member of the rice YUCCA gene family, is required for maintaining water homeostasis and an appropriate root to shoot ratio. Plant Mol Biol,2007,65:125-136
    194. Wu C, Bordeos A, Madamba M R, Baraoidan M, Ramos M, Wang G L, Leach J E, Leung H. Rice lesion mimic mutants with enhanced resistance to diseases. Mol Genet Genomics,2008a, 279:605-619
    195. Wu C, Li X, Yuan W, Chen G, Kilian A, Li J, Xu C, Li X, Zhou D X, Wang S, Zhang Q. Development of enhancer trap lines for functional analysis of the rice genome. Plant J,2003, 35:418-427
    196. Wu C, You C, Li C, Long T, Chen G, Byrne M E, Zhang Q. RID1, encoding a Cys2/His2-type zinc finger transcription factor, acts as a master switch from vegetative to floral development in rice. Proc Natl Acad Sci USA,2008b,105:12915-12920
    197. Xie K, Zhang J, Xiang Y, Feng Q, Han B, Chu Z, Wang S, Zhang Q, Xiong L. Isolation and annotation of 10828 putative full length cDNAs from indica rice. Sci China Ser C Life Sci,2005, 48:445-451
    198. Yamazaki M, Tsugawa H, Miyao A, Yano M, Wu J, Yamamoto S, Matsumoto T, Sasaki T, Hirochika H. The rice retrotransposon Tosl7 prefers low-copy-number sequences as integration targets. Mol Genet Genomics,2001,265:336-344
    199. Yang H, Li Y, Hua J. The C2 domain protein BAP1 negatively regulates defense responses in Arabidopsis. Plant J,2006,48:238-248
    200. Yang X, Li J, Pei M, Gu H, Chen Z, Qu L J. Over-expression of a flower-specific transcription factor gene AtMYB24 causes aberrant anther development. Plant Cell Reports,2007,26:219-228
    201. Yin Z, Chen J, Zeng L, Goh M, Leung H, Khush G S, Wang G L. Characterizing rice lesion mimic mutants and identifying a mutant with broad-spectrum resistance to rice blast and bacterial blight. Mol Plant Microbe Interact,2000,13:869-876
    202. Yokotani N, Ichikawa T, Kondou Y, Maeda S, Iwabuchi M, Mori M, Hirochika H, Matsui M, Oda K. Overexpression of a rice gene encoding a small C2 domain protein OsSMCP1 increases tolerance to abiotic and biotic stresses in transgenic Arabidopsis. Plant Mol Biol,2009, [Epub ahead of print]
    203. Yu J, Hu S, Wang J, Wong G K S, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Cheng Y, Huang X, Lin W, Ye C, Tong W, Cong L et al. A draft sequence of the rice genome(Oryza sativa L. ssp. indica). Science,2002,296:79-92
    204. Yuan W, Li X, Chang Y, Wen R, Chen G, Zhang Q, Wu C. Mutation of the rice gene PAIR3 results in lack of bivalent formation in meiosis. Plant J,2009,59:303-315
    205. Zhang J, Feng Q, Jin C, Qiu D, Zhang L, Xie K, Yuan D, Han B, Zhang Q, Wang S. Features of the expressed sequences revealed by a large-sale analysis of ESTs from a normalized cDNA library of the elite indica rice cultivar Minghui 63. Plant J,2005,42:772-780
    206. Zhang J, Guo D, Chang Y, You C, Li X, Dai X, Weng Q, Zhang J, Chen G, Li X, Liu H, Han B, Zhang Q, Wu C. Non-random distribution of T-DNA insertions at various levels of the genome hierarchy as revealed by analyzing 13804 T-DNA flanking sequences from an enhancer-trap mutant library. Plant J,2007,49:947-959.
    207. Zhao Y, Christensen S K, Fankhauser C, Cashman J R, Cohen J D, Weigel D, Chory J. A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science,2001,291:306-309
    208. Zhong R, Demura T, Ye Z-H. SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. Plant Cell,2006,18:3158-3170
    209. Zhong R, Richardson E, Ye Z-H. The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in Arabidopsis. Plant Cell,2007b,19:2776-2792
    210. Zhong R, Richardson E, Ye Z-H. Two NAC domain transcription factors, SND1 and NST1, function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis. Planta, 2007a,225:1603-1611
    211. Zhou H L, He S J, Cao Y R, Chen T, Du B X, Chu C C, Zhang J S, Chen S Y. OsGLU1, a putative membrane-bound endo-1,4-beta-D-glucanase from rice, affects plant internode elongation. Plant Mol Biol,2006,60:137-151
    212. Zhu Q H, Hoque M S, Dennis E S, Upadhyaya N M. Ds tagging of BRANCHED FLORETLESS 1 (BFL1) that mediates the transition from spikelet to floret meristem in rice (Oryza sativa L). BMC Plant Biol,2003,3:6
    213. Zhu Q H, Ramm K, Shivakkumar R, Dennis E S, Upadhyaya N M. The ANTHER INDEHISCENCE1 gene encoding a single MYB domain protein is involved in anther development in rice (Oryza sativa L.). Plant Physiol,2004,135:1514-1525

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700