水稻Hsp17.0、DREBA5-1和RAV1-1基因功能的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是一种重要的农作物,世界半数以上的人口以大米为主食。各种非生物逆境诸如高温、干旱和高盐胁迫影响水稻的生长发育,导致水稻产量和品质受到严重的影响。利用基因工程手段和生物学技术研究水稻非生物胁迫应答过程中关键的调节基因和重要的功能基因,并阐明其分子机制,对作物遗传改良有重要意义。热激蛋白(Heat shock proteins,Hsps)是一类重要的逆境相关蛋白,能提高植物抗御逆境胁迫的能力。植物中以小分子热激蛋白(sHsps)居多AP2/EREBP(APetala2/Ethylene-responsive element binding protein)是植物所特有的一类转录因子,参与调控植物的生长发育和逆境响应。DREB和RAV是其中两个重要的亚族。为研究和分析OsHsp17.0基因和2个AP2基因(OsDREBA5-1和OsRAV1-1)的功能,本研究对过表达OsHsp17.0的转基因水稻进行了多种逆境处理;并以野生型日本晴为材料,利用半定量RT-PCR和荧光定量PCR对OsDREBA5-1和OsRAV1-1基因进行不同组织部位和高温、干旱、PEG胁迫及ABA处理的表达特征分析;构建OsDREBA5-1和OsRAV1-1基因的过表达和RNAi表达载体。主要取得了以下研究结果:
     1.采用农杆菌介导法将OsHsp17.0基因的过表达载体转入水稻,从转录水平证实获得了阳性植株。对转基因植株进行盐胁迫和干旱胁迫处理后发现,OsHsp17.0-OE转基因幼苗较野生型WT出现受害症状的时间延迟,存活率提高;胁迫处理后转基因植株中脯氨酸的含量增幅大于野生型植株的,而MDA含量和离子渗漏率则相反。这些结果说明过表达OsHsp17.0提高了转基因水稻苗期对盐胁迫和干旱胁迫的耐受能力。
     2.对转基因植株进行高温和低温胁迫处理后发现,OsHsp17.0-OE转基因和野生型WT幼苗均可继续生长,但二者无明显表型差异;转基因植株中脯氨酸的含量增幅大于野生型植株的,而MDA含量则相反。
     3.对转基因植株进行重金属离子(镉)胁迫处理后发现,OsHsp17.0-OE转基因和野生型WT幼苗生长均受到抑制,但二者无明显表型差异。
     4.两个AP2/EREBP基因OsDREBA5-1和OsRAV1-1的表达具有组织特异性。相比之下,OsDREBA5-1基因更趋向于在根部表达,而OsRAV1-1基因在叶和叶鞘表达更为强烈,推测这两个基因的功能侧重点不同。
     S.OsDREBA5.1和OsRAV1-1基因在高温、PEG、NaCl和ABA处理中表达量均上调,但其表达模式有所区别。在多种逆境处理下,OsDREBA5-1基因在根部被诱导的程度要大大高于OsRAV1-1基因被诱导的程度;而在地上部分的情形恰好相反,OsRAV1-1基因被诱导的程度大大高于OsDREBA5-1基因被诱导的程度。这与这两个基因的部位表达特点相一致。OsDREBA5-1基因可能侧重于在根部参与调控对逆境的响应;而OsRAV1-1基因则更主要地在地上部分参与调控对逆境的响应。
     6.构建了OsDREBA5-1和OsRAV1-1基因的过表达和RNAi干扰载体,通过农杆菌介导法获得转基因植株,并从转录水平证实获得了阳性植株。为研究这两个基因在水稻中的功能奠定了基础。
Rice is an important crop that more than half of the world people live on. Abiotic stresses such as high temperature, drought, and high salinity affect rice growth and development resulting in serious influence on rice yield and quality performance. Therefore, it is very important to find key regulatory or functional genes responsive to abiotic stresses, to reveal the molecular mechanisms of stress tolerance and to improve rice resistance by genetic engineering techniques. Heat shock proteins (Hsps) are important proteins whose expression is increased when the cells are exposed to elevated temperatures or other stresses. Increased expression of these proteins can protect the organism against stress-induced damage. Small Heat shock proteins (sHsps) are more abundant in plant. The AP2/EREBP transcription factors are known to be unique in plants, and they are involved in growth, development and environmental stress responses. DREB and RAV are two major subfamilies of AP2/EREBP. To investigate the gene function of OsHsp17.0,OsDREBA5-1 and OsRAVl-1, OsHspl7.0-overexpression rice plants have been exposed to different abiotic stresses including salt stress, drought stress, high temperature and low temperature treatment and the stress-tolerance has been analysised. Using semiquantitative RT-PCR method and real-time RT-PCR, the expression profile of OsDREBA5-1 and OsRAVl-1 genes in different rice tissues and under different stress have been analysised. In addition, over-expression vector and RNAi vector of OsDREBA5-1 and OsRAVl-1 genes have been constructed successfully. The main results are as following:
     1. OsHspl7.0-OE transgenic rice plants were obtained via Agrobacterium-mediated transformation and confirmed at transcriptional level. The results of salt and drought stress treatment showed that OsHspl7.0-OE transgenic plants exhibited less damage symptoms and higher survival rate than WT. After stress treatments, the proline content increased more significantly in transgenic plants than in wild type plants. By contrast, the MDA content and ion leakage increased more significantly in wild type plants than in transgenic plants. These results indicated that the over-expression of OsHsp17.0 gene in rice seedlings increased tolerance to salt stress and drought stress.
     2. After high and cold temperature treatments, both OsHsp17.0-OE transgenic and WT plants can keep on growing, and no significant phenotypic differences have been found. After stress treatments, the proline content increased more significantly in transgenic plants than in wild type plants. Oppositely, the MDA content increased more significantly in wild type plants than in transgenic plants.
     3. After stress treatment with heavy metal ions (Cadmium), the growth of both OsHsp17.0-OE transgenic and WT seedlings were inhibited, but no significant phenotypic difference have been found.
     4. The two AP2/EREBP family gene OsDREBA5-1 and OsRAVl-1 exhibited tissue-specific expressions under normal condition.OsDREBA5-1 gene is predominantly expressed in roots; while OsRAVl-1 has higher expression in leaves, suggesting that these two genes have different function emphasis.
     5. OsDREBA5-1 and OsRAVl-1 are up-regulated by several stresses including high temperature, PEG stress, salt stress and ABA, however, differential expression profiles have been observed. It is interesting that, under streses, the induced expression of OsDREBA5-1 is much stronger than OsRAVl-1 in rice roots; by contrast, the induced expression of OsRAVl-1 is much stronger than OsDREBA5-1 in rice shoots. It is suggest that OsDREBA5-1 mainly function in the roots and OsRAVl-1 mainly function in the shoots.
     6. Plant over-expression and RNAi inhibition vectors for the two AP2/EREBP gene OsDREBA5-1 and OsRAVl-1 were constructed. Transgenic rice plants were-obtained via Agrobacterium-mediated transformation and confirmed at transcriptional level.
引文
[1]Wang D, Luthe DS (2003) Heat sensitivity in a bentgrass variant. Failure to accumulate a chloroplast heat shock protein isoform implicated in heat tolerance. Plant Physiology 133(1): 319-327.
    [2]Trent JD (1996) A review of acquired thermotolerance, heat-shock proteins, and molecular chaperones in archaea. FEMS Microbiology Reviews 18(2-3):249-258.
    [3]Vierling E. (1991) The roles of heat shock proteins in plants. Annual Review of Plant Physiology and Plant Molecular Biology 42(1):579-620.
    [4]Scharf KD, Siddique M, Vierling E (2001) The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing alpha-crystallin domains (Acd proteins). Cell Stress Chaperones 6:225-237.
    [5]Lenne C, Block M, Garin J, Douce R (1995) Sequence and expression of the mRNA encoding HSP22, the mitochondrial small heat-shock protein in pea leaves. Biochemical Journal 311:805-813.
    [6]LaFayette PR., Nagao RT, O'Grady K, Vierling E (1996) Molecular characterization of cDNAs encoding low-molecular-weight heat shock proteins of soybean. Plant Molecular Biology 30(1):159-169.
    [7]Caspers GJ, Leunissen JA, de Jong WW (1995) The expanding small heat shock protein family and structure predictions of the conserved'a-crystallin-domain', Journal of Molecular Evolution 40 (3):238-248.
    [8]Yeh K-W, Jinn T-L, Yeh C-H, Chen Y-M, Lin C-Y (1994) Plant low-molecular-mass heat-shock proteins:their relationships to the acquisition of thermotolerance in plants. Biotechnology and Applied Biochemistry 19(1):41-49.
    [9]Young L-S, Yeh C-H, Chen Y-M, Lin C-Y (1999). Molecular characterization of Oryza sativa 16.9 kDa heat shock protein. Biochemical Journal 344:31-38.
    [10) Chang Z, Primmol/L TP, Jakana J, Lee IH, Serysheva 1, Chiu W, Gilbert HF, Quiocho FA. (1996). Mycobacterium tuberculosis 16 kDa antigen (HSP16.3) function as an oligomeric structure in vitro to suppress thermal aggregation, The Journal of Biological Chemistry 271 (12):7218-7223.
    [11]Narberhaus F (2002) Alpha-crystallin-type heat shock proteins:socializing minichaperones in the context of a multichaperone network. Microbiology and Molecular Biology Reviews. 66:64-93.
    [12]Haslbeck M, Buchner J (2002) Chaperone function of sHsps. Progress in Molecular and Subcellular Biology 28:37-59.
    [13]Van Montfort R, Slingsby C, Vierling E (2002) Structure and function of the small heat shock protein/alpha-crystallin family of molecular chaperones. Advance in Protein Chemistry. 59,105-156.
    [14]Giese KC, Vierling E (2002) Changes in oligomerization are essential for the chaperone activity of a small heat shock protein in vivo and in vitro. Journal of Biological Chemistry 277:46310-46318.
    [15]Bova MP, Huang Q, Ding L, Horwitz J (2002) Subunit exchange, conformational stability, and chaperone-like function of the small heat shock protein 16.5 from Methanococcus jannaschii. Journal of Biological Chemistry 277(41):38468-38475.
    [16]Lee GJ, Roseman AM, Saibil HR, Vierling E (1997) A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. The EMBO Journal 16:659-671.
    [17]Veinger L, Diamant S, Buchner J, Goloubinoff P (1998).The small heat-shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaper-one network. Journal of Biological Chemistry 273(18):11032-11037.
    [18]Scharf K, Siddique M, Vierling E (2001) The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing a-crystallin domains (Acd proteins). Cell Stress and Chaperones,6(3):225-237.
    [19]Low D, Brandle K, Nover L, Forreiter C (2000). Cytosolic heat-stress proteins Hspl7.7 class I and Hsp17.3 class II of tomato act as molecular chaperones in vivo. Planta 211(4): 575-582.
    [20]Parsell D, Lindquist S (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annual Review of Genetics 27:437-496.
    [21]Sun W, Montagu MV, Verbruggen N (2002) Small heat shock proteins and stress tolerance in plants. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression 1577(1): 1-9.
    [22]Hsieh MH, Chen JT, Jinn TL, Chen YM, Lin CY (1992) A class of soybean low molecular weight heat shock proteins:immol/Lunological study and quantitation. Plant Physiology 99(4):1279-1284.
    [23]Bartling D, Bulter H, Liebeton K, Weiler EW (1992) An Arabidopsis thaliana cDNA clone encoding a 17.6 kDa class II heat shock protein, Plant Molecular Biology 18(5):1007-1008.
    [24]Lauzon LM, Helm KW, Vierling E (1990) A cDNA clone from Pisum sativum encoding a low molecular weight heat shock protein. Nucleic Acids Research 18(14):4274.
    [25]Ding CK, Wang CY, Gross KC Smith DL (2001) Reduction of chilling injury and transcript accumulation of heat shock proteins in tomato fruit by methyl jasmonate and methyl salicylate, Plant Science 161(6):1153-1159.
    [26]. Almoguera C, Coca MA, Jordano J (1993) Tissue-specific expression of sunflower heat shock proteins in response to water stress. The Plant Journal 4 (6):947-958.
    [27]Lee BH, Won SH, Lee HS, Miyao M, Chung WI, Kim IJ, Jo J (2000) Expression of the chloroplast-localized small heat shock protein by oxidative stress in rice. Gene 245:283-290.
    [28]Chang PFL, Jinn TL, Huang WK, Chen Y, Chang HM, Wang CW (2007) Induction of a cDNA clone from rice encoding a class II small heat shock protein by heat stress, mechanical injury, and salicylic acid. Plant Science 172(1):64-75.
    [29]Zou J, Liu A, Chen X, Zhou X, Gao G, Wang W, Zhang X (2009) Expression analysis of nine rice heat shock protein genes under abiotic stresses and ABA treatment. Journal of Plant Physiology 166(8):851-861.
    [30]Lee GJ, Vierling E (2000) A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiol.122,189-198.
    [31]Chang P, Jinn T, Huang W, Chen Y, Chang H, Wang C (2007) Induction of a cDNA clone from rice encoding a class II small heat shock protein by heat stress, mechanical injury, and salicylic acid. Plant Science 172,64-75.
    [32]Sato Y, Yokoya S (2008) Enhanced tolerance ta drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17.7. Plant Cell Reports 27,329-334.
    [33]Lin CY, Roberts JK and Key JL (1984) Acquisition of thermotolerance in soybean seedlings:synthesis and accumulation of heat shock proteins and their cellular localization. Plant Physiol.74:152-160.
    [34]Park SM, Hong CB (2002) Class I small heat-shock protein gives thermotolerance in tobacco. Journal of Plant Physiology 159:25-30.
    [35]Sanmiya K, Suzuki K, Egawa Y, Shono M (2004) Mitochondrial small heat-shock protein enhances thermotolerance in tobacco plants. FEBS Letters 557:265-268.
    [36]Murakami T, Matsuba S, Funatsuki H, Kawaguchi K, Saruyama H, Tanida M, Sato Y (2004) Over-expression of a small heat shock protein, sHSP17.7, confers both heat tolerance and UV-B resistance to rice plants. Molecular Breeding 13:165-175.
    [37]Rhoads DM, White SJ, Zhou Y, Muralidharan M and Elthon TE (2005) Altered gene expression in plants with constitutive expression of a mitochondrial small heat shock protein suggests the involvement of retrograde regulation in the heat stress response.Physiologia Plantarum 123:435-444.
    [38]Chamg YY, Liu HC, Liu NY, Hsu FC, and Ko SS (2006) Arabidopsis Hsa32, a novel heat-shock protein, is essential for acquired thermotolerance during a long recovery period after acclimation treatment. Plant Physiol 140:1297-1305,
    [39]Sun W, Bernard C, Van De Cotte B, Van Montagu M, Verbruggen N (2001) At HSP17.6A, encoding a small heat shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. The Plant Journal 27:407-415.
    [40]Jiang C, Xu J, Zhang H, Zhang X, Shi J, Li M, Ming F (2009) A cytosolic class I small heat shock protein, RcHSP17.8, of Rosa chinensis confers resistance to a variety of stresses to Escherichia coli, yeast and Arabidopsis thaliana. Plant, Cell & Environment 32(8): 1046-1059.
    [41]Wang L, Zhao C, Wang Y, Liu J (2005) Overexpression of chloroplast-localized small molecular heat-shock protein enhances chilling tolerance in tomato plant. Zhi wu sheng li yu fen zi sheng wu xue xue bao= Journal of plant physiology and molecular biology 31:167-174.
    [42]郭鹏,隋娜,于超,郭尚敬,董新纯.(2008)转入甜椒热激蛋白基因CaHSP18提高番茄的耐冷性.植物生理学通讯,44(3):409-412.
    [43]李洁.植物转录因子与基因调控.(2004)生物学通报,39(3):9-11.
    [44]Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002). DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression. Biochemical and Biophysical Research Commol/Lunications 290,998-1009.
    [45]Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. (2006) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. The Plant Cell,18(5):1292-1309.
    [46]Jofuku KD, Boer BGW, Montagu MV, Okamuro JK (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. The Plant Cell Online 6:1211-1225.
    [47]Ohto MA, Fischer RL, Goldberg RB, Nakamura K, Harada JJ (2005). Control of seed mass by APETALA2. Proc Natl Acad Sci USA 102,3123-3128.
    [48]Park JM, Park CJ, Lee SB, Ham BK, Shin R, Paek KH (2001) Overexpression of the tobacco Tsil gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. The Plant Cell Online 13:1035-1046.
    [49]Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. The Plant Cell 10:1391-1406.
    [50]Chen M, Xu Z, Xia L, Li L, Cheng X, Dong J, Wang Q, Ma Y. (2009) Cold-induced modulation and functional analyses of the DRE-binding transcription factor gene, GmDREB3, in soybean (Glycine max L.). Journal of Experimental Botany,60 (1):121-135.
    [51]Oh SJ, Kwon CW, Choi DW, Song SI, Kim JK. (2007) Expression of barley HvCBF4 enhances tolerance to abiotic stress in-transgenic rice. Plant Biotechnology Journal, 5(5):646-656.
    [52]Shan DP, Huang JG, Yang YT, Guo YH, Wu CA, Yang GD, Gao Z, Zheng CC. (2007) Cotton GhDREB1 increases plant tolerance to low temperature and is negatively regulated by gibbereHic acid. New Phytologist,176(1):70-81.
    [53]Qin F, Sakuma Y, Li J, Liu Q, Li YQ, Shinozaki K, Yamaguchi-Shinozaki K.(2004) Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant and Cell Physiology 45:1042-1052.
    [54]Chen JH, Xia XL, Yin WL. (2009) Expression profiling and functional characterization of a DREB2-type gene from Populus euphratica. Biochemical and Biophysical Research Commol/Lunications,378 (3):483-487.
    [55]Islam MS, Wang MH. (2009) Expression of dehydration responsive element-binding protein-3 (DREB3) under different abiotic stresses in tomato. BMB Reports,42(9):611-616.
    [56]Xu ZS, Ni ZY, Li ZY, Li LC, Chen M, Gao DY, Yu XD, Liu P, Ma YZ. (2009) Isolation and functional characterization of HvDREB1-a gene encoding a dehydration-responsive element binding protein in Hordeum vulgare. Journal of Plant Research,122(1):121-130.
    [57]Zhao L, Hu Y, Chong K, Wang T (2010) ARAG1, an ABA-responsive DREB gene, plays a role in seed germination and drought tolerance of rice. Annals of Botany,105(3):401-409.
    [58]Matsukura S, Mizoi J, Yoshida D, Ito Y, Maruyama K, Shinozaki K, Yamaguchi-Shinozaki K (2010) Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. Molecular Genetics and Genomics 283(2):185-196.
    [59]Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K (2006) Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proceedings of the National Academy of Sciences of the United States of America,103(49):18822-18827.
    [60]Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004) Combination of the Arabidopsis DREB 1A gene and stress-inducible rd29A promoter improved drought-and low-temperature stress tolerance in tobacco by gene transfer. Plant and Cell Physiology, 45(3):346-350.
    [61]Chen M, Wang Q, Cheng X, Xu Z, Li L, Ye X, Xia L, Ma Y (2007) GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochemical and Biophysical Research Commol/Lunications 353 (2):299-305
    [62]Gao SQ, Chen M, Xia LQ, Xiu HJ, Xu ZS, Li LC, Zhao CP, Cheng XG, Ma YZ (2009) A cotton (Gossypium hirsutum) DRE-binding transcription factor gene, GhDREB, confers enhanced tolerance to drought, high salt, and freezing stresses in transgenic wheat. Plant Cell Reports 28 (2):301-311.
    [63]Shinozaki K, Dennis E (2003) Cell signaling and gene regulation global analyses of signal transduction and gene expression profiles. Current Opinion in Plant Biology 6(5):405-409.
    [64]Shen YG, Zhang WK, He SJ, Zhang JS, Liu Q, Chen SY (2003) An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. TAG Theoretical and Applied Genetics 106(5):923-930.
    [65]Egawa C, Kobayashi F, Ishibashi M, Nakamura T, Nakamura C, Takumi S (2006) Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in commol/Lon wheat. Genes and Genetic Systems (Japan)81(2):77-91.
    [66]Benedict C, Skinner JS, Meng R, Chang Y, Bhalerao R, Huner NP, Finn CE, Chen TH, Hurry V (2006) The CBF1-dependent low temperature signalling pathway, regulon and increase in freeze tolerance are conserved-in Populus spp. Plant Cell and Environment 29 (7):1259-1272.
    [67]Qin-F, Kakimoto M, Sakuma Y, Maruyama K, Osakabe Y, Tran LS, Shinozaki K, Yamaguchi-Shinozaki K (2007) Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant Journal 50(1):54-69.
    [68]Chen JQ, Meng XP, Zhang Y, Xia M, Wang XP (2008) Over-expression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnology Letters 30(12):2191-2198.
    [69]Wang Q, Guan Y, Wu Y, Chen F, Chu C (2008) Overexpression of a rice OsDREB 1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Molecular Biology,67(6):589-602.
    [70]Huang JG, Yang M, Liu P, Yang GD, Wu CA, Zheng CC (2009) GhDREB1 enhances abiotic stress tolerance, delays GA-mediated development and represses cytokinin signalling in transgenic Arabidopsis. Plant Cell and Environment 32(8):1132-1145.
    [71]Kobayashi F, Ishibashi M, Takumi S (2008) Transcriptional activation of Cor/Lea genes and increase in abiotic stress tolerance through expression of a wheat DREB2 homolog in transgenic tobacco. Transgenic Researchl7(5):755-767.
    [72]Liu N, Zhong NQ, Wang GL, Li LJ, Liu XL, He YK, Xia GX (2007) Cloning and functional characterization of PpDBF1 gene encoding DRE-binging transcription factor from Physcomitrella patens. Planta 226(4):827-838.
    [73]Zhang Y, Chen C, Jin XF, Xiong AS, Peng RH, Hong YH, Yao QH, Chen JM (2009) Expression of a rice DREB1 gene, OsDREB ID, enhances cold and high-salt tolerance in transgenic Arabidopsis, BMB Reports31(8):486-492.
    [74]Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt-and cold-responsive gene expression. Plant Journal 33(4):751-763.
    [75]Zhuang J, Sun C-C, Zhou X-R, Xiong A-S, Zhang J (2010) Isolation and characterization of an AP2/ERF-RAV transcription factor BnaRAV-1-HY15 in & It;i>Brassica napus</i> L. HuYou15. Molecular Biology Reports DOI:10.1007/s11033-010-0508-1.
    [76]Chen X, Wang Z, Wang X, Dong J, Ren J, Gao H (2009) Isolation and characterization of GoRAV, a novel gene encoding a RAV-type protein in Galegae orientalis. Genes & Genetic Systems 84 (2):101-109.
    [77]Kim SY, Kim YC, Lee JH, Oh SK, Chung E, Lee S, Lee YH, Choi D, Park JM (2005) Identification of a CaRAV1 possessing an AP2/ERF and B3 DNA-binding domain from pepper leaves infected with Xanthomonas axonopodis pv. grycines 8ra by differential display. Biochimica et Biophysica Acta (BBA)-Ge(?)e Structure and Expression 1729(3):141-146.
    [78]Jofuku KD, Omidyar PK, Gee Z, Okamuto JK (2005) Control of seed mass and seed yield by the floral homeotic gene APETALA2. Proceedings of the National Academy of Sciences of the United States of America 102,3117-3122.
    [79]Huala E, Sussex IM (1992) LEAFY interacts with floral homeoti genes to regulate Arabidopsis floral development. The Plant Cell 4(8):901-913.
    [80]Zhao L, Luo Q, Yang C, Han Y, Li W (2008) A RAV-like transcription factor controls photosynthesis and senescence in soybean. Planta 227(6):1389-1399.
    [81]Woo HR, Kim JH, Kim J, Lee U, Song IJ, Lee HY, Nam HG, Lim PO (2010) The RAVI transcription factor positively regulates leaf senescence in Arabidopsis. ·Journal of Experimental Botany 61(14):3947-3957.
    [82]Sohn KH, Lee SC, Jung HW, Hong JK, Hwang BK (2006) Expression and functional roles of the pepper pathogen-induced transcription factor RAVI in bacterial disease resistance, and drought and salt stress tolerance. Plant Molecular Biology 61(6):897-915.
    [83]Lee S, Choi D, Hwang I, Hwang B (2010) The pepper oxidoreductase CaOXRl interacts with the transcription factor CaRAV1 and is required for salt and osmotic stress tolerance. Plant Molecular Biology 73(4):409-424.
    [84} Je BI, Piao HL, Park SJ, Park SH, Kim CM, Xuan YH, Huang J, Do Choi Y, An G (2010) RAV-Likel maintains brassinosteroid homeostasis via the coordinated activation of BRI1 and biosynthetic genes in rice. The Plant Cell 22(6):1777-1791.
    [85]Houghton J T, Ding Y, Griggs D J, et al. (2001). Climate Change 2001 Scientific Basis. New York:Cambridge University Press,25-28.
    [86]Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Centeno, Khush GS, and Cassman KG (2004) Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America 101: 9971-9975.
    [87]Matsushima S, Ikewada H, Maeda A, Honma S, Niki H (1982) Studies on rice cultivation in the tropics,1:Yielding and ripening responses of the rice plant to the extremely hot and dry climate in Sudan. Japanese Journal of Tropical Agriculture 26(1):19-25.
    [88]Matsui T, Omasa K, Horic T (2001) Comparison between anthers of two rice(Oryza sativa L.)cultivars with tolerance to high temperatures at flowering or susceptibility.Plant Production Science 4(1):36-40.
    [89]邹杰(2008)水稻OsHSP基因表达分析与遗传转化研究[硕士学位论文].湖南农业大学.
    [90]Chen X, Guo Z (2008) Tobacco OPBP1 Enhances Salt Tolerance and Disease Resistance of Transgenic Rice. International Journal of Molecular Sciences 9:2601-2613.
    [91]李大红(2008)水稻RACK1基(OsRACK1)在盐胁迫响应中的功能研究[博士学位论文].扬州大学.
    [92]陈惠(2005)转基因耐盐旱稻的获得及转AtNCED3水稻的抗逆性研究[博士学位论文].中国农业大学.。
    [93]Koh S, Lee S, Kim M, Koh J, Lee S, An G, Choe S, Kim S (2007) T-DNA tagged knockout mutation of rice OsGSK1, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses. Plant Molecular Biology 65(4):453-466.
    [94]Shim D, Hwang J-U, Lee J, Lee S, Choi Y, An G, Martinoia E, Lee Y (2009) Orthologs of the class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice. Plant Cell 21(12):4031-4043,
    [95]刘爱玲(2010)水稻OsHsfAs和OsCH2基因的功能研究[博士学位论文].湖南农业大学.
    [96]张桂莲(2006)两个早稻品种耐热性生理及分子遗传基础的研究[博士学位论文].湖南农业大学.
    [97]Bajji M, Kinet J, Lutts S (2002) The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regulation 36,61-70.
    [98], Havaux M, Lutz C, Grimmol/L B (2003) Chloroplast membrane photostability in ch1P transgenic tobacco plants deficient in tocopherols. Plant Physiology 132,300.
    [99]Bates L, Waldren R, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant and soil 39,205-207.
    [100]Wehmeyer N, Vierling E (2000) The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests a general protective role in desiccation tolerance. Plant Physiology 122(4):1099-1108.
    [101]Xue Y, Peng R, Xiong A, Li X, Zha D, Yao Q (2009) Yeast heat-shock protein gene HSP26 enhances freezing tolerance in Arabidopsis. Journal of Plant Physiology 166(8):844-850.
    [102]Pacheco A, Pereira C, Almeida M, Sousa M (2009) Small heat-shock protein Hsp12 contributes to yeast tolerance to freezing stress. Microbiology 155:2021-2028.
    [103]Guo SJ, Zhou HY, Zhang XS, Li XG, Meng QW (2007) Overexpression of CaHSP26 in transgenic tobacco alleviates photoinhibition of PSII and PSI during chilling stress under low irradiance. Journal of Plant Physiology 164(2):126-136.
    [104]Blum A, Ebercon A (1981) Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Science 1981 Vol 21 No 1 pp 43-4721:43-47.
    [105]Premachandra G, Saneoka H, Ogata S (1989) Nutrio-physiological evaluation of the polyethylene glycol test of cell membrane stability in maize. Crop Science 29:1287-1292.
    [106]Tripathy J, Zhang J, Robin S, Nguyen TT, Nguyen H (2000) QTLs for cell-membrane stability mapped in rice (Oryza sativa L.) under drought stress. TAG Theoretical and Applied Genetics 100:1197-1202.
    [107]张燕利,高捍东,吴锦华(2010)4种景天科植物耐热性测定.西南林学院学报30(6):52-54.
    [108]Farooq S, Azam F (2006) The use of cell membrane stability (CMS) technique to screen for salt tolerant wheat varieties. Journal of Plant Physiology 163:629-637.
    [109]Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4rhydroxynonenal, malonaldehyde and related aldehydes. Free Radical Biology and Medicine 11:81-128.
    [110]Hideg E, Nagy T, Oberschall A, Dudits D, Vass I (2003) Detoxification function of aldose/aldehyde reductase during drought and ultraviolet B (280-320 nm) stresses. Plant, Cell & Environment 26:513-522.
    [111]Sunkar R, Bartels D, Kirch HH (2003) Overexpression of a stress inducible aldehyde dehydrogenase gene from Arabidopsis thaliana in transgenic plants improves stress tolerance. The Plant Journal 35:452-464.
    [112]Kotchoni SO, Kuhns C, Ditzer A, KIRCH HH, Bartels D (2006) Over expression of different aldehyde dehydrogenase genes in Arabidopsis thaliana confers tolerance to abiotic stress and protects plants against lipid peroxidation and oxidative stress. Plant, Cell & Environment 29:1033-1048.
    [113]Hare P, Cress W, Van Staden J (1999) Proline synthesis and degradation:a model system for elucidating stress-related signal transduction. Journal of Experimental Botany 50:413-434
    [114]Mansour M (2000) Nitrogen containing compounds and adaptation of plants to salinity stress. Biologia Plantarum 43:491-500.
    [115]Aspinall D, Paleg L (1981) Proline accumulation:physiological aspects. The physiology and biochemistry of drought resistance in plants 205-241.
    [116]Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. The Plant Journal 4:215-223.
    [117]Voetberg GS, Sharp RE (1991) Growth of the maize primary root at low water potentials: III. Role of increased proline deposition in osmotic adjustment. Plant Physiology 96:1125-1130.
    [118]Hmida-Sayari A, Gargouri-Bouzid R, Bidani A, Jaoua L, Savoure A, Jaoua S (2005) Overexpression of [Delta] 1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Science 169:746-752.
    [119]Samaras Y, Bressan R, Csonka L, Garcia-Rios M, Paino DUM, Rhodes D (1995) Proline accumulation during drought and salinity. Environment and Plant Metabolism:Flexibility and Acclimation BIOS Scientific Publishers, Oxford, UK 161-187.
    [120]Nikolopoulos D, Manetas Y (1991) Compatible solutes and in vitro stability of Salsola soda enzymes:proline incompatibility. Phytochemistry 30:411-413.
    [121]Bandurska H (1993) In vivo and in vitro effect of proline on nitrate reductase activity under osmotic stress in barley. Source:Acta Physiologiae Plantarum 15:83-88.
    [122]Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28:1057-1060.
    [123]Venekamp JH, Lampe JEM, Koot JTM (1989) Organic acids as sources of drought-induced proline synthesis in field bean plants, Vicia faba L. Journal of Plant physiology 133:654-659.
    [124]Schobert B, Tschesche H (1978) Unusual solution properties of proline and its interaction with proteins. Biochimica et Biophysica Acta (BBA)-General Subjects 541:270-277.
    [125]Fukutoku Y, Yamada Y (1984) Sources of proline nitrogen in water stressed soybean (Glycine max). II. Fate of 15N labelled protein. Physiologia Plantarum 61:622-628.
    [126]李凤民,王俊,郭安红.供水方式对春小麦根源信号和水分利用效率的影响[J].水力学报,2000(1):23-27.
    [127]Sharoni AM, Nuruzzaman M, Satoh K, Shimizu T, Kondoh H, Sasaya T, Choi IR, Omura T, Kikuchi S (2011) Gene. Structures, Classification and Expression Models of the AP2/EREBP Transcription Factor Family in Rice. Plant and Cell Physiology 52(2); 344-360.
    [128]Schwacke R, Fischer K, Ketelsen B, Krupinska K. Krause K (2007) Comparative survey of plastid and mitochondrial targeting properties of transcription factors in Arabidopsis and rice. Molecular Genetics and Genomics 277(6):631-646.
    [129]Barcala M, Garcia A, Cubas P, Almoguera C, Jordano J, Fenoll C, Escobar C (2008) Distinct heat-shock element arrangements that mediate the heat shock, but not the late-embryogenesis induction of small heat-shock proteins, correlate with promoter activation in root-knot nematode feeding cells. Plant Molecular Biology 66:151-164.
    [130]Cominelli E, Galbiati M, Vavasseur A, Conti L, Sala T, Vuylsteke M, Leonhardt N, Dellaporta S, Tonelli C (2005) A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Current Biology 15(13):1196-1200.
    [131]Shinwari ZK, Nakashima K, Miura S, Kasuga M, Seki M, Yamaguchi-Shinozaki K, Shinozaki K (1998) An Arabidopsis gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression. Biochemical and Biophysical Research Commol/Lunications 250(1):161-170.
    [132]Wu KL, Guo ZJ, Wang HH, Li J (2005) The WRKY family of transcription factors in rice and Arabidopsis and their origins. DNA research 12(1):9-26.
    [133]Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. The Plant Journal 34(2):137-148.
    [134]Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiology 47(1):141-53.
    [135]Toki S, Hara N, Ono K, Onodera H, Tagiri A, Oka S, Tanaka H (2006) Early infection of scutellum tissue with Agrobacterium allows high speed transformation of rice. The Plant Journal 47(6):969-976.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700