24-表油菜素内酯对山黧豆β-ODAP生物合成和干旱适应性的生理生态影响及机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以家山黧豆(Lathyrus sativus L.)为试验材料,采用盆栽土培的方法,在生长环境控制的条件下,通过不同外源施加0.1mg/L24-表油菜素内酯(24-epibrassinolide, EBL)的方法(浸种、叶面喷施、浸种+叶面喷施),连续跟踪土壤逐渐干旱下山黧豆幼苗叶片毒素p-N-草酰-L-a,β-二氨基丙氨酸(β-N-oxalyl-L-a, β-diaminopropionic acid, β-ODAP)含量的动态变化,并测定生长、水分状况、气体交换参数、脯氨酸含量、抗氧化酶活性等指标。干旱胁迫梯度为80%田间持水量(field water capacity, FWC)、50%FWC、40%FWC和30%FWC。在另一单独试验中,跟踪不同水分条件下EBL对山黧豆生物量分配、产量和籽粒β-ODAP含量的影响,其控水梯度为80%FWC、50%FWC和35%FWC。运用数理统计分析方法,揭示24-表油菜素内酯对山黧豆β-ODAP生物合成及干旱适应性的生理生态影响及机理,得出如下主要结果:
     (1)EBL对山黧豆的耐旱能力具有显著增强效应。干旱胁迫下,外源施加EBL显著提高了山黧豆幼苗株高和叶面积,减缓干旱对山黧豆幼苗生长的抑制作用。水分条件为50%FWC时,与对照组相比,浸种处理、叶面喷施、浸种+叶面喷施处理山黧豆株高分别提高了12.9%、11.9%和17.4%,叶面积分别提高了52.3%、47.7%和56.8%;水分条件为40%FWC时,株高提高了14.3%、13.7%和14.7%,叶面积提高了59.2%、28.5%和47.7%;水分条件为30%FWC时,株高提高了16.7%、11.9%和19.50%,叶面积提高了29.2%、9.7%和24.3%。在土壤逐渐干旱下直至永久萎蔫过程中,EBL处理可以减缓山黧豆幼苗叶片气孔导度和相对含水量的下降速度,增加干旱下存活天数和降低致死土壤含水量。
     (2)同步跟踪发现,外源施加EBL提高了山黧豆渗透调节和抗氧化调节能力。外源施加EBL显著提高了叶片脯氨酸含量和抗氧化酶(SOD、APX和CAT)活性,其中浸种十叶面喷施法效果最显著,水分条件为30%FWC时效果最好。与对照组相比,水分条件为30%FWC时,浸种+叶面喷施处理组山黧豆幼苗叶片脯氨酸含量增加了60.4%,SOD活性增加了68.3%,APX活性增加了26.4%,CAT活性提高了238.7%。
     (3)EBL对山黧豆生物量积累和产量形成总体上具有促进作用,但因施加方式和干旱梯度不同出现差异性表现。不同水分条件下,外源施加EBL均能提高山黧豆总生物量,水分条件为50%FWC时达到显著水平。水分条件为80%FWC时,浸种、浸种+叶面喷施处理可以通过促进山黧豆营养和繁殖器官生长(根重、茎重、叶重和荚重)共同提高山黧豆总生物量,叶面喷施处理则主要通过促进营养器官生长(根重、茎重和叶重)提高山黧豆总生物量。水分条件为50%FWC时,EBL各处理均能促进山黧豆营养和繁殖生长(荚重、叶重、茎重和根重)提高山黧豆总生物量,其中荚重和叶重达到显著水平。水分条件为35%FWC时,浸种、浸种+叶面喷施处理可通过促进营养器官生长(茎重、叶重和根重)提高总生物量,叶面喷施则可通过促进营养和繁殖器官生长(茎重、叶重、根重和荚重)共同提高。
     (4)EBL调控下山黧豆营养生长和繁殖生长的能量分配出现策略性改变,不同施加方法的效果不同。浸种处理可以促进水分胁迫程度较低时(80%FWC和50%FWC)山黧豆的营养和繁殖生长,随着水分程度的增加,该处理则偏重于促进山黧豆的营养生长。叶面喷施处理主要促进水分为80%FWC时的营养生长,水分条件为35%FWC时主要促进繁殖生长。浸种+叶面喷施可以促进水分条件为80%FWC时山黧豆繁殖生长,水分条件为50%FWC和35%FWC时,更多促进营养生长。
     (5)EBL对山黧豆毒素β-ODAP的生物合成的调控效应因干旱胁迫梯度不同呈现不同趋势。水分条件为80%FWC、50%FWC和40%FWC时,EBL对山黧豆幼苗叶片β-ODAP含量影响不显著。在30%FWC条件下,外源施加EBL降低山黧豆幼苗叶片β-ODAP含量,对照组β-ODAP含量为4.52mg/g,浸种、叶面喷施、浸种+叶面喷施处理组分别为4.43mg/g、3.80mg/g、3.2mg/g,表明EBL可以提高山黧豆幼苗干旱适应性同时降低β-ODAP含量,以浸种+叶面喷施效果最好,可以达到显著水平。EBL对80%FWC时山黧豆籽粒β-ODAP影响不大,但可以提高50%FWC时β-ODAP的含量,但均未达到显著水平。水分条件为50%FWC时,对照组含量为4.59mg/g,浸种、叶面喷施、浸种+叶面喷施含量分别为5.53mg/、5.23mg/g、4.61mg/g。水分条件为35%FWC时,EBL叶面喷施处理则显著降低了β-ODAP含量,对照组为5.96mg/g,叶面喷施处理为5.14mg/g。
     综上所述,外源施加EBL对干旱适应能力具有显著的调控效应,但对β-ODAP生物合成的调控因施加方式和干旱胁迫程度的不同而出现差异性表现。推测EBL是通过增强山黧豆干旱适应能力而相应地降低毒素β-ODAP含量,但机理仍很复杂,与营养生长和繁殖生长的不同能量分配对策密切相关。
In this study, pot-culture experiments with soil medium were conducted using grass pea (Lathyrus sativus L.) as test material under environment-controlled conditions. Dynamics of toxin β-N-oxalyl-L-α, β-diaminopropionic acid (β-ODAP) concentrations were continuously tracked and determined in leaves of grass pea seedlings using exogenous application methods with0.1mg/L24-epibrassinolide (EBL) including seed priming (sp), foliar application (fa) and seed priming and foliar application (sf). Other parameters including growth, water status, gas exchange index, proline contents and activities of antioxidant enzymes were also synchronously measured. Drought stress gradients were designed as field water capacity (FWC) of80%,50%,40%and30%respectively. In a separate experiment, the effects of EBL exogenous application on biomass distribution, grain yield and β-ODAP concentrations in seeds were tracked and measured in grass pea in three gradients of water supply including80%FWC,50%FWC and30%FWC respectively. Mathematical statistics methods were employed to elucidate eco-physiological effects of EBL application on β-ODAP biosynthesis and drought adaptability and its mechanism in grass pea. The major results were achieved as follows:
     (1) EBL was observed to significantly enhance drought tolerance of grass pea. It alleviated the adverse effect and promoted the growth of plant height and leaf area in grass pea seedlings under drought stress. Sp, fa and sf treatment increased plant height by12.9%,11.9%and17.4%, leaf area by52.3%,47.7%and56.8%under50%FWC; plant height by14.3%,13.7%and14.7%, leaf area by59.2%,28.5%and47.7%under40%FWC; plant height by16.7%,11.9%and19.5%, leaf area by29.2%,9.7%and24.3%under30%FWC. EBL also slowed down the rate of decrease in leaf relative water content, stomatal conductance, increased the survival days and decreased the withering soil water content for grass pea seedlings from sufficient water supply to permanent withering point.
     (2) The results of synchronous tracking indicated that exogenous application of EBL improved the abilities of osmotic adjustment and antioxidant adjustment in grass pea seedlings. There was an increase in the leaf proline content and activity of antioxidant enzymes(SOD, APX, CAT) of treated seedlings. Compared to untreated ones, the sf treatment under30%FWC increased the proline content by60.4%, activity of SOD by68.3%, activity of APX by26.4%, activity of CAT by238.7%.
     (3) In general, EBL played a role to promote biomass accumulation and yield information in grass pea, but it varied from application treatments of EBL and drought stress gradient. EBL could increase the total biomass of grass pea under different water conditions, especially under50%FWC. Under80%FWC, sp and sf treatment increased the total biomass through improving the growth of vegetative and productive organs of grass pea, such as root, stem, leaf and pod dry weight; while fa treatment increased the biomass by increasing the vegetative organs including root, stem and leaf dry weight. Under50%FWC, EBL could improve pod, leaf, stem and root dry weight, and the increase in pod and leaf dry weight reached a significant level. Under35%FWC, sp and sf treatment could increase the total biomass by increasing the stem, leaf and root dry weight; while fa treatment increase the biomass by improving the stem, leaf, root and pod dry weight.
     (4) Strategic variation in energy distribution for vegetative growth and productive growth was observed under the regulation of EBL, however the effects of different application treatments were different. Sp treatment could promote the vegetative and productive growth of grass pea under80%FWC and50%FWC, and more increase vegetative growth under35%FWC. Fa treatment could promote the vegetative growth under80%FWC, and more increase productive growth under50%FWC and35%FWC. Sf could promote the productive growth under80%FWC, and more increase vegetative growth under50%FWC and35%FWC.
     (5) Regulatory effects of on the P-ODAP biosynthesis relied on drought stress gradients. There was no obvious effect on P-ODAP in the leaves of grass pea seedling under80%FWC,50%FWC and40%FWC. EBL could decrease the β-ODAP content under30%FWC, the P-ODAP content of the control under30%FWC was4.52mg/g, but sp, fa and sf treatment was4.43mg/g,3.80mg/g and3.2mg/g. We saw that EBL could improve drought tolerance but decrease the P-ODAP content under30%FWC, and sf is the best effective treatment. EBL had little effect on P-ODAP content in grass pea seeds under80%FWC, but increased β-ODAP content under50%FWC. The β-ODAP content of the control under50%FWC was4.59mg/g, but sp, fa and sf treatment was5.53mg/g,5.23mg/g and4.61mg/g. Fa treatment could significantly reduce the content of β-ODAP under35%FWC, the p-ODAP content of the control was5.96mg/g, but fa treatment was5.14mg/g.
     In summary, exogenous EBL application could significantly regulate the adaptability of grass pea to drought, but different treatment and drought stress gradient had different effect on β-ODAP biosynthesis. We speculated that EBL could reduce the β-ODAP content by improving the drought adaptability of grass pea, but the mechanism was very complex and closely related with energy allocation of vegetable growth and reproductive growth of grass pea.
引文
冯朝红,李凯荣,张鹏文,刘建利.2008.干旱胁迫下油菜素内酯对文冠果苗木抗氧化酶活性和抗氧化剂含量的影响.干旱地区农业研究,109:152-155
    高红明,温爽,张小丽,张庆.2006.表油菜素内酯对于干旱胁迫下玉米种子萌发及幼苗生长的影响.安徽农业科学,20:5208-5209
    韩德复,胡勇军,郭继勋,李海龙.2007.油菜素内酯对羊草干旱性的影响.长春师范学院学报,106:51-53
    韩刚,孙楠,李凯荣.2007.油菜素内酯对三个树种苗木抗旱性影响的综合评价.干旱地区研究,100:92-98
    韩刚,李凯荣.2011.油菜素内酯对干旱胁迫下山杏光合作用的影响.西北林学院学报,26:27-32
    侯雷平,李梅兰.2001.油菜素内酯(BR)促进植物生长机理研究进展.植物学通报,18:560-566
    王彩艳,牛艳.2011.油菜素内酯在农业上的应用研究及发展.宁夏农林科技,52:41-42
    王红红,李凯荣,侯华伟.2005.油菜素内酯提高植物抗逆性的研究进展.干旱地区农业研究,23:213-219
    武艳培.2009.山黧豆(Lathyrus Sativus L.)种质资源评价.兰州大学
    仵兆武.2006.油菜素内酯在农业上的应用成效.广东农业科学,5:92-93
    邢更生,周功克,李志孝,崔凯荣.2001.渗透胁迫对山黧豆幼苗H202及毒素积累的影响.植物生理学报,27:5-8
    张荣,孙国钧,张大勇.2000.干旱、半干旱地区作物育种的困惑与出路.西北植物学报20:930-953
    周天,胡勇军,张丽辉,刘忠贺.2003.油菜素内酯对玉米幼苗抗旱性的影响.长春师范学院学报,22:66-68
    Ali K, Sachdev A, Tiwari N, Santha IM, Bansal KC.2000. Physiological and biochemical analysis of Lathyrus sativus somaclones derived from root and internode explants. J Plant Biochem Biot,9:27-30
    Altmann T.1999. Molecular physiology of brassinosteroids revealed by the analysis of mutants. Planta,208:1-11
    Bajguz A.2009. Brassinosteroid enhanced the level of abscisic acid in Chlorella vulgaris subjected to short term heat stress. J Plant Physiol,166:882-886
    Bajguz A.2010. An enhancing effect of exogenous brassinolide on the growth and antioxidant activity in Chlorella vulgaris cultures under heavy metals stress. Environ Exp Bot,68: 175-179
    Bajguz A, Hayat S.2009. Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem,47:1-8
    Bajguz A, Tretyn A.2003. The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry,62:1027-1046
    Bao F, Shen J, Brady SR, Muday GK, Asami T, Yang Z.2004). Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis. Plant Physiol,134:1624-1631
    Barik DP, Mohapatra U, Chand PK.2005. Transgenic grasspea(Lathyrus sativus L.):factors influencing agrobacterium-mediated transformation and regeneration. Plant Cell Rep,24: 523-531
    Bates LS, Waldren RP, Teare ID.1973. Rapid determination of free proline for water stress studies. Plant and Soil,39:205-207
    Beauchamp C, Fridovich I.1971. Superoxide dismutase:improved assays and an assay applicable to acrylamide gels. Anal Biochem,44:276-287
    Bishop GJ, Koncz C.2002. Brassinosteroids and plant steroid hormone signaling. Plant Cell,14: S97-110
    Bouquin T, Meier C, Foster R, Nielsen ME, Mundy J.2001. Control of specific gene expression by gibberellin and brassinosteroid. Plant Physiol,127:450-458
    Boyer JS.1982. Plant productivity and environment. Science,218:443-448
    Catala R, Ouyang J, Abreu IA, Hu Y, Seo H, Zhang X, Chua NH.2007. The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses. Plant Cell,19:2952-2966
    Cheema PS, Malathi K, Padmanaban G, Sarma PS.1969. The neurotoxicity of beta-N-oxalyl-L-alpha-beta-diaminopropionic acid, the neurotoxin from the pulse Lathyrus sativus. Biochem J,112:29-33
    Chrispeels MJ, Agre P.1994. Aquaporins:water channel proteins of plant and animal cells. Trends Biochem Sci,19:421-425
    Clouse SD, Langford M, McMorris TC.1996. A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol,111:671-678
    Clouse SD, Sasse JM.1998. Brassinosteroids:essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol,49:427-451
    Davies WJ, Zhang JH.1991. Root signals and the regulation of growth and development of plants in drying soil. Annu Rev Plant Phys,42:55-76
    Domagalska MA, Sarnowska E, Nagy F, Davis SJ.2010. Genetic analyses of interactions among gibberellin, abscisic acid, and brassinosteroids in the control of flowering time in Arabidopsis thaliana. PLoS ONE,5
    El-Moneim AMA, Nakkoul H, Masri S, Ryan J.2010. Implications of zinc fertilization for ameliorating toxicity (neurotoxin) in grass pea(Lathyrus sativus). J Agric Sci Technol,12: 69-78
    Enneking D.2011. The nutritive value of grasspea(Lathyrus sativus) and allied species, their toxicity to animals and the role of malnutrition in neurolathyrism. Food Chem Toxicol,49: 694-709
    Farooq M, Wahid A, Basra SMA, Islam ud D.2009. Improving water relations and gas exchange with brassinosteroids in rice under drought stress. J Agron Crop Sci,195:262-269
    Gampala SS, Kim TW, He JX, Tang W, Deng Z, Bai MY, Guan S, Lalonde S, Sun Y, Gendron JM, Chen H, Shibagaki N, Ferl RJ, Ehrhardt D, Chong K, Burlingame AL, Wang ZY.2007. An essential role for 14-3-3 proteins in brassinosteroid signal transduction in Arabidopsis. Dev Cell,13:177-189
    Gechev TS, Hille J.2005. Hydrogen peroxide as a signal controlling plant programmed cell death. J Cell Biol,168:17-20
    Gong DS, Xiong YC, Ma BL, Wang TM, Ge JP, Qin XL, Li PF, Kong HY, Li ZZ, Li FM.2010. Early activation of plasma membrane H+-ATPase and its relation to drought adaptation in two contrasting oat(Avena sativa L.) genotypes. Environ Exp Bot,69:1-8
    Gregory LE, Mandava NB.1982. The activity and interaction of brassinolide and gibberellic acid in mung bean epicotyls. Physiol Plantarum,54:239-243
    Hanbury CD, White CL, Mullan BP, Siddique KHM.2000. A review of the potential of Lathyrus sativus L. and L. cicera L. grain for use as animal feed. Anim Feed Sci Tech,87:1-27
    Hardtke CS.2007. Transcriptional auxin brassinosteroid crosstalk:Who's talking? BioEssays,29: 1115-1123
    He JX, Gendron JM, Sun Y, Gampala SSL, Gendron N, Sun CQ, Wang ZY.2005. BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science,307:1634-1638
    He Z, Wang ZY, Li J, Zhu Q, Lamb C, Ronald P, Chory J.2000. Perception of brassinosteroids by the extracellular domain of the receptor kinase BRI1. Science,288:2360-2363
    Huang D, Wu W, Abrams SR, Cutler AJ.2008. The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. J Exp Bot,59: 2991-3007
    Ikegami F, Ongena G, Sakai R, Itagaki S, Kobori M, Ishikawa T, Kuo YH, Lambein F, Murakoshi I.1993. Biosynthesis of β-(isoxazolin-5-on-2-yl)-1-alanine by cysteine synthase in Lathyrus sativus. Phytochemistry 33:93-98
    Ikegami F, Yamamoto A, Kuo YH, Lambein F.1999. Enzymatic formation of 2,3-diaminopropionic acid, the direct precursor of the neurotoxin beta-ODAP, in Lathyrus sativus. Biol Pharm Bull,22:770-771
    Jackson MT, Yunus AG.1984. Variation in the grass pea (Lathyrus sativus L.) and wild species. Euphytica,33:549-559
    Jager CE, Symons GM, Ross JJ, Smith JJ, Reid JB.2005. The brassinosteroid growth response in pea is not mediated by changes in gibberellin content. Planta,221:141-148
    Janeczko A, Biesaga-Koscielniak J, Oklest'kova J, Filek M, Dziurka M, Szarek-Lukaszewska G, Koscielniak J.2010. Role of 24-epibrassinolide in wheat production:physiological effects and uptake. J Agron Crop Sci,196:311-321
    Jiao CJ, Xu QL, Wang CY, Li FM, Li ZX, Wang YF.2006. Accumulation pattern of toxin β-ODAP during lifespan and effect of nutrient elements on β-ODAP content in Lathyrus sativus seedlings. The Journal of Agricultural Science,144:369-375
    Jiao CJ, Jiang JL, Ke LM, Cheng W, Li FM, Li ZX, Wang CY.2011a. Factors affecting β-ODAP content in Lathyrus sativus and their possible physiological mechanisms. Food Chem Toxicol, 49:543-549
    Jiao CJ, Jiang JL, Li C, Ke LM, Cheng W, Li FM, Li ZX, Wang CY.2011b. β-ODAP accumulation could be related to low levels of superoxide anion and hydrogen peroxide in Lathyrus sativus L. Food Chem Toxicol,49:556-562
    Jongdee B, Fukai S, Cooper M.2002. Leaf water potential and osmotic adjustment as physiological traits to improve drought tolerance in rice. Field Crop Res,76:153-163
    Kauschmann A, Jessop A, Koncz C, Szekeres M, Willmitzer L, Altmann T.1996. Genetic evidence for an essential role of brassinosteroids in plant development. Plant J,9:701-713
    Khripach V, Zhabinskii V, Groot AD.2000. Twenty years of brassinosteroids steroidal plant hormones warrant better crops for the XXI century. Ann Bot-London,86:441-447
    Kim TW, Guan S, Sun Y, Deng Z, Tang W, Shang JX, Burlingame AL, Wang ZY.2009. Brassinosteroid signal transduction from cell surface receptor kinases to nuclear transcription factors. Nat Cell Biol,11:1254-1260
    Kim TW, Michniewicz M, Bergmann DC, Wang ZY.2012. Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway. Nature,482:419-422
    Koh S, Lee SC, Kim MK, Koh JH, Lee S, An G, Choe S, Kim SR.2007. T-DNA tagged knockout mutation of rice OsGSKl, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses. Plant Mol Biol,65:453-466
    Krishna P.2003. Brassinosteroid mediated stress responses. J Plant Growth Regul,22:289-297
    Kucera B, Cohn MA, Leubner-Metzger G.2005. Plant hormone interactions during seed dormancy release and germination. Seed Sci Res,15:281-307
    Kumar S, Bejiga G, Ahmed S, Nakkoul H, Sarker A.2011. Genetic improvement of grass pea for low neurotoxin (β-ODAP) content. Food Chem Toxicol,49:589-600
    Lambein F, Godelieve O, Yu-Haey K.1990. β-isoxazolinone-alanine is involved in the biosynthesis of the neurotoxin β-N-oxalyl-1-α, β-diaminopropionic acid. Phytochemistry,29: 3793-3796
    Lambein F, Khan JK, Becu C, Bruyn AD.1992.2 Characterization of γ-glutamyl-β-(isoxazolinonyl)-alanine from lathyrus sativus and its decarboxylation product from lathyrus odoratus. Phytochemistry,31:887-892
    Lambein F, Kuo-Genth YH.1997. Lathyms sativus, a neolithic crop with modem future? An overview of the present situation. Presented at the international conference 'Lathyrus sativus cultivation and nutritional value in animals and human'. Poland, Lublin-Radom,9-10, Materials of the conference 6-12.
    Lambein F, Kuo YH, Kusama-Eguchi K, Ikegami F.2007.3-N-oxalyl-L-2,3-diaminopropanoic acid, a multifunctional plant metabolite of toxic reputation. Arkivoc,:45-52
    Li JM, Nam KH.2002. Regulation of brassinosteroid signaling by a GSK3/SHAGGY Like kinase. Science,295:1299-1301
    Li JM, Nam KH, Vafeados D, Chory J.2001. BIN2, a new brassinosteroid insensitive locus in Arabidopsis. Plant Physiol,127:14-22
    Li KR, Feng CH.2011. Effects of brassinolide on drought resistance of Xanthoceras sorbifolia seedlings under water stress. Acta Physiol Plant,33:1293-1300
    Li KR, Wang HH, Han G, Wang QJ, Fan J.2007. Effects of brassinolide on the survival, growth and drought resistance of Robinia pseudoacacia seedlings under water stress. New Forest,35: 255-266
    Li L, van Staden J.1998. Effects of plant growth regulators on the antioxidant system in callus of two maize cultivars subjected to water stress. Plant Growth Regul,24:55-66
    Liang L, Xu J, Xu ZH, Xue HW.2005. Brassinosteroids stimulate plant tropisms through modulation of polar auxin transport in Brassica and Arabidopsis. Plant Cell,17:2738-2753
    Lowa RK-C, Rottera RG, Marquardta RR, Campbell GC.1990. Use of Lathyrus Sativus L. (var. seminis albi) as a foodstuff for poultry. Bri Poultry Sci,31:615-625
    Maharjan PM, Schulz B, Choe S.2011. BIN2/DWF12 antagonistically transduces brassinosteroid and auxin signals in the roots of Arabidopsis. J Plant Biol,54:126-134
    Malathi K, Padmanaban G, Rao SLN, Sarma PS.1967. Studies on the biosynthesis of β-n-oxalyl-1-α,β-diaminopropionic acid, the Lathyrus sativus neurotoxin. BBA-Gen Subjects, 141:71-78
    Malathi K, Padmanaban G, Sarma PS.1970. Biosynthesis of β-N-oxalyl-1-α, β-diaminopropionic acid, the lathyrus sativus neurotoxin. Phytochemistry,9:1603-1610
    Marquardta RR, Campbell CG.1991. The nutritional value of low lathyrogenic Lathyrus(Lathyrus sativus) for growing chicks. Bri Poultry Sci,32:1055-1067
    Mora-Garcia S, Vert G, Yin Y, Cano-Delgado A, Cheong H, Chory J.2004. Nuclear protein phosphatases with Kelch-repeat domains modulate the response to brassinosteroids in Arabidopsis. Genes Dev,18:448-460
    Morillon R, Catterou M, Sangwan RS, Sangwan BS, Lassalles JP.2001. Brassinolide may control aquaporin activities in Arabidopsis thaliana. Planta,212:199-204
    Muntlin A, Carlsson M, Safwenberg U, Gunningberg L.2011. Outcomes of a nurse-initiated intravenous analgesic protocol for abdominal pain in an emergency department:A quasi-experimental study. Int J Nurs Stud,48:13-23
    Murti VVS, Seshadri TR, Venkitasubramanian TA.1964. Neurotoxic compounds of the seeds of lathyrus sativus. Phytochemistry,3:73-78
    Nakamura A, Higuchi K, Goda H, Fujiwara MT, Sawa S, Koshiba T, Shimada Y, Yoshida S.2003. Brassinolide induces IAA5, IAA19, and DR5, a synthetic auxin response element in Arabidopsis, implying a cross talk point of brassinosteroid and auxin signaling. Plant Physiol, 133:1843-1853
    Nakano Y, Asada K.1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol,22:867-880
    Nam KH, Li J.2002. BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell, 110:203-212
    Nemhauser JL, Hong FX, Chory J.2006. Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell,126:467-475
    Nomura T, Bishop G.2006. Cytochrome P450s in plant steroid hormone synthesis and metabolism. Phytochemistry Reviews 5:421-432
    Nomura T, Kushiro T, Yokota T, Kamiya Y, Bishop GJ, Yamaguchi S.2005. The last reaction producing brassinolide is catalyzed by cytochrome P450s, CYP85A3 in tomato and CYP85A2 in Arabidopsis. J Biol Chem,280:17873-17879
    Padmajaprasad V, Kaladhar M, Bhat RV.1997. Thermal isomerisation of beta-N-oxalyl-L-alpha, beta-diaminopropionic acid, the neurotoxin in Lathyrus sativus, during cooking. Food Chem, 59:77-80
    Patto MCV, Fernandez-Aparicio M, Moral A, Rubiales D.2006. Characterization of resistance to powdery mildew (Erysiphe pisi) in a germplasm collection of Lathyrus sativus. Plant Breeding,125:308-310
    Ramakrishna S, Adiga PR.1975. Amine levels in Lathyrus sativus seedlings during development. Phytochemistry,14:63-68
    Rao SLN, Adiga PR, Sarma PS.1964. The isolation and characterization of β-N-Oxalyl-L-α, β-Diaminopropionic acid:A neurotoxin from the seeds of Lathyrus sativus. Biochemistry,3: 432-436
    Ross JJ, Weston DE, Davidson SE, Reid JB.2011. Plant hormone interactions:how complex are they? Plant Physiol,141:299-309
    Sairam RK.1994. Effects of homobrassinolide application on plant metabolism and grain yield. Plant Growth Regul,14:173-181
    Schachtman DP, Goodger JQD.2008. Chemical root to shoot signaling under drought. Trends Plant Sci,13:281-287
    Shahbaz M, Ashraf M, Athar HR.2008. Does exogenous application of 24-epibrassinolide ameliorate salt induced growth inhibition in wheat (Triticum aestivum L.)? Plant Growth Regul,55:51-64
    She J, Han Z, Kim T W, Wang J, Cheng W, Chang J, Shi S, Wang J, Yang M, Wang Z Y, Chai J. 2011. Structural insight into brassinosteroid perception by BRI1. Nature,474:472-496
    Smirnoff N.1993. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol,125:27-58
    Spencer PS, Roy DN, Ludolph A, Hugon J, Dwivedi MP, Schaumburg HH.1986. Lathyrism: evidence for role of the neuroexcitatory aminoacid BOAA. Lancet,2:1066-1067
    Szekeres M.2003. Brassinosteroid and systemin:two hormones perceived by the same receptor. Trends Plant Sci,8:102-104
    Tang W, Kim TW, Oses-Prieto JA, Sun Y, Deng Z, Zhu S, Wang R, Burlingame AL, Wang ZY. 2008. BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science,321:557-560
    Tang WQ, Yuan M, Wang RJ, Yang YH, Wang CM, Oses-Prieto JA, Kim TW, Zhou HW, Deng ZP, Gampala SS, Gendron JM, Jonassen EM, Lillo C, DeLong A, Burlingame AL, Sun Y, Wang ZY.2011. PP2A activates brassinosteroid responsive gene expression and plant growth by dephosphorylating BZR1. Nat Cell Biol,13:124-131
    Thomas DS, Turner DW.2001. Banana (Musasp.) leaf gas exchange and chlorophyll fluorescence in response to soil drought, shading and lamina folding. Sci Hortic Amsterdam,90:93-108
    Thompson MJ, Meudt WJ, Mandava NB, Dutky SR, Lusby WR, Spaulding DW.1982. Synthesis of brassinosteroids and relationship of structure to plant growth promoting effects. Steroids, 39:89-105
    Upreti KK, Murti GSR.2004. Effects of brassmosteroids on growth, nodulation, phytohormone content and nitrogenase activity in french bean under water stress. Biol Plantarum,48: 407-411
    Vardhini BV, Rao SSR.2003. Amelioration of osmotic stress by brassinosteroids on seed germination and seedling growth of three varieties of sorghum.. Plant Growth Regul,41: 25-31
    Vert G, Chory J.2006. Downstream nuclear events in brassinosteroid signalling. Nature,441: 96-100
    Vert G, Walcher CL, Chory J, Nemhauser JL.2008. Integration of auxin and brassinosteroid pathways by auxin response factor 2. Proc Natl Acad Sci USA,105:9829-9834
    Wang F, Chen X, Chen Q, Qin XC, Li ZX.2000. HPLC determination of neurotoxin β-N-oxalyl-L-α,β-diaminopropionic acid and its a-Isomer in Lathyrus sativus by precolumn derivatization with 1-fluoro-2,4-dinitrobenzene. Chinese Chemical letters,41:4
    Wang HJ, Yang CJ, Zhang C, Wang NY, Lu DH, Wang J, Zhang SS, Wang ZX, Ma H, Wang XL. 2011. Dual role of BKI1 and 14-3-3 s in brassinosteroid signaling to link receptor with transcription factors. Dev Cell,21:825-834
    Wang X, Chory J.2006. Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane. Science,313:1118-1122
    Wang ZY, Li FM, Xiong YC, Xu BC.2008. Soil water threshold range of chemical signals and drought tolerance was mediated by ROS homeostasis in winter wheat during progressive soil drying. J Plant Growth Regul,27:309-319
    Winter K, Schramm MJ.1986. Analysis of stomatal and nonstomatal components in the environmental control of CO2 exchange in leaves of Welwitschia mirabilis. plant physiol,82: 173-178
    Xing GS, Cui KR, Ji L, Wang YF, Li ZX.2001. Water stress and accumulation of beta-N-oxalyl-L-alpha,beta-diaminopropionic acid in grass pea (Lathyrus sativus). J Agric Food Chem,49:216-220
    Xing GS, Zhou GK, Li ZX, Cui KR.2000. Accumulation of ABA and ODAP in Lathyrus sativus under water stress. Chinese Journal of Applied Ecology,11:693-698
    Xiong YC, Xing GM, Zheng Z, Wang YF, Li ZX, Li FM.2005. Europium (Eu3+) improve drought tolerance but decrease the ODAP level in grass pea(Lathyrus Sativus L.) seedlings. J Rare Earth,23:502-507
    Xiong YC, Li FM, Zhang T.2006a. Performance of wheat crops with different chromosome ploidy:root-sourced signals drought tolerance and yield performance. Planta,224:710-718
    Xiong YC, Xing GM, Li FM, Wang SM, Fan XW, Li ZX, Wang YF.2006b. Abscisic acid promotes accumulation of toxin ODAP in relation to free spermine level in grass pea seedlings (Lathyrus sativus L.). Plant Physiol Bioch,44:161-169
    Xiong YC, Xing GM, Gong CM, Li FM, Wang SM, Li ZX, Wang YF.2006c. Dual role of abscisic acid on antioxidative defense in grass pea seedling (Lathyrus sativus L.). Pakistan J Bot,38: 999-1014
    Yan ZY, Jiao CJ, Li FM, Liang YM, Li ZX.2005. Analysis of toxin (3-N-Oxalyl-a, (3-diaminopropionic acid (P-ODAP), its isomer α-ODAP and other free amino acids in Lathyrus sativus. Chinese Chemical letters,16:4
    Yan ZY, Spencer PS, Li ZX, Liang YM, Wang YF, Wang CY, Li FM.2006. Lathyrus sativus (grass pea) and its neurotoxin ODAP. Phytochemistry,67:107-121
    Yin Y, Vafeados D, Tao Y, Yoshida S, Asami T, Chory J.2005. A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis. Cell 120:249-259
    Yin Y, Wang ZY, Mora-Garcia S, Li J, Yoshida S, Asami T, Chory J.2002. BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell,109:181-191
    Yopp JH, Mandava NB, Sasse JM.1981. Brassinolide, a growth-promoting steroidal lactone. Physiol Plantarum,53:445-452
    Yoshimitsu Y, Tanaka K, Fukuda W, Asami T, Yoshida S, Hayashi K, Kamiya Y, Jikumaru Y, Shigeta T, Nakamura Y, Matsuo T, Okamoto S.2011. Transcription of DWARF4 plays a crucial role in auxin regulated root elongation in addition to brassinosteroid homeostasis in Arabidopsis thaliana. Plos One,6:e23851
    Yuan GF, Jia CG, Li Z, Sun B, Zhang LP, Liu N, Wang QM.2010. Effect of brassinosteroids on drought resistance and abscisic acid concentration in tomato under water stress. Sci Hortic-Amsterdam,126:103-108
    Zhang A, Zhang J, Ye N, Zhang H, Tan M, Jiang M.2011. Nitric oxide mediates brassinosteroid induced ABA biosynthesis involved in oxidative stress tolerance in maize leaves. Plant Cell Physiol,52:181-192
    Zhang M, Zhai Z, Tian X, Duan L, Li Z.2008. Brassinolide alleviated the adverse effect of water deficits on photosynthesis and the antioxidant of soybean (Glycine max L.). Plant Growth Regul,56:257-264
    Zhang SS, Cai Z, Wang XL.2009. The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling. Proc Natl Acad Sci USA,106:4543-4548
    Zhou GK, Yan ZY, Cui KR, Li ZX, Wang YF. 2001. Hydroxyl radical scavenging activity of beta-N-oxalyl-L-alpha, beta-diaminopropionic acid. Phytochemistry,58:759-762

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700