位错非均匀形核及与晶界作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微纳米尺度下,晶体材料表现出优良的力学性能(如高强度和高韧性)越来越受到关注。该尺度下晶体材料的缺陷主要包括位错与晶界,完美晶体内的位错的形核决定了材料的屈服性质,位错与晶界的相互作用影响着材料的塑性强化。本文以位错形核及与晶界的相互作用为主要研究内容开展了如下工作。
     基于原子势的连续化方法,研究了晶体片的位错非均匀形核问题。采用Cauchy-Born准则描述其变形,推导了本构关系,得到了基于稳定性的位错非均匀形核准则。研究了六边形晶格结构的晶体片拉伸作用下的位错非均匀形核问题。通过应力-应变曲线和应变-准则曲线,预测了二维晶体片的位错形核应力和形核位置,结果表明晶体片的手性对位错形核应力具有周期性影响。
     采用分子动力学方法研究了剪切作用下Cu(100)扭转晶界的强化机制问题,得到了剪切强度的临界角度,当扭转角度大于临界角度时,剪切强度随着扭转角度的增加而减小,屈服形式表现为晶界的滑动;当扭转角度小于临界角度时,剪切强度随着扭转角度的增加而增加,屈服形式表现为晶界处的位错形核与扩展。进一步研究了Cu(111)扭转晶界的强化机制,得到了扭转晶界存在拉伸和压缩强度的不对称性,拉伸屈服形式为偏位错的形核与扩展,偏位错相遇会形成新的偏位错形核;压缩屈服表现为位错环的发射,位错环相遇形成位错的交截;剪切屈服表现为位错切过晶界导致扭转晶界的增殖。
     阐述了孪晶界的层间距与屈服强度之间的关系,模拟结果表明对于剪切强度和压缩强度存在临界间距d大约为1nm,当d大于1nm时,压缩和剪切强度随着d的增加而减小,当d小于1nm时,压缩和剪切强度随着d的增加而增加。拉伸和压缩作用下,晶界的屈服表现为晶界与自由表面位错形核与位错扩展,剪切作用下,屈服表现为晶界沿垂直剪切方向的运动。
     最后将基于缺陷能的梯度塑性理论进行了有限元实现,针对四边形晶粒和六边形晶粒,系统研究了单向拉伸载荷作用下多晶薄膜的塑性硬化问题。在模拟中,晶界被处理为不可穿透晶界,揭示了滑移系对薄膜硬化特性影响的机制,给出了位错从自由表面逃逸导致薄膜软化,位错在晶界处的塞积作用导致了薄膜硬化,同时得到了晶界密度与薄膜屈服应力、硬化率的近似满足线性关系。
High strength and hard toughness of crystalline solid are intensively investigated atsub-micron and nano scales. The yield strength of perfect crystal depends on thedislocation nucleation. The interactions between dislocations and grain boundary affectthe plastic properties of crystal material. The research work is mainly focused on thedislocation nucleation and the interactions between dislocations and grain boundary.
     Based on the atom potential method, the stability theory is developed, and thenonhomogeneous dislocation nucleation of crystal sheet is studied. The Cauchy-Bornrule is introduced to describe the deformation of2D hexagonal crystal sheet. Thenonhomegeneous dislocation nucleation criterion is deduced. The onset of dislocationnucleation and the criterion distribution map are illustrated. Furthermore, the loadingamplitude corresponding to the dislocation nucleation can be determined by comparisonbetween the stress-strain curve and criterion-strain curve easily. The results show thatthe dislocation nucleation stress is related to the crystal sheet orientation angles.
     By using molecular dynamics method, yield strength of copper with (100) twistgrain boundary effect are investigated under shear loading. The critical twist angle isobtained, which mediates the hardening mechanism of twist grain boundary. When twistangle is lower than critical value, the yield strength increases with the increase of thetwist angle, and the yield form of twist grain boundary is the dislocations nucleation attwist grain boundary and dislocations piling-up in the grain interior. When twist angle isgreater than critical value, the yield strength decreases with increasing the twist angle,and the yield form of twist grain boundary is the grain boundary sliding instead ofdislocation nucleation. Furthermore, the hardening mechanism of copper with (111)twist grain boundary is illustrated also. The yield form of twist grain boundary fortensile stress is the partial dislocation nucleation and propagation. The yield form oftwist grain boundary for compression is emission and propagation of dislocation loops.When two dislocation loops meet, the intersection of dislocation loops occur. The yieldform of twist grain boundary for shear load is proliferation of the twist grain boundary.
     The relationship between the twin boundary spacing and yield strength is obtained.The critical twin boundary spacing is founded for shear strength and compression strength. When the twin boundary spacing is lower than the critical value about1nm,the compression strength and shear strength increase with increase of the twin boundaryspacing. When the twin boundary spacing is greater than the critical value1nm, thecompression strength and shear strength decreases with increasing the twin boundaryspacing. The tensile and compression yielding forms are the dislocation nucleation andpropagation from the section of free surface and twin boundary. The shear yielding formis the twin boundary motion perpendicular to the direction of shear load.
     Based on the gradient plastic theory of defect energy, the implementation finiteelement is illustrated. Considering rectangular and hexagonal form grains, themechanical properties of multi-grain thin film have been studied. There are someconclusions obtained. It is illustrated that slip system affects the hardening of thin film.The fact that dislocations escape from free surface more easily, makes the thin filmsoftening. The dislocations, which pile up at grain boundary, lead to the thin filmhardening. With increasing the grain boundary density, the hardening influence of thinfilm becomes stronger. The simulation results reasonably show that the grain boundarydensity is linear to the yield strength and hardening rate, respectively.
引文
[1]杨卫,马新玲.纳米力学进展[J].力学进展.2002,32(002):161-174.
    [2] http://www.nano.gov
    [3]黄克智,吴坚,黄永刚.纳米力学的兴起[J].机械强度.2005,27(4):403-407.
    [4]刘娟.纳米力学公司将为美国海军研发纳米润滑剂技术[J].舰船科学技术2010,32(1):27.
    [5]柳占立.微尺度晶体塑性的离散位错和非局部理论研究[博士学位论文].北京:2009.
    [6]杨卫,王宏涛,马新玲,洪伟.纳米力学进展(续)[J].力学进展.2003,33(2):175-186.
    [7] W. K. Liu, E. G. Karpov, H. S. Park. Nano mechanics and materials[M]. Wiley Online Library,2006.
    [8] J. D. Nowak, A. R. Beaber, O. Ugurlu, S. L. Girshick et al. Small size strength dependence ondislocation nucleation[J]. Scripta Materialia.62(11):819-822.
    [9] W. W. Gerberich, J. C. Nelson, E. T. Lilleodden, P. Anderson et al. Indentation induceddislocation nucleation: the initial yield point[J]. Acta Materialia.1996,44(9):3585-3598.
    [10] T. Zhu, J. Li. Ultra-strength materials[J]. Progress in Materials Science.2010,55(7):710-757.
    [11] J. P. Hirth, J. Lothe. Theory of dislocation(Second edition.)[M]. New York: John Wiley&Sons,1982.
    [12] R. Peierls. The size of a dislocation[J]. Proceedings of the Physical Society.1940,52:34.
    [13] J. R. Rice. Dislocation nucleation from a crack tip: an analysis based on the peierls concept[J].Journal of Mechanical Physics and Solids.1992,40(2):239-271.
    [14] J. R. Rice, G. E. Beltz. The activation energy for dislocation nucleation at a crack[J]. Journal ofMechanical Physics and Solids.1994,42:333-360.
    [15] J. Knap, K. Sieradzki. Crack tip dislocation nucleationin FCC solids.[J]. Physical ReviewLetters.1999,82(8):1700-1703.
    [16] T. Zhu, J. Li, S. Yip. Atomistic study of dislocation loop emission from a crack tip[J]. PhysicalReview Letters.2004,93(2):25503.
    [17] K. J. van Vliet, J. Li, T. Zhu, S. Yip et al. Quantifying the early stages of plasticity throughnanoscale experiments and simulations[J]. Physical Review B.2003,67:104105.
    [18] J. Li, k. J. V. Vliet, T. Zhu, S. Yip et al. Atomistic mechanisms governing elastic limit andincipient plasticity in crystals[J]. Nature.2002,418:307-310.
    [19] T. Zhu, J. Li, K. J. Van Vliet, S. Ogata et al. Predictive modeling of nanoindentation-inducedhomogeneous dislocation nucleation in copper[J]. Journal of the Mechanics and Physics of Solids.2004,52(3):691-724
    [20] T. J. Delph, J. A. Zimmerman, J. M. Rickman, J. M. Kunz. A local instability criterion forsolid-state defects[J]. Journal of the Mechanics and Physics of Solids.2009,57(1):67-75.
    [21] R. E. Miller, A. Acharya. A stress-gradient based criterion for dislocation nucleation incrystals[J]. Journal of the Mechanics and Physics of Solids.2004,52(7):1507-1525.
    [22] A. Acharya. A model of crystal plasticity based on the theory of continuously distributeddislocations[J]. Journal of the Mechanics and Physics of Solids.2001,49(4):761-784.
    [23] A. Acharya. Constitutive analysis of finite deformation field dislocation mechanics[J]. Journalof the Mechanics and Physics of Solids.2004,52(2):301-316.
    [24] R. E. Miller, D. Rodney. On the nonlocal nature of dislocation nucleation duringnanoindentation.[J]. Journal of Mechanical Physics and Solids.2008,56:1203-1223.
    [25] D. E. Spearot, M. A. Tschopp, D. L. McDowell. Orientation and rate dependence ofdislocation nucleation stress computed using molecular dynamics[J]. Scripta Materialia.2009,60(8):675-678.
    [26] D. E. Spearot, L. Capolungo, J. Qu, M. Cherkaoui. On the elastic tensile deformation of <100> bicrystal interfaces in copper[J]. Computational Materials Science.2008,42(1):57-67.
    [27] M. A. Tschopp, D. L. McDowell. Influence of single crystal orientation on homogeneousdislocation nucleation under uniaxial loading[J]. Journal of the Mechanics and Physics of Solids.2008,56(5):1806-1830
    [28] M. A. Tschopp, G. J. Tucker, D. L. McDowell. Atomistic simulations of tension-compressionasymmetry in dislocation nucleation for copper grain boundaries[J]. Computational MaterialsScience.2008,44(2):351-362.
    [29] M. A. Tschopp, D. L. McDowell. Dislocation nucleation in Σ3asymmetric tilt grainboundaries[J]. International Journal of Plasticity.2008,24(2):191-217.
    [30] C. L. Kelchner, S. Phimpton, J. Hamilton. Dislocation nucleation and defects structure duringsurface indentation[J]. Physical Review B.1998,58:11085-11088.
    [31] Y. Liu, E. Van der Giessen, A. Needleman. An analysis of dislocation nucleation near a freesurface[J]. International Journal of Solids and Structures.2007,44(6):1719-1732.
    [32] J. Diao, K. Gall, M. L. Dunn. Yield Strength Asymmetry in Metal Nanowires[J]. Nano Letters.2004,4(10):1863-1867.
    [33] J. Diao, K. Gall, M. L. Dunn. Surface-stress-induced phase transformation in metalnanowires[J]. Nature Materials.2003,2(10):656-660.
    [34] Z. W. Shan, R. K. Mishra, S. A. Syedasif, O. L. Warren et al. Mechanical annealing andsource-limited deformation in submicrometre-diameter Ni crystals[J]. Nature Materials.2008,7:115-119.
    [35] Z. Shan, E. A. Stach, J. M. K. Wiezorek, J. A. Knapp et al. Grain Boundary–MediatedPlasticity in Nanocrystalline Nickel[J]. Science.2004,305:654-656.
    [36] E. Giessen, A. Needleman. Discrete dislocation plasticity: a simple planar model[J]. Modellingand Simulation in Materials Science and Engineering.1995,3:689.
    [37] L. Nicola, E. Van der Giessen, A. Needleman. Size effects in polycrystalline thin filmsanalyzed by discrete dislocation plasticity[J]. Thin Solid Films.2005,479(1-2):329-338.
    [38] L. Nicola, E. V. d. Giessen. Discrete dislocation analysis of size effects in thin films[J]. Journalof Applied Physics.2003,93(10):5920-5928.
    [39] Z. L. Liu, X. M. Liu, Z. Zhuang, X. C. You. Atypical three-stage-hardening mechanicalbehavior of Cu Single-Crystal micro-pillar[J]. Scripta Materialia.2009,60:594-597.
    [40] Z. L. Liu, X. M. Liu, Z. Zhuang, X. C. You. A multi-scale computational model of crystalplasticity at submicron-to-nanometer scales[J]. International Journal of Plasticity.2009,25:1436-1455.
    [41] M. T. McDowell, A. M. Leach, K. Gall. On The Elastic Modulus of Metallic Nanowires[J].Nano Letters.2008,8(11):3613-3618.
    [42] K. Gall, J. Diao, M. L. Dunn. The Strength of Gold Nanowires[J]. Nano Letters.2004,4(12):2431-2436.
    [43] M. D. Uchic, D. M. Dimiduk, J. F. Florando, W. D. Nix. Sample Dimensions InfluenceStrength and Crystal Plasticity[J]. American Association for the Advancement of Science.2004,305:986.
    [44] J. Y. Kim, J. R. Greer. Tensile and compressive behavior of gold and molybdenum singlecrystals at the nano-scale[J]. Acta Materialia.2009,57(17):5245-5253.
    [45] J. R. Greer, W. C. Oliver, W. D. Nix. Size dependence of mechanical properties of gold at themicron scale in the absence of strain gradients[J]. Acta Materialia.2005,53(6):1821-1830.
    [46] W. A. Soer, K. E. Aifantis, J. T. M. De Hosson. Incipient plasticity during nanoindentation atgrain boundaries in body-centered cubic metals[J]. Acta Materialia.2005,53(17):4665-4676.
    [47] W. A. Soer, J. T. M. De Hosson. Detection of grain-boundary resistance to slip transfer usingnanoindentation[J]. Materials Letters.2005,59(24-25):3192-3195.
    [48] K. E. Aifantis. Interfaces in crystalline materials[J]. Procedia Engineering.2009:167-170.
    [49] K. E. Aifantis, A. A. Konstantinidis. Hall-Petch revisited at the nanoscale[J]. Materials Scienceand Engineering: B.2009,163(3):139-144.
    [50] K. E. Aifantis, A. H. W. Ngan. Modeling dislocation--grain boundary interactions throughgradient plascitity and nanoindentation.[J]. Material Science Engineering A.2007,459:251-261.
    [51] K. E. Aifantis, J. R. Willis. The role of interfaces in enhancing the yield strength of compositesand polycrystals[J]. Journal of the Mechanics and Physics of Solids.2005,53(5):1047-1070.
    [52] K. E. Aifantis, A. A. Konstantinidis. Yielding and tensile behavior of nanocrystalline copper[J].Materials Science and Engineering: A.2009,503(1-2):198-201.
    [53] M. E. Gurtin. A gradient theory of single-crystal viscoplasticity that accounts for geometricallynecessary dislocations[J]. Journal of the Mechanics and Physics of Solids.2002,50(1):5-32.
    [54] M. E. Gurtin, A. Needleman. Boundary conditions in small-deformation, single-crystalplasticity that account for the Burgers vector[J]. Journal of the Mechanics and Physics of Solids.2005,53(1):1-31.
    [55] M. E. Gurtin. A theory of grain boundaries that accounts automatically for grain misorientationand grain-boundary orientation[J]. Journal of the Mechanics and Physics of Solids.2008,56(2):640-662.
    [56] D. Okumura, Y. Higashi, K. Sumida, N. Ohno. A homogenization theory of strain gradientsingle crystal plasticity and its finite element discretization[J]. International Journal of Plasticity.2007,23(7):1148-1166.
    [57] O. Nobutada, D. Okumura, T. Shibata. Grain-Size Dependent Yield Behavior Under Loading,Unloading and Reverse Loading[J]. Issues.2008,31(32):5937-5942.
    [58] A. Ma, F. Roters, D. Raabe. A dislocation density based constitutive model for crystalplasticity FEM including geometrically necessary dislocations[J]. Acta Materialia.2006,54(8):2169-2179.
    [59] A. Ma, F. Roters, D. Raabe. On the consideration of interactions between dislocations andgrain boundaries in crystal plasticity finite element modeling-Theory, experiments, andsimulations[J]. Acta Materialia.2006,54(8):2181-2194.
    [60] E. Fried, M. E. Gurtin. Gradient nanoscale polycrystalline elasticity: Intergrain interactionsand triple-junction conditions[J]. Journal of the Mechanics and Physics of Solids.2009,57(10):1749-1779.
    [61] M. D. Sangid, T. Ezaz, H. Sehitoglu, I. M. Robertson. Energy of slip transmission andnucleation at grain boundaries[J]. Acta Materialia.2011,59(1):283-296.
    [62] E. A. Holm, D. L. Olmsted, S. M. Foiles. Comparing grain boundary energies in face-centeredcubic metals: Al, Au, Cu and Ni[J]. Scripta Materialia.2010,63(9):905-908.
    [63] J. Schiotz. Mechanical deformation of nanocrystalline materials[J]. Philosophical MagazineLetters.1996,74(5):339-344.
    [64] K. Kashihara, F. Inoko. Effect of piled-up dislocations on strain induced boundary migration(SIBM) in deformed aluminum bicrystals with originally Σ3twin boundary[J]. Acta Materialia.2001,49(15):3051-3061.
    [65] K. Saitoh, H. Kitagawa. Molecular dynamics study of surface effects on atomic migration nearaluminum grain boundary[J]. Computational Materials Science.1999,14(1-4):13-18.
    [66] M. D. Sangid, H. J. Maier, H. Sehitoglu. The role of grain boundaries on fatigue crackinitiation-An energy approach[J]. International Journal of Plasticity. In Press.
    [67] V. A. Ivanov, Y. Mishin. Dynamics of grain boundary motion coupled to shear deformation: Ananalytical model and its verification by molecular dynamics[J]. Physical Review B.2008,78(6):064106.
    [68] T. Gorkaya, T. Burlet, D. A. Molodov, G. Gottstein. Experimental method for true in situmeasurements of shear-coupled grain boundary migration[J]. Scripta Materialia.2010,63(6):633-636.
    [69] J. W. Cahn, J. E. Taylor. A unified approach to motion of grain boundaries, relative tangentialtranslation along grain boundaries, and grain rotation[J]. Acta Materialia.2004,52(16):4887-4898.
    [70] J. W. Cahn, Y. Mishin, A. Suzuki. Coupling grain boundary motion to shear deformation[J].Acta Materialia.2006,54(19):4953-4975.
    [71] A. D. Sheikh-Ali. Coupling of grain boundary sliding and migration within the range ofboundary specialness[J]. Acta Materialia.58(19):6249-6255.
    [72] E. O. Hall. The deformation and ageing of mild steel: III discussion of results[J]. Proceedingsof the Physical Society Section B.1951,64:747.
    [73] N. J. Petch. The cleavage strength of crystals[J]. J Iron Steel Inst.1953,174:25.
    [74] A. S. Khan, Y. S. Suh, X. Chen, L. Takacs et al. Nanocrystalline aluminum and iron:Mechanical behavior at quasi-static and high strain rates, and constitutive modeling[J].International Journal of Plasticity.2006,22(2):195-209.
    [75] P. J. M. Janssen, T. H. Keijser, M. G. D. Geers. An experimental of grain size effects in theuniaxial straining of thin Al sheet with a few grains across the thickness.[J]. Materials Science andEngineering A.2006,419:238-248.
    [76] T. G. Nieh, J. G. Wang. Hall-Petch relationship in nanocrystalline Ni and Be-B alloys[J].Intermetallics.2005,13(3-4):377-385.
    [77] J. Carsley, A. Fisher, W. Milligan, E. Aifantis. Mechanical behavior of a bulk nanostructurediron alloy[J]. Metallurgical and Materials Transactions A.1998,29(9):2261-2271.
    [78] Schiotz, oslash, J. tz, T. Vegge et al. Atomic-scale simulations of the mechanical deformationof nanocrystalline metals[J]. Physical Review B.1999,60(17):11971.
    [79] V. Yamakov, D. Wolf, S. R. Phillpot, H. Gleiter. Dislocation-dislocation and dislocation-twinreactions in nanocrystalline Al by molecular dynamics simulation[J]. Acta Materialia.2003,51(14):4135-4147.
    [80] H. Van Swygenhoven, P. M. Derlet, A. G. Froeth. Nucleation and propagation of dislocationsin nanocrystalline fcc metals[J]. Acta Materialia.2006,54(7):1975-1983.
    [81] V. Yamakov, D. Wolf, S. R. Phillpot, A. K. Mukherjee et al. Dislocation processes in thedeformation of nanocrystalline aluminium by molecular-dynamics simulation[J]. Nature Materials.2002,1:45-49.
    [82] M. A. Tschopp, D. L. McDowell. Grain boundary dislocation sources in nanocrystallinecopper[J]. Scripta Materialia.2008,58(4):299-302.
    [83] T. C. Lee, I. M. Robertson, H. K. Birnbaum. An in situ transmission electron microscopedeformation study of the slip transfer mechanisms in metals[J]. Metallurgical and MaterialsTransactions A.1990,21(9):2437-2447.
    [84] D. P. Field, R. C. Eames, T. M. Lillo. The role of shear stress in the formation of annealingtwin boundaries in copper[J]. Scripta Materialia.2006,54(6):983-986.
    [85] X. H. Chen, L. Lu, K. Lu. Grain size dependence of tensile properties in ultrafine-grained Cuwith nanoscale twins[J]. Scripta Materialia.64(4):311-314.
    [86] D. H. Warner, W. A. Curtin, S. Qu. Rate dependence of crack-tip processes predicts twinningtrends in FCC metals[J]. Nature Material.2007,6:876-881.
    [87] L. Lu, X. Chen, X. Huang, K. Lu. Revealing the maximum strength in nanotwinned copper.[J].Science.2009,323:607-610.
    [88] Y. G. Zheng, J. Lu, H. W. Zhang, Z. Chen. Strengthening and toughening by interface-dediatedslip transfer reaction in nanotwinned copper[J]. Scripta Materialia.2009,60:208-511.
    [89] K. Lu, L. Lu, S. Suresh. Strengthening materials by engineering coherent internal boundariesat the nanoscale.[J]. Science.2009,324:349-352.
    [90] X. L. Wu, X. Z. Liao, S. G. Srinivasan, F. Zhou et al. New Deformation Twinning MechanismGenerates Zero Macroscopic Strain in Nanocrystalline Metals[J]. Physical Review Letters.2008,100(9):095701.
    [91] O. Bouaziz, S. Allain, C. Scott. Effect of grain and twin boundaries on the hardeningmechanisms of twinning-induced plasticity steels[J]. Scripta Materialia.2008,58(6):484-487.
    [92] X. Li, Y. Wei, L. Lu, K. Lu et al. Dislocation nucleation governed softening and maximumstrength in nano-twinned metals[J]. Nature.2010,464:877-880.
    [93] S. Qu, P. Zhang, S. D. Wu, Q. S. Zang et al. Twin boundaries: Strong or weak?[J]. ScriptaMaterialia.2008,59(10):1131-1134.
    [94] Z. H. Jin, P. Gumbsch, E. Ma, K. Albe et al. The interaction mechanism of screw dislocationswith coherent twin boundaries in different face-centred cubic metals.[J]. Scripta Materialia.2006,54:1163-1168.
    [95] J. Schiotz, K. W. Jacobsen. A maximum in the strength of nanocrystalline copper.[J]. Science.2003,301:1357-1359.
    [96] M. Dao, L. Lu, Y. F. Shen, S. Suresh. Strength, strain-rate sensitivity and ductility of copperwith nanoscale twins.[J]. Acta Materialia.2006,54:5421-5432.
    [97] R. Schwaiger, B. Moser, M. Dao, N. Chollacoop et al. Some critical experiments on thestrain-rate sensitivity of nanocrystalline nickel.[J]. Acta Materialia.2003,51:5159-5172.
    [98] A. Jerusalem, M. Dao, S. Suresh, R. Radovitzky. Three-dimensional model of strength andductility of polycrystalline copper containing nanoscale twins.[J]. Acta Materialia.2008,56:4647-4657.
    [99] A. Spielmannov, A. Machov, P. Hora. Crack-induced stress, dislocations and acoustic emissionby3-D atomistic simulations in bcc iron[J]. Acta Materialia.2009,57(14):4065-4073.
    [100] K. Higashida, N. Narita, S. Asano, R. Onodera. Dislocation emission from a crack tip in MgOthin crystals[J]. Materials Science and Engineering A.2000,285(1-2):111-121.
    [101] G. Michot, M. A. Loyola de Oliveira, G. Champier. A model of dislocation multiplication at acrack tip: influence on the brittle to ductile transition[J]. Materials Science and Engineering: A.1999,272(1):83-89.
    [102] G. J. Tucker, J. A. Zimmerman, D. L. McDowell. Shear deformation kinematics ofbicrystalline grain boundaries in atomistic simulations.[J]. Modeling and Simulation in Materialsand Engineering.2010,18:015002.
    [103] H. Van Swygenhoven. Footprints of plastic deformation in nanocrystalline metals[J].Materials Science and Engineering: A.2008,483-484:33-39.
    [104]钱聪,吴希俊,罗伟,周宇松.纳米金属块体材料力学性能研究进展[J].材料导报.2003,17(7):1-5.
    [105] P. Zhang, Y. Huang, P. H. Geubelle, P. A. Klein et al. The elastic modulus of single-wallcarbon nanotubes: a continuum analysis incorporating interatomic potentials[J]. InternationalJournal of Solids and Structures.2002,39(13-14):3893-3906.
    [106] P. Zhang, H. Jiang, Y. Huang, P. H. Geubelle et al. An atomistic-based continuum theory forcarbon nanotubes: analysis of fracture nucleation[J]. Journal of the Mechanics and Physics ofSolids.2004,52(5):977-998.
    [107] M. Arroyo, T. Belytschko. An atomistic-based finite deformation membrane for single layercrystalline films[J]. Journal of the Mechanics and Physics of Solids.2002,50(9):1941-1977.
    [108] M. Arroyo, T. Belytschko. Finite crystal elasticity of carbon nanotubes based on theexponential Cauchy-Born rule[J]. Physical Review B.2004,115415.
    [109] X. Guo, J. B. Wang, H. W. Zhang. Mechanical properties of single-walled carbon nanotubesbased on higher order Cauchy-Born rule[J]. International Journal of Solids and Structures.2006,43(5):1276-1290.
    [110] P. A. Klein, H. J. Gao. Crack nucleation and growth as strain localization in a virtual-bondcontinuum[J]. Engineering Fracture Mechanics.1998,61:21-48.
    [111] E. B. Tadmor, M. Ortiz, R. Phillips. Quasicontinuum analysis of defects in solids[J].Philosophical Magazine A.1996,73(6):1529-1563.
    [112] F. Milstein. Review: theoretical elastic behaviour at large strains[J]. Journal of MaterialScience.1980,15:1071-1084.
    [113] Y. Huang, J. Wu, K. C. Hwang. Thickness of graphene and single-wall carbon nanotubes[J].Physical Review B.2006,74(24):245413.
    [114] J. Wu, J. Peng, K. C. Hwang, J. Song et al. The intrinsic stiffness of single-wall carbonnanotubes[J]. Mechanics Research Communications.2008,35(1-2):2-9.
    [115]刘小明.基于位错机制的纳米材料塑性行为研究[博士学位论文].北京:2008.
    [116]李晓雁.纳晶金属和低维结构的多尺度模拟[博士学位论文].北京:2007.
    [117] M. S. Daw, M. I. Baskes. Embedded-atom method: Derivation and application to impurities,surfaces, and other defects in metals[J]. Physical Review B.1984,29(12):6443.
    [118] X. L. Ma, W. Yang. Molecular dynamics simulation on burst and arrest of stacking faults innanocrystalline Cu under nanoindentation.[J]. Nanotechnology.2003,14:1208.
    [119] N. A. Fleck, J. W. Hutchinson. Strain gradient plasticity[J]. Advances in applied mechanics.1997,33:295-361.
    [120] E. C. Aifantis. The physics of plastic deformation[J]. International Journal of Plasticity.1987,3:211-247.
    [121] M. E. Gurtin, L. Anand. Thermodynamics applied to gradient theories involving theaccumulated plastic strain: The theories of Aifantis and Fleck and Hutchinson and theirgeneralization[J]. Journal of the Mechanics and Physics of Solids.2009,57(3):405-421.
    [122] W. D. Nix, H. Gao. Indentation effects in crystalline materials: a low for strain gradientplasticity[J]. Journal of Mechanical Physics and Solids.1998,46:411-425.
    [123] A. Arsenlis, D. M. Parks, R. Becker, V. V. Bulatov. On the evolution of crystallographicdislocation density in non-homogeneously deforming crystals[J]. Journal of the Mechanics andPhysics of Solids.2004,52(6):1213-1246.
    [124] A. Arsenlis, D. M. Parks. Modeling the evolution of crystallographic dislocation density incrystal plasticity[J]. Journal of the Mechanics and Physics of Solids.2002,50(9):1979-2009.
    [125] P. Gudmundson. A unified treatment of strain gradient plasticity[J]. Journal of the Mechanicsand Physics of Solids.2004,52(6):1379-1406.
    [126] E. C. Aifantis. On the microstructural origin of certain inelastic models[J]. Journal ofEngineering Materials and Technology.1984,106:326-330.
    [127] E. C. Aifantis. Pattern formation in plasticity[J]. International Journal of Engineering Science.1995,33(15):2161-2178.
    [128] A. Acharya, J. L. Bassani. Lattice incompatibility and a gradient theory of crystal plasticity[J].Journal of the Mechanics and Physics of Solids.2000,48(8):1565-1595.
    [129] J. L. Bassani. Incompatibility and a simple gradient theory of plasticity[J]. Journal of theMechanics and Physics of Solids.2001,49(9):1983-1996.
    [130] C. S. Han, H. Gao, Y. Huang, W. D. Nix. Mechanism-based strain gradient crystalplasticity--I. Theory[J]. Journal of the Mechanics and Physics of Solids.2005,53(5):1188-1203.
    [131] M. Kuroda, V. Tvergaard. A finite deformation theory of higher-order gradient crystalplasticity[J]. Journal of the Mechanics and Physics of Solids.2008,56(8):2573-2584.
    [132] M. Kuroda, V. Tvergaard. On the formulations of higher-order strain gradient crystalplasticity models[J]. Journal of the Mechanics and Physics of Solids.2008,56(4):1591-1608.
    [133] M. E. Gurtin. On the plasticity of single crystals: free energy, microforces, plastic-straingradients[J]. Journal of the Mechanics and Physics of Solids.2000,48(5):989-1036.
    [134]黄克智,黄永刚.固体本构关系[M].北京:清华大学出版社,1999.
    [135] A. Arsenlis, D. M. Parks. Crystallographic aspects of geometrically-necessary andstatistically-stored dislocation density[J]. Acta Materialia.1999,47(5):1597-1611.
    [136] M. E. Gurtin, L. Anand, S. P. Lele. Gradient single-crystal plasticity with free energydependent on dislocation densities[J]. Journal of the Mechanics and Physics of Solids.2007,55(9):1853-1878.
    [137] M. F. Ashby. The deformation of plastically non-homogeneous alloys[J]. PhilosophicalMagazine.1970,21:399–424.
    [138] N. A. Fleck, G. M. Muller, M. F. Ashby, J. W. Hutchinson. Strain gradient plasticity: Theoryand experiment[J]. Acta Metallurgica et Materialia.1994,42(2):475-487.
    [139] N. Ohno, D. Okumura. Higher-order stress and grain size effects due to self-energy ofgeometrically necessary dislocations[J]. Journal of the Mechanics and Physics of Solids.2007,55(9):1879-1898.
    [140] N. Ohno, D. Okumura, T. Shibata. Grain-Size Dependent Yield Behavior Under Loading,Unloading and Reverse Loading[J]. international journal of Modern Physics B.2008,31(32):5937-5942.
    [141] L. P. Evers, W. A. M. Brekelmans, M. G. D. Geers. Non-local crystal plasticity model withintrinsic SSD and GND effects[J]. Journal of the Mechanics and Physics of Solids.2004,52(10):2379-2401.
    [142] L. P. Evers, D. M. Parks, W. A. M. Brekelmans, M. G. D. Geers. Crystal plasticity model withenhanced hardening by geometrically necessary dislocation accumulation[J]. Journal of theMechanics and Physics of Solids.2002,50(11):2403-2424.
    [143] Z. W. Shan, J. M. K. Wiezorek, E. A. Stach, D. M. Follstaedt et al. Dislocation dynamics innanocrystalline nickel[J]. Physical Review Letters.2007,98(9):95502.
    [144] A. M. Minor, S. A. S. Asif, Z. Shan, E. A. Stach et al. A new view of the onset of plasticityduring the nanoindentation of aluminium[J]. Nature Materials.2006,5(9):697-702.
    [145] T. Zhu, J. Li, K. J. van Vliet, S. Ogata et al. Predictive modeling of nanoindentation-inducedhomogeneous dislocation nucleation in copper[J]. Journal of Mechanical Physics and Solids.2004,52:691-724.
    [146] X. M. Liu, Z. L. Liu, X. You, J. F. Nie et al. Theoretical strength of FCC single crystalcopper[J]. Chinese Physical Letters.2009,26:026103.
    [147] T. Kitamura, Y. Umeno, R. Fushino. Instability criterion of inhomogeneous atomic system[J].Materials Science and Engineering A.2004,379:229-233.
    [148] T. Kitamura, Y. Umeno, N. Tsuji. Analytical evaluation of unstable defromation criterion ofatomic structure and its application to nanostructure[J]. Computational Materials Science.2004,29:499-510.
    [149] Z. L. Liu, X. M. Liu, Z. Zhuang, Y. Gao et al. A study of micro-compression simulation by amulti-scale plastic model based on3D dislocation dynamics[J]. International Journal of MultiscaleComputational Engineering.2009,7(3):217-225.
    [150] G. Friesecke, F. Theil. Validity and failure of the Cauchy-Born hypothesis in atwo-dimensional mass-spring lattice[J]. Journal of Nonlinear Science.2002,12(5):445-478.
    [151] J. Wang, J. Li, S. Yip. Mechanical instabilities of homogeneous crystals[J]. Physical ReviewB.1995,52:12627-12635.
    [152] J. E. Jones. On the determination of molecular fields. II. from the equation of state of a gas[J].Proceedings of Royal Society A.1924,106:463.
    [153] T. Chang, H. Gao. Size-dependent elastic properties of a single-walled carbon nanotube via amolecular mechanics model[J]. Journal of the Mechanics and Physics of Solids.2003,51(6):1059-1074.
    [154] A. Y. T. Leung, X. Guo, X. Q. H., S. Kitipornchai. A continuum model for zigzagsingle-walled carbon nanotubes[J]. Applied Physics Letters.2005,86:083110.
    [155] C. Goze, L. Vaccarini, L. Henrard, P. Bernier et al. Elastic and mechanical properties ofcarbon nanotubes[J]. Synthetic metals.1999,103:2500-2501.
    [156] V. N. Popov, V. Doren, V. E. Balkanski. Elastic properties of single-walled carbonnanotubes[J]. Physical Review B.2000,61:3078-3084.
    [157] J. Tersoff. Modeling solid-state chemistry: Interatomic potentials for multicomponentsystems[J]. Physical Review B.1989,39(8):5566-5568.
    [158] A. G. Fr seth, H. Van Swygenhoven, P. M. Derlet. Developing realistic grain boundarynetworks for use in molecular dynamics simulations[J]. Acta Materialia.2005,53(18):4847-4856.
    [159] K. L. Merkle, L. J. Thompson. Atomic-scale observation of grain boundary motion[J].Materials Letters.2001,48(3-4):188-193.
    [160] H. Yoshida, K. Yokoyama, N. Shibata, Y. Ikuhara et al. High-temperature grain boundarysliding behavior and grain boundary energy in cubic zirconia bicrystals[J]. Acta Materialia.2004,52(8):2349-2357.
    [161] M. A. Miodownik. Grain boundary engineering with particles[J]. Scripta Materialia.2006,54(6):993-997.
    [162] D. A. Molodov, P. Konijnenberg, W. Hu, G. Gottstein et al. Effect of dislocation absorption onthe motion of specific grain boundaries in Al-bicrystals[J]. Scripta Materialia.2001,45(2):229-235.
    [163] M. Winning, A. D. Rollett. Transition between low and high angle grain boundaries[J]. ActaMaterialia.2005,53(10):2901-2907.
    [164] A. Cao, Y. Wei, E. Ma. Grain boundary effects on plastic deformation and fracturemechanisms in Cu nanowires: Molecular dynamics simulations[J]. Physical Review B (CondensedMatter and Materials Physics).2008,77(19):195429-195425.
    [165] A. Cao, Y. Wei, S. X. Mao. Alternating starvation of dislocations during plastic yielding inmetallic nanowires[J]. Scripta Materialia.2008,59(2):219-222.
    [166] A. Cao, Y. G. Wei. Molecular dynamics simulation of plastic deformation of nanotwinnedcopper[J]. Journal of Applied Physics.2007,102(8):083511-083515.
    [167] L. Li, N. M. Ghoniem. Twin-size effects on the deformation of nanotwinned copper[J].Physical Review B.2009,79(7):75444.
    [168] D. Farkas, A. Fr seth, H. Van Swygenhoven. Grain boundary migration during roomtemperature deformation of nanocrystalline Ni[J]. Scripta Materialia.2006,55(8):695-698.
    [169] X. Yan, H. Zhang. On the atomistic mechanisms of grain boundary migration in [001] twistboundaries: Molecular dynamics simulations[J]. Computational Materials Science.2010,48(4):773-782.
    [170] D. Caillard, F. Mompiou, M. Legros. Grain-boundary shear-migration coupling. II.Geometrical model for general boundaries[J]. Acta Materialia.2009,57(8):2390-2402.
    [171] D. E. Spearot, K. I. Jacob, D. L. McDowell. Nucleation of dislocations from [001] bicrystalinterfaces in aluminum.[J]. Acta Materialia.2005,53:3579-3589.
    [172]周耐根,周浪.外延生长薄膜中失配位错形成条件的分子动力学模拟研究[J].物理学报.2005,54(7):3279-3283.
    [173] X. M. Liu, X. You, Z. L. Liu, J. F. Nie et al. Atomistic simulations of tension properties forbi-crystal copper with twist grain boundary[J]. Journal of Physics D.2009,42:035404.
    [174]潘金生,仝健民,田民波.材料科学基础[M].北京:清华大学出版社,2003.
    [175] B. Schonfelder, G. Gottstein, L. S. Shvindlerman. Comparative study of grain-boundarymigration and grain-boundary self-diffusion of [001] twist-grain boundaries in copper by atomisticsimulations[J]. Acta Materialia.2005,53:1597-1609.
    [176] D. Wolf. Structure-erengy correlation for grain boundaries in FCC metals-I. boundaries onthe (111) and (100)planes.[J]. Acta metallurgica.1989,37(7):1983-1993.
    [177] J. Zimmerman, C. Kelchner, J. Hamilton, S. Foiles. Surface step effects onnanoindentation.[J]. Physical Review Letters.2001,87:165507.
    [178] J. Li, A. H. W. Ngan, P. Gumbsch. Atomistic modeling of mechanical behavior[J]. ActaMaterialia.2003,51(19):5711-5742.
    [179] H. Van Swygenhoven, D. Farkas, A. Caro. Grain-boundary structures in polycrystallinemetals at the nanoscale[J]. Physical Review B.2000,62(2):831-838.
    [180] J. D. Honeycutt, H. C. Andersen. Molecular dynamics study of melting and freezing of smallLennard-Jones clusters[J]. Journal of Physical Chemistry.1987,91(19):4950-4963.
    [181] W. Humphrey, A. Dalke, K. Schulten. VMD: visual molecular dynamics[J]. Journal ofmolecular graphics.1996,14(1):33-38.
    [182] J. Li, K. van Vliet, T. Zhu, S. Yip et al. Atomistic mechanisms governing elastic limit andincipient plasticity in crystals.[J]. Nature.2002,418:307–310.
    [183]刘小明,由小川,柳占立,聂君峰.单向拉伸作用下Cu(100)扭转晶界塑性行为研究[J].物理学报.2009,58(3):1849-1855.
    [184] J. R. Weertman. Hall-Petch strengthening in nanocrystalline metals[J]. Materials Science andEngineering: A.1993,166(1-2):161-167.
    [185] M. Jain, T. Christman. Synthesis, processing, and deformation of bulk nanophaseFe-28Al-2Cr intermetallic[J]. Acta Metallurgica et Materialia.1994,42(6):1901-1911.
    [186] J. W. Christian, S. Mahajan. Deformation twinning[J]. Progress in Materials Science.1995,39(1-2):1-157.
    [187] R. Ueji, N. Tsuchida, D. Terada, N. Tsuji et al. Tensile properties and twinning behavior ofhigh manganese austenitic steel with fine-grained structure[J]. Scripta Materialia.2008,59(9):963-966.
    [188] Y. Huang, S. Qu, K. C. Hwang, M. Li et al. A conventional theory of mechanism-based straingradient plasticity[J]. International Journal of Plasticity.2004,20(4-5):753-782.
    [189] L. Anand, M. E. Gurtin. Thermal effects in the superelasticity of crystalline shape-memorymaterials[J]. Journal of the Mechanics and Physics of Solids.2003,51(6):1015-1058.
    [190] L. Anand, M. E. Gurtin, S. P. Lele, C. Gething. A one-dimensional theory of strain-gradientplasticity: Formulation, analysis, numerical results[J]. Journal of the Mechanics and Physics ofSolids.2005,53(8):1789-1826.
    [191] N. Ohno, D. Okumura, H. Noguchi. Microscopic symmetric bifurcation condition of cellularsolids based on a homogenization theory of finite deformation[J]. Journal of the Mechanics andPhysics of Solids.2002,50(5):1125-1153.
    [192] S. P. Lele, L. Anand. A small-deformation strain-gradient theory for isotropic viscoplasticmaterials[J]. Philosophical Magazine,88.2008,30(32):3655-3689.
    [193] Z. L. Liu, Z. Zhuang, X. M. Liu, X. C. Zhao et al. A dislocation dynamics based higher-ordercrystal plasticity model and applications on confined thin-film plasticity[J]. International Journal ofPlasticity.2011,27(2):201-216.
    [194] N. Tsuji, Y. Ito, Y. Saito, Y. Minamino. Strength and ductility of ultrafine grained aluminumand iron produced by ARB and annealing[J]. Scripta Materialia.2002,47(12):893-899.
    [195] R. Kumar, L. Nicola, E. Van der Giessen. Density of grain boundaries and plasticity sizeeffects: A discrete dislocation dynamics study.[J]. Computational Materials Science: A.2009,527(1-2):7-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700