掺杂及电场条件下石墨烯若干催化过程的第一原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从2004年由英国科学家发现以来,石墨烯就成为备受瞩目的研究热点。石墨烯是由sp2杂化的碳原子所组成的二维蜂窝状晶体点阵,其厚度仅为0.35nm,是世界上最薄的二维材料。这种特殊的结构使得石墨烯具有许多新奇而优异的物理性能。例如石墨烯具有超高的载流子迁移率,其常温下的载流子迁移率可达2×105cm2.V-1.s-1,远远超过商用硅片的载流子迁移率;石墨烯是已测试材料中强度最高的,其强度达到130GPa,是钢的100多倍;石墨烯还具有光学透明性和生物适应性等优异性能。因此,石墨烯在很多领域都具有重要的应用前景。
     然而,目前的研究主要集中在石墨烯的光电性能上,对石墨烯表面润湿性的研究则很少见诸报端。随着智能表面概念的提出,可逆的控制石墨烯表面的润湿性就显得尤为重要。而当石墨烯应用于超级电容器的电极材料和生物支撑材料等场合时,理想的情况是石墨烯既具有亲水性,又具有导电性。另外,石墨烯超大的表面/体积比使其成为优良的异相催化支撑材料。氢气做为可再生的清洁能源引起了人们极大的研究兴趣,其在体积浓度大于4%时极易燃烧并引起爆炸,因此有必要研究高灵敏度的氢气传感器。一氧化碳氧化在清洁空气、CO2激光器净化以及去除H2中的CO防止燃料电池电极中毒等方面有着重要的应用,开发高效的CO室温氧化催化剂具有很重要的意义。本文采用第一原理计算方法,研究了电场及掺杂对石墨烯若干催化过程的影响,拓展了石墨烯的应用领域。
     主要研究内容分为以下四部分:
     首先,我们利用第一原理方法研究了电场下水分子在石墨烯上的分解吸附情况。结果表明负电场可以促进水分子的分解吸附,在电场F=0.39V/时水分子在石墨烯上的分解能垒消失,这使得石墨烯变为亲水性。而正电场起到相反的作用,在正电场F=0.36V/时H原子和OH基团在石墨烯上的脱吸附能垒消失,这使得石墨烯恢复为疏水性。所以,电场可以作为一个开关来控制石墨烯的润湿性。
     其次,我们应用第一原理计算方法研究了铝掺杂对水分子在石墨烯上分解吸附的影响。结果表明,铝掺杂石墨烯可以极大的降低水分子在石墨烯上的分解能垒至0.413eV,进而在室温下可以自发地将石墨烯由疏水性转变为亲水性。同时,石墨烯还保持导电性。因此,铝掺杂的石墨烯可以应用于超级电容器的电极材料和生物支撑材料等场合。
     再次,通过第一原理计算方法,我们研究了碳原子空位对于H2分子在石墨烯上分解吸附的影响。结果表明石墨烯上的单原子碳空位可以有效的降低H2分子分解吸附的能垒至0.805eV,然后将第二个H2分子的分解能垒降低为0.869eV。根据能带结构,H2分子分解吸附之后石墨烯的电子性能变化显著。H2分解吸附相图表明在氢气偏压极小(1035mol/L)的情况下空位处也可以分解吸附上H2分子。因此单原子空位石墨烯在氢气传感器方面有着重要的应用。
     最后,我们通过第一原理方法研究了CO分子在Al掺杂石墨烯上的催化氧化过程。结果表明CO氧化过程遵循LH机制,并且速率控制步骤(CO+O2→OOCO)的反应能垒是0.32eV,远低于ER机制下的反应能垒。Hirshfeld电荷分析表明O2分子通过Al原子向CO转移电荷在CO氧化过程中起到了重要作用。因此Al掺杂的石墨烯可以成为高效的CO氧化催化剂。
Since the experimental observation in2004by the English scientists, graphenehave become the focus in many areas. Graphene, a single layer of sp2hybridizedcarbon atoms possesses two dimentional honeycomb-like lattice with thickness ofonly0.35nm. This special configuration endues graphene many excellent properties,such as elcellent electronic transport performance, ultrahigh mechanical strength,large optical transparency, high thermal conductivity and good biocompatibility. Thecharge mobility of graphene exceeds2×105cm2.V-1.s-1at room temperature, ten timeshigher than that of the conmercial silicon wafers. Also graphene possesses the largeststrength of130GPa. These characteristics have further stimulated its applications inmany important fields, such as high-performance composites, molecular electronics,field-emission devices, sensors, hydrogen storage materials and biomedicalapplications.
     However, most of previous studies focused on the photoelectric performance ofgraphene, and not on its surface properties. The surface properties of graphene, whichstrongly depend on chemical composition and morphology, are highly significant inthe applications. Density Functional Theory calculations and experimentalobservations indicated that the graphene surface is highly hydrophobic. With thedevelopments of smart surface, reversible transition of graphene from hydrophobic tohydrophilic is important in the presence of external stimulation. In the applications ofelectrode materials of supercapacitors and biomaterials supports, it is desirable thatgraphene is hydrophilic and conductive since the former improves the wettingbetween graphene and polar electrolytes or biological molecules, while the latterenhances the transport of free carriers. Therefore, the development of stablehydrophilic and conductive graphene surface is essential for the above applications.
     Hydrogen has attracted great interest because it is a clean and renewable energysource. Hydrogen is present widely in nuclear reactors, coal mines and semiconductormanufacturing, etc. Because hydrogen is highly flammable and explosive withvolume concentration of more than4%, developing highly sensitive hydrogen sensorsis thus important. The oxidation of carbon monoxide (CO) has attracted great interests due to its importance in applications such as cleaning air and atmosphere purificationfor CO2lasers, as well as removing CO from hydrogen gas fuel to avoid electrodepoisoning in fuel cells. Therefore, developing low cost catalysts for CO oxidation atroom temperature is desirable. Moreover, the large surface to volume ratio alsobenefits for graphene as a support for heterogeneous catalysts. Therefore, we expectthat graphene may be highly active as a catalyst for the H2sensors and CO oxidation.Base on the first principles calculations, we have investigated several catalyticprocesses on graphene in the presence of electric field and dopants.
     The research contents mainly divided into four parts:
     (1) Catalytic effect of a perpendicular electric field on the reversible transition ofgraphene with water from hydrophobic to hydrophilic has been investigated byusing first principles calculations. It is found that a negative electric field F canreduce the energy barrier for H2O dissociative adsorption on graphene, under F=0.39V/, the energy barrier becomes negative and the dissociativeadsorption occurs smoothly without any potential barrier, which results inhydrophilic graphene. While a positive electric field has an opposite effect, thepositive electric field of F=0.36V/leads to a negative desorption energybarrier for the desorption of H and OH from graphene, making the graphene behydrophobic again. Therefore, the electric field can act as a switch to reversiblychange the graphene from hydrophobic to hydrophilic in the presence of watervapor.
     (2) The effect of Al dopant on the dissociative adsorption of a H2O molecule ongraphene is investigated by using first principles calculations. It is found thatdoping Al into graphene can facilitate the dissociative adsorption of H2Omolecules. The dissociative energy barrier is reduced to0.456eV on Al dopedgraphene and the reaction releases energy of0.413eV, which indicates asmooth dissociative adsorption on Al doped graphene at room temperature. Thedissociative adsorption of H2O molecules can convert the Al doped graphenefrom hydrophobic to hydrophilic while obtaining conductive graphene withdoping concentration higher than5.56%. The mechanism of the above is that Alcan facilitate the dissociative adsorption of H2O on graphene through mixinghybridization between its p orbit and1b1orbit of the H2O molecule. This hydrophilic and conductive graphene has potential applications insupercapacitor and biomaterial supports.
     (3) To facilitate the dissociative adsorption of H2molecules on pristine graphene,mono atom vacancy is considered to be added into graphene, which leads toreduction of the dissociative energy barrier of H2molecule on graphene to0.805eV for the first H2and0.869eV for the second one by using the first principlescalculations. The electronic structure of graphene and conductivity significantlychange before and after H2adsorption. In addition, the related dissociativeadsorption phase diagrams under different temperatures and partial pressuresshow that this dissociative adsorption at room temperature is very sensitive(1035mol/L). Therefore, this defected graphene is promising for ultrasensitiveroom temperature hydrogen sensors.
     (4) The oxidation of CO molecule on Al embedded graphene has been investigatedby using the first principles calculations. Two possible oxidation mechanismsEley Rideal (ER) and Langmuir Hinshelwood (LH) mechanisms are bothconsidered. In the LH mechanism, O2and CO molecules are firstly co adsorbedon Al embedded graphene, the energy barrier for the rate limiting step (CO+O2→OOCO) is only0.32eV, much lower than that of ER mechanism, whichindicates that LH mechanism is more favourable for CO oxidation onAl embedded graphene. Hirshfeld charge analysis shows that embedded Alatom would modify the charge distributions of co adsorbed O2and COmolecules. The charge transfer from O2to CO molecule through the embeddedAl atom plays an important role for the CO oxidation along the LH mechanism.Our result shows that the low cost Al embedded graphene is an efficientcatalyst for CO oxidation at room temperature.
引文
[1] NOVOSELOV K S, GEIM A K, MOROZOV S V, JIANG D, ZHANG Y,DUBONOS S V, GRIGORIEVA I V, FIRSOV A A. Electric Field Effect inAtomically Thin Carbon Films [J]. Science,2004,306:666-669.
    [2] ZHU Y W, MURALI S, CAI W W, LI X S, SUK J W, POTTS J R, RUOFF R S.Graphene and Graphene Oxide: Synthesis, Properties, and Applications [J]. AdvancedMaterials,2010,22:3906-3924.
    [3] FASOLINO A, LOS J H, KATSNELSON M I. Intrinsic ripples in graphene [J].Nature Materials,2007,6:858-861.
    [4] MEYER J C, GEIM A K, KATSNELSON M I, NOVOSELOV K S, BOOTH T J,ROTH S. The structure of suspended graphene sheets [J]. Nature,2007,446:60-63.
    [5] STOLYAROVA E, RIM K T, RYU S M, MAULTZSCH J, KIM P, BRUS L E,HEINZ T F, HYBERTSEN M S, FLYNN G W. igh-resolution scanning tunnelingmicroscopy imaging of mesoscopic graphene sheets on an insulating surface [J].Proceedings of the National Academy of Sciences of the United States of America,2007,104:9209-9212.
    [6] ZHANG Y B, BRAR V W, GIRIT C, ZETTL A, CROMMIE M F. Origin ofspatial charge inhomogeneity in graphene [J]. Nature Physics,2009,5:722-726.
    [7] TEAGUE M L, LAI A P, VELASCO J, HUGHES C R, BEYER A D,BOCKRATH M W, LAU C N, YEH N C. Evidence for Strain-Induced LocalConductance Modulations in Single-Layer Graphene on SiO2[J]. Nano Letters,2009,9:2542-2546.
    [8] XU K, CAO P, HEATH J R. Scanning Tunneling Microscopy Characterization ofthe Electrical Properties of Wrinkles in Exfoliated Graphene Monolayers [J]. NanoLetters,2009,9:4446-4451.
    [9] BAO W, MIAO F, CHEN Z, ZHANG H, JANG W, DAMES C, LAU C N.Controlled ripple texturing of suspended graphene and ultrathin graphite membranes[J]. Nature Nanotechnology,2009,4:562-566.
    [10] HASHIMOTO A, SUENAGA K, GLOTER A, URITA K, IIJIMA S. Directevidence for atomic defects in graphene layers [J]. Nature,2004,430:870-873.
    [11] MEYER J C, GIRIT C O, CROMMIE M F, ZETTL A. Imaging and dynamics oflight atoms and molecules on graphene [J]. Nature,2008,454:319-322.
    [12] LEE Z, JEON K J, DATO A, ERNI R, RICHARDSON T J, FRENKLACHM,RADMILOVIC V. Direct Imaging of Soft Hard Interfaces Enabled by Graphene[J]. Nano Letters,2009,9:3365-3369.
    [13] MEYER J C, KISIELOWSKI C, ERNI R, ROSSELL M D, CROMMIE M F,ZETTL A. Direct Imaging of Lattice Atoms and Topological Defects in GrapheneMembranes [J]. Nano Letters,2008,8:3582-3586.
    [14] GIRIT C O, MEYER J C, ERNI R, et al. Graphene at the Edge: Stability andDynamics [J]. Science,2009,323:1705-1708.
    [15] JIA X T, HOFMANN M, MEUNIER V, et al. Controlled Formation of SharpZigzag and Armchair Edges in Graphitic Nanoribbons [J]. Science,2009,323:1701-1705.
    [16] WALLACE P R. The Band Theory of Graphit [J]. Physical Review,1947,71:622.
    [17] NETO A H C, GUINEA F, PERES N M R, NOVOSELOV K S, GEIM A K. Theelectronic properties of graphene [J]. Reviews of Modern Physics,2009,81:109.
    [18] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Two-dimensional gas ofmassless Dirac fermions in graphene [J]. Nature,2005,438:197-200.
    [19] ZHANG Y B, TAN Y W, STORMER H L, KIM P. Experimental observation ofthe quantum Hall effect and Berry's phase in graphene [J]. Nature,2005,438:201-204.
    [20] MOROZOV S V, NOVOSELOV K S, KATSNELSON M I, SCHEDIN F,ELIAS D C, JASZCZAK J A, GEIM A K. Giant Intrinsic Carrier Mobilities inGraphene and Its Bilayer [J]. Physical Review Letters,2008,100:016602.
    [21] BOLOTIN K I, SIKES K J, JIANG Z, KLIMA M, FUDENBERG G, HONE J,KIM P, STORMER H L. Ultrahigh electron mobility in suspended graphene [J]. SolidState Communications,2008,146:351-355.
    [22] DURKOP T, GETTY S A, COBAS E, FUHRER M S. Extraordinary Mobility inSemiconducting Carbon Nanotubes [J]. Nano Letters,2004,4:35-39.
    [23] SCHEDIN F, GEIM A K, MOROZOV S V, HILL E W, BLAKE P,KATSNELSON M I, NOVOSELOV K S. Detection of individual gas moleculesadsorbed on graphene [J]. Nature Materials,2007,6:652-655.
    [24] DU X, SKACHKO I, BARKER A, ANDREI E Y. Approaching ballistictransport in suspended graphene [J]. Nature Nanotechnology,2008,3:491-495.
    [25] NOVOSELOV K S, JIANG Z, ZHANG Y, et al. Room-temperature quantumhall effect in graphene [J]. Science,2007,315:1379-1379.
    [26] GUSYNIN V P, SHARAPOV S G. Unconventional integer quantum hall effectin graphene [J]. Physical Review Letters,2005,95:146801.
    [27] PERES N M R, GUINEA F, NETO A H C. Electronic properties of disorderedtwo-dimensional carbon [J]. Physical Review B,2006,73:125411.
    [28] MILLER D L, KUBISTA K D, RUTTER G M, RUAN M, DE HEER W A,FIRST P N, STROSCIO J A. Observing the quantization of zero mass carriers ingraphene [J]. Science,2009,324:924-927.
    [29] APALKOV V M, CHAKRABORTY T. Fractional quantum hall states of diracelectrons in graphene [J]. Physical Review Letters,2006,97:126801.
    [30] TOKE C, JAIN J K. SU(4) composite fermions in graphene: fractional quantumHall states without analog in GaAs [J]. Physical Review B,2007,75:245440.
    [31] DU X, SKACHKO I, DUERR F, LUICAN A, ANDREI E Y. Fractionalquantum Hall effect and insulating phase of Dirac electrons in graphene [J]. Nature,2009,462:192-195.
    [32] BOLOTIN K I, GHAHARI F, SHULMAN M D, STORMER H L, KIM P.Observation of the fractional quantum Hall effect in graphene [J]. Nature,2009,462:196-199.
    [33] MOROZOV S V, NOVOSELOV K S, KATSNELSON M I, SCHEDIN F,PONOMARENKO L A, JIANG D, GEIM A K. Strong suppression of weaklocalization in graphene [J]. Physical Review Letters,2006,97:016801.
    [34] KATSNELSON M I. Zitterbewegung, chirality, and minimal conductivity ingraphene [J]. The European Physical Journal B,2006,51:157-160.
    [35] STANDER N, HUARD B, GOLDHABER-GORDON D. Evidence for kleintunneling in graphene p-n junctions [J]. Physical Review Letters,2009,102:026807.
    [36] KUDIN K N, SCUSERIA G E, YAKOBSON B I. C2F, BN, and C nanoshellelasticity from ab initio computations [J]. Physical Review B,2001,64:235406.
    [37] REDDY C D, RAJENDRAN S, LIEW K M. Equilibrium configuration andcontinuum elastic properties of finite sized graphene [J]. Nanotechnology,2006,17:864-870.
    [38] FRANK I W, TANENBAUM D M, VAN DER ZANDE A M, McEuen P L.Mechanical properties of suspended graphene sheets [J]. Journal of Vacuum Science&Technology B,2007,25:2558.
    [39] POOT M, VAN DER ZANT H S J. Nanomechanical properties of few-layergraphene membranes [J]. Applied Physical Letters,2008,92:063111.
    [40] LEE C G, WEI X D, KYSAR J W, HONE J. Measurement of the elasticproperties and intrinsic strength of monolayer graphene [J]. Science,2008,321:385-388.
    [41] GOMEZ-NAVARRO C, BURGHARD M, KERN K. Elastic properties ofchemically derived single graphene sheets [J]. Nano Letters,2008,8:2045-2049.
    [42] GUSYNIN V P, SHARAPOV S G, CARBOTTE J P. Unusual microwaveresponse of dirac quasiparticles in graphene [J]. Physical Review Letters,2006,96:256802.
    [43] Peres N M R. The transport properties of graphene [J]. Journal of Physics:Condensed Matter,2009,21:323201.
    [44] NAIR R R, BLAKE P, GRIGORENKO A N, NOVOSELOV K S, BOOTH T J,STAUBER T, PERES N M R, GEIM A K. Fine structure constant defines visualtransparency of graphene [J]. Science,2008,320:1308-1308.
    [45] MAK K F, SFEIR M Y, WU Y, LUI C H, MISEWICH J A, HEINZ T F.Measurement of the optical conductivity of graphene [J]. Physical Review Letters,2008,101:196405.
    [46] WANG F, ZHANG Y B, TIAN C S, GIRIT C, ZETTL A, CROMMIE M, SHENY R. Gate-variable optical transitions in graphene [J]. Science,2008,320:206-209.
    [47] GEORGE P A, STRAIT J, DAWLATY J, SHIVARAMAN S,CHANDRASHEKHAR M, RANA F, SPENCER M G. Ultrafast optical-pumpterahertz-probe spectroscopy of the carrier relaxation and recombination dynamics inepitaxial graphene [J]. Nano Letters,2008,8:4248-4251.
    [48] RANA F, GEORGE P A, STRAIT J H, DAWLATY J, SHIVARAMAN S,CHANDRASHEKHAR M, SPENCER M G. Carrier recombination and generationrates for intravalley and intervalley phonon scattering in graphene [J]. PhysicalReview B,2009,79:115447.
    [49] XIA F, MUELLER T, LIN Y M, VALDES-GARCIA A, AVOURIS P. Ultrafastgraphene photodetector [J]. Nature Nanotechnology,2009,4:839-843.
    [50] YU C H, SHI L, YAO Z, LI D Y, MAJUMDAR A. Thermal conductance andthermopower of an individual single-wall carbon nanotube [J]. Nano Letters,2005,5:1842-1846.
    [51] NIKA D L, POKATILOV E P, ASKEROV A S, BALANDIN A A. Phononthermal conduction in graphene: role of umklapp and edge roughness scattering [J].Physical Review B,2009,79:155413.
    [52] GUO Z, ZHANG D, GONG X G. Thermal conductivity of graphene nanoribbons[J]. Applied Physical Letters,2009,95:163103.
    [53] BALANDIN A A, GHOSH S, BAO W, CALIZO I, TEWELDEBRHAN D,MIAO F, Lau C N. Superior thermal conductivity of single-layer graphene [J]. NanoLetters,2008,8:902-907.
    [54] GHOSH S, CALIZO I, TEWELDEBRHAN D, POKATILOV E P, NIKA D L,BALANDIN A A, BAO W, MIAO F, LAU C N. Extremely high thermalconductivity of graphene: prospects for thermal management applications innanoelectronic circuits [J]. Applied Physical Letters,2008,92:151911.
    [55] CAI W, MOORE A L, ZHU Y, LI X, CHEN S, SHI L, RUOFF R S. Thermaltransport in suspended and supported monolayer graphene grown by chemical vapordeposition [J]. Nano Letters,2010,10:1645-1651.
    [56] SEOL J H, JO I, MOORE A L, et al. Two dimensional phonon transport insupported graphene [J]. Science,2010,328:213-216.
    [57] LU X K, YU M F, HUANG H, RUOFF R S. Tailoring graphite with the goal ofachieving single sheets [J]. Nanotechnology,1999,10:269.
    [58] LU X K, HUANG H, NEMCHUK N, RUOFF R S. Patterning of highly orientedpyrolytic graphite by oxygen plasma etching [J]. Applied Physical Letters,1999,75:193.
    [59] HERNANDEZ Y, NICOLOSI V, LOTYA M, et al. High-yield production ofgraphene by liquid-phase exfoliation of graphite [J]. Nature Nanotechnology,2008,3:563-568.
    [60] MAY J W. Platinum surface LEED rings [J]. Surface Science,1969,17:267-270.
    [61] SHELTON J C, PATIL H R, BLAKELY J M. Equilibrium segregation of carbonto a nickel (111) surface: A surface phase transition [J]. Surface Science,1974,43:493-520.
    [62] EIZENBERG M, BLAKELY J. M. Carbon interaction with nickel surfaces:Monolayer formation and structural stability [J]. Journal of Chemical Physics,1979,71:3467.
    [63] BERGER C, SONG Z, LI X, et al. Electronic confinement and coherence inpatterned epitaxial graphene [J]. Science,2006,312:1991-1196.
    [64] EMTSEV K V, BOSTWICK A, HORN K, et al. Towards wafer-size graphenelayers by atmospheric pressure graphitization of silicon carbide [J]. Nature Materials,2009,8:203-207.
    [65] HUANG H, CHEN W, CHEN S, WEE A T S. Bottom-up growth of epitaxialgraphene on6H-SiC(0001)[J]. ACS Nano,2008,2:2513-2518.
    [66] LI N, WANG Z, ZHAO K, SHI Z, GU Z, XU S. Large scale synthesis ofN-doped multi-layered graphene sheets by simple arc-discharge method [J]. Carbon,2010,48:255-259.
    [67] LI X S, CAI W W, COLOMBO L, RUOFF R S. Evolution of graphene growthon Ni and Cu by carbon isotope labeling [J]. Nano Letters,2009,9:4268-4272.
    [68] DATO A, RADMILOVIC V, LEE Z H, PHILLIPS J, FRENKLACH M.Substrate-free gas-phase synthesis of graphene sheets [J]. Nano Letters,2008,8:2012-2016.
    [69] HEERSCHE H B, JARILLO-HERRERO P, OOSTINGA J B, VANDERSYPENL M K, MORPURGO A F. Bipolar supercurrent in graphene [J]. Nature,2007,446:56-59.
    [70] LEVENDORF M P, RUIZ-VARGAS C S, GARG S, PARK J. Transfer-freebatch fabrication of single layer graphene transistors [J]. Nano Letters,2009,9:4479-4483.
    [71] LIN Y M, JENKINS K A, VALDES-GARCIA A, SMALL J P, FARMER D B,AVOURIS P. Operation of graphene transistors at gigahertz frequencies [J]. NanoLetters,2009,9:422-426.
    [72] FARMER D B, CHIU H Y, LIN Y M, JENKINS K A, XIA F, AVOURIS P.Utilization of a buffered dielectric to achieve high field-effect carrier mobility ingraphene transistors [J]. Nano Letters,2009,9:4474-4478.
    [73] LIN Y M, DIMITRAKOPOULOS C, JENKINS K A, FARMER D B, CHIU HY, GRILL A, AVOURIS P.100-GHz transistors from wafer-scale epitaxial graphene[J]. Science,2010,327:662-662.
    [74] PONOMARENKO L A, SCHEDIN F, KATSNELSON M I, YANG R, HILL EW, NOVOSELOV K S, GEIM A K. Chaotic dirac billiard in graphene quantum dots[J]. Science,2008,320:356-358.
    [75] ZHOU S Y, GWEON G H, FEDOROV A V, et al. Substrate-induced bandgapopening in epitaxial graphene [J]. Nature Materials,2007,6:770-775.
    [76] OOSTINGA J B, HEERSCHE H B, LIU X L, MORPURGO A F,VANDERSYPEN L M K. Gate-induced insulating state in bilayer graphene devices[J]. Nature Materials,2008,7:151-157.
    [77] ZHANG Y B, TANG T T, GIRIT C, HAO Z, MARTIN M C, ZETTL A,CROMMIE M F, SHEN Y R, WANG F. Direct observation of a widely tunablebandgap in bilayer graphene [J]. Nature,2009,459:820-823.
    [78] BARONE V, HOD O, SCUSERIA G E. Electronic structure and stability ofsemiconducting graphene nanoribbons [J]. Nano Letters,2006,6:2748-2754.
    [79] SON Y W, COHEN M L, LOUIE S G. Energy gaps in graphene nanoribbons [J].Physical Review Letters,2006,97:216803.
    [80] LI X L, WANG X R, ZHANG L, LEE S W, DAI H J. Chemically derived,ultrasmooth graphene nanoribbon semiconductors [J]. Science,2008,319:1229-1232.
    [81] DAN Y P, LU Y, KYBERT N J, LUO Z T, JOHNSON A T C. Intrinsic responseof graphene vapor sensors [J]. Nano Letters,2009,9:1472-1475.
    [82] ROBINSON J T, PERKINS F K, SNOW E S, WEI Z Q, SHEEHAN P E.Reduced graphene oxide molecular sensors [J]. Nano Letters,2008,8:3137-3140.
    [83] TANG L H, WANG Y, LI Y M, FENG H B, LU J, LI J H. Preparation, structure,and electrochemical properties of reduced graphene sheet films [J]. AdvancedFunctional Materials,2009,19:2782-2789.
    [84] OHNO Y, MAEHASHI K, YAMASHIRO Y, MATSUMOTO K.Electrolyte-gated graphene field-effect transistors for detecting ph and proteinadsorption [J]. Nano Letters,2009,9:3318-3322.
    [85] WEHLING T O, NOVOSELOV K S, MOROZOV S V, VDOVIN E E,KATSNELSON M I, GEIM A K, LICHTENSTEIN A I. Molecular doping ofgraphene [J]. Nano Letters,2008,8:173-177.
    [86] LEENAERTS O, PARTOENS B, PEETERS F M. Adsorption of H2O, NH3, CO,NO2, and NO on graphene: A first-principles study [J]. Physical Review B,2008,77:125416.
    [87] BECERRIL H A, MAO J, LIU Z, STOLTENBERG R M, BAO Z, CHEN Y.Evaluation of solution-processed reduced graphene oxide films as transparentconductors [J]. ACS Nano,2008,2:463-470.
    [88] WANG X, ZHI L J, MULLEN K. Transparent, conductive graphene electrodesfor dye-sensitized solar cells [J]. Nano Letters,2008,8:323-327.
    [89] EDA G, FANCHINI G, CHHOWALLA M. Large-area ultrathin films of reducedgraphene oxide as a transparent and flexible electronic material [J]. NatureNanotechnology,2008,3:270-274.
    [90] COTE L J, KIM F, HUANG J X. Langmuir-blodgett assembly of graphite oxidesingle layers [J]. Journal of the American Chemical Society,2009,131:1043-1049.
    [91] LI X L, ZHANG G Y, BAI X D, SUN X M, WANG X R, WANG E, DAI H J.Highly conducting graphene sheets and Langmuir–Blodgett films [J]. NatureNanotechnology,2008,3:538-542.
    [92] BISWAS S, DRZAL L T. A novel approach to create a highly orderedmonolayer film of graphene nanosheets at the liquid liquid interface [J]. Nano Letters,2009,9:167-172.
    [93] DE S, KING P J, LOTYA M, O’NEILL A, DOHERTY E M, HERNANDEZ Y,DUESBERG G S, COLEMAN J N. Flexible, transparent, conducting films ofrandomly stacked graphene from surfactant-stabilized, oxide-free graphenedispersions [J]. Small,2009,6:458-464.
    [94] BLAKE P, BRIMICOMBE P D, NAIR R R, et al. Graphene-based liquid crystaldevice [J]. Nano Letters,2008,8:1704-1708.
    [95] WU J, AGRAWAL M, BECERRIL H A, BAO Z, LIU Z, CHEN Y, PEUMANSP. Organic light-emitting diodes on solution-processed graphene transparentelectrodes [J]. ACS Nano,2010,4:43-48.
    [96] WINTER M, BESENHARD J O, SPAHR M E, NOVAK P. Insertion electrodematerials for rechargeable lithium batteries [J]. Advanced Materials,1998,10:725-763.
    [97] LIU Y H, XUE J S, ZHENG T, DAHN J R. Mechanism of lithium insertion inhard carbons prepared by pyrolysis of epoxy resins [J]. Carbon,1996,34:193-200.
    [98] YOO E, KIM J, HOSONO E, ZHOU H, KUDO T, HONMA I. Large reversibleli storage of graphene nanosheet families for use in rechargeable lithium ion batteries[J]. Nano Letters,2008,8:2277-2282.
    [99] PAN D Y, WANG S, ZHAO B, WU M H, ZHANG H J, WANG Y, JIAO Z. Listorage properties of disordered graphene nanosheets [J]. Chemistry of Materials,2009,21:3136-3142.
    [100] LEE J K, SMITH K B, HAYNER C M, KUNG H H. Siliconnanoparticles-graphene paper composites for Li ion battery anodes [J]. ChemicalCommunications,2010,46:2025-2027.
    [101] CONWAY B E. Electrochemical supercapacitors: scientific fundamentals andtechnological applications, Plenum Publishers, New York1999.
    [102] SIMON P, GOGOTSI Y. Materials for electrochemical capacitors [J]. NatureMaterials,2008,7:845-854.
    [103] STOLLER M D, PARK S J, ZHU Y W, AN J H, RUOFF R S. Graphene-basedultracapacitors [J]. Nano Letters,2008,8:3498-3502.
    [104] WANG Y, SHI Z, HUANG Y, MA Y, WANG C, CHEN M, CHEN Y.Supercapacitor devices based on graphene materials [J]. The Journal of PhysicalChemistry C,2009,113:13103-13107.
    [105] ZHU Y, MURALI S, STOLLER M D, VELAMAKANNI A, PINER R D,RUOFF R S. Microwave assisted exfoliation and reduction of graphite oxide forultracapacitors [J]. Carbon,2010,48:2118-2122.
    [106] ZHU Y, STOLLER M D, CAI W, VELAMAKANNI A, PINER R D, CHEN D,RUOFF R S. Exfoliation of graphite oxide in propylene carbonate and thermalreduction of the resulting graphene oxide platelets [J]. ACS Nano,2010,4:1227-1233.
    [107] VIVEKCHAND S R C, ROUT C S, SUBRAHMANYAM K S,GOVINDARAJ A, RAO C N R. Graphene-based electrochemical supercapacitors [J].Journal of Chemical Science,2008,120:9-13.
    [108] LV W, TANG D M, HE Y B, YOU C H, SHI Z Q, CHEN X C, CHEN C M,HOU P X, LIU C, YANG Q H. Low-temperature exfoliated graphenes:vacuum-promoted exfoliation and electrochemical energy storage [J]. ACS Nano,2009,3:3730-3736.
    [109] SI Y C, SAMULSKI E T. Exfoliated graphene separated by platinumnanoparticles [J]. Chemistry of Materials,2008,20:6792-3797.
    [110] ZHANG Y P, LI H B, PAN L K, LU T, SUN Z. Capacitive behavior ofgraphene-ZnO composite film for supercapacitors [J]. Journal of ElectroanalyticalChemistry,2009,634:68-71.
    [111] YU D, DAI L. Self-assembled graphene/carbon nanotube hybrid films forsupercapacitors [J]. The Journal of Physical Chemistry Letters,2009,1:467-470.
    [112] WANG D W, LI F, ZHAO J, REN W, CHEN Z G, TAN J, WU Z S, GENTLE I,LU G Q, CHENG H M. Fabrication of graphene/polyaniline composite paper via insitu anodic electropolymerization for high-performance flexible electrode [J]. ACSNano,2009,3:1745-1752.
    [113] SRINIVAS G, ZHU Y, PINER R, SKIPPER N, ELLERBY M, RUOFF R.Synthesis of graphene-like nanosheets and their hydrogen adsorption capacity [J].Carbon,2009,48:630-635.
    [114] KOU R, SHAO Y, WANG D, et al. Enhanced activity and stability of Ptcatalysts on functionalized graphene sheets for electrocatalytic oxygen reduction [J].Electrochemistry Communications,2009,11:954-957.
    [115] LI Y, TANG L, LI J. Preparation and electrochemical performance formethanol oxidation of Pt/graphene nanocomposites [J]. ElectrochemistryCommunications,2009,11:846-849.
    [116] WU J, BECERRIL H A, BAO Z, LIU Z, CHEN Y, PEUMANS P. Organicsolar cells with solution-processed graphene transparent electrodes [J]. AppliedPhysical Letters,2008,92:263302.
    [117] JANG B Z, ZHAMU A. Processing of nanographene platelets (NGPs) and NGPnanocomposites: a review [J]. Journal of Materials Science,2008,43:5092-5101.
    [118] FANG M, WANG K G, LU H B, YANG Y L, NUTT S. Covalent polymerfunctionalization of graphene nanosheets and mechanical properties of composites [J].Journal of Materials Chemistry,2009,19:7098-7105.
    [119] RAMANATHAN T, ABDALA A A, STANKOVICH S, et al. Functionalizedgraphene sheets for polymer nanocomposites [J]. Nature Nanotechnology,2008,3:327-331.
    [120] LIANG J J, HUANG Y, ZHANG L, WANG Y, MA Y F, GUO T Y, CHEN YS. Molecular-level dispersion of graphene into poly(vinyl alcohol) and effectivereinforcement of their nanocomposites [J]. Advanced Functional Materials,2009,19:2297-2302.
    [121] KALAITZIDOU K, FUKUSHIMA H, DRZAL L T. A new compoundingmethod for exfoliated graphite–polypropylene nanocomposites with enhanced flexuralproperties and lower percolation threshold [J]. Composites Science and Technology,2007,67:2045-2051.
    [122] GANGULI S, ROY A K, ANDERSON D P. Improved thermal conductivity forchemically functionalized exfoliated graphite/epoxy composites [J]. Carbon,2008,46:806-817.
    [123] KIM H, MACOSKO C W. Morphology and properties of polyester/exfoliatedgraphite nanocomposites [J]. Macromolecules,2008,41:3317-3327.
    [124] Verdejo R, Barroso-Bujans F, Rodriguez-Perez M A, DE SAJA J A,LOPEZ-MANCHADO M A. Functionalized graphene sheet filled silicone foamnanocomposites [J]. Journal of Materials Chemistry,2008,18:2221-2226.
    [125] CAI D, YUSOH K, SONG M. The mechanical properties and morphology of agraphite oxide nanoplatelet/polyurethane composite [J]. Nanotechnology,2009,20:085712.
    [126] ANSARI S, GIANNELIS E P. Functionalized graphene sheet-Poly(vinylidenefluoride) conductive nanocomposites [J]. Journal of Polymer Science Part B: PolymerPhysics,2009,47:888-897.
    [127] KIM H, MACOSKO C W. Processing-property relationships ofpolycarbonate/graphene composites [J]. Polymer,2009,50,3797-3809.
    [128] WENZEL R N. Resistance of solid surfaces to wetting by water [J]. Industrialand Engineering Chemisty,1936,28:988-994.
    [129] CASSIE A B D, BAXTE S. Wettability of porous surfaces [J]. Transactions ofthe Faraday Society,1944,40:546-551.
    [130] HOHENBERG P, KOHN W. Inhomogeneous electron gas [J]. Physical ReviewB,1964,136:864.
    [131] LEVY R, KARPLUS M, MCCAMMON J A. Diffusive langevin dynamics ofmodel alkanes [J]. Chemical Physics Letters,1979,65:4-11.
    [132] ROOTHAAN C C J. New developments in molecular orbital theory [J].Reviews of Modern Physics,1951,23:69-89.
    [133] SLATER J C. Statistical exchange-correlation in the self-consistent field [J].Advances in Quantum Chemistry,1972,6:1-92.
    [134] DEWAR M J S. Development and status of MINDO/3and MNDO [J]. Journalof Molecular Structure,1983,100:41-50.
    [135] POPLE J A, NESBET R K. Self-consistent orbitals for radicals [J]. Journal ofChemical Physics,1954,22:571-572.
    [136] HEDIN L, LUNDQVIST B I. Explicit local exchange correlation potentials [J].Journal of Physics C,1971,4:2064-2083.
    [137] CEPERLEY, D. M, ALDER, B. J. Ground state of the electron gas by astochastic method [J]. Physical Review Letters,1980,45:566-569.
    [138] LUNDQVIST S, MARCH N. Theory of the inhomogeneous electron gas.Plenum: New York,1983.
    [139] VON BARTH U, HEDIN L. A local exchange-correlation potential for the spinpolarized case [J]. Journal of Physics C,1972,5:1629-1642.
    [140] VOSKO S J, WILK L, NUSAIR M. Accurate spin-dependent electron liquidcorrelation energies for local spin density calculations: a critical analysis [J].Canadian Journal of Physics,1980,58:1200-1211.
    [141] PERDEW J P, WANG Y. Accurate and simple analytic representation of theelectron-gas correlation energy [J]. Physical Review B,1992,45:13244-13249.
    [142] SLATER J C. A Simplification of the hartree-fock method [J]. Physical Review,1951,81:385-390.
    [143] JANAK J F, MORRUZI L, WILLIAMS A R. Ground-state thermomechanicalproperties of some cubic elements in the local-density formalism [J]. Physical ReviewB,1975,12:1257-1261.
    [144] ZIEGLER T. Approximate density functional theory as a practical tool inmolecular energetics and dynamics [J]. Chemical Reviews,1991,91:651-667.
    [145] LABANOWSKI K, ANDZELM J. Density functional methods in chemistry.Springer-Verlag: New York,1991.
    [146] SEMINARIO J M, POLITZER P. Density functional theory: a tool forchemistry. Elsevier: Amsterdam,1995.
    [147] BECKE A D. A Multicenter numerical integration scheme for polyatomicmolecules [J]. Journal of Chemical Physics,1988,88:2547-2553.
    [148] LEE C T, YANG W T, PARR R G. Development of the colle-salvetticrrelation-energy formula into a functional of the electron density [J]. PhysicalReview B,1988,37:785-789.
    [149] KOHN W, SHAM L J. Self-consistent equations including exchange andcorrelation effects [J]. Physical Review A,1965,140:1133-1138.
    [150] ANDZELM J, WIMMER E, SALAHUB D R. Spin density functional approachto the chemistry of transition metal clusters: gaussian-type orbital implementation.The challenge of d and f electrons: theory and computation, ACS Symposium Series,1989,394.
    [151] VERSLUIS L, ZIEGLER T. The determination of molecular structures bydensity functional theory. The evaluation of analytical energy gradients by numericalintegration [J]. Journal of Chemical Physics,1988,88:322-328.
    [152] PAYNE M C, TETER M P, ALLAN D C, ARIAS T A, JOANNOPOULOS J D.Iterative minimization techniques for ab initio total-energy calculations: moleculardynamics and conjugate gradients [J]. Reviews of Modern Physics,1992,64:1045.
    [153] HALGREN T A, LIPSCOMB W N. The synchronous-transit method fordetermining reaction pathways and locating molecular transition states [J]. ChemicalPhysics Letters,1977,49:225-232.
    [154] http://www.theochem.uni-stuttgart.de/~kaestner/gallery.html.
    [155] KUYKENDALL T, PAUZAUSKIE P, LEE S, ZHANG Y, GOLDBERGER J,YANG P. Metalorganic chemical vapor deposition route to gan nanowires withtriangular cross sections [J]. Nano Letters,2003,3:1063-1066.
    [156] HA B, SEO S H, CHO J H, YOON C S, YOO J, YI G-C, PARK C Y, LEE C J.Optical and field emission properties of thin single-crystalline gan nanowires [J]. TheJournal of Physical Chemistry B,2005,109:11095-11099.
    [157] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradientapproximation made simple [J]. Physical Review Letters,1996,77:3865.
    [158] HAMMER B, HANSEN L B, OSLASH, RSKOV J K. Improved adsorptionenergetics within density-functional theory using revised Perdew-Burke-Ernzerhoffunctionals [J]. Physical Review B,1999,59:7413.
    [159] BOESE A D, HANDY N C. A new parametrization of exchange-correlationgeneralized gradient approximation functionals [J]. The Journal of Chemical Physics,2001,114:5497-5503.
    [160] TSUNEDA T, SUZUMURA T, HIRAO K. A new one-parameter progressiveColle-Salvetti-type correlation functional [J]. The Journal of Chemical Physics,1999,110:10664-10678.
    [161] WILSON E B, DECIUS J C, CROSS P C. Molecular Vibrations [J]. Dover:New York,1980.
    [162] KOELLING D D, HARMON B N. A technique for relativistic spin-polarisedcalculations [J]. Journal of Physics C: Solid State Physics,1977,10:3107.
    [163] DOLG M, WEDIG U, STOLL H, PREUSS H. Energy-adjusted ab initiopseudopotentials for the first row transition elements [J]. The Journal of ChemicalPhysics,1987,86:866-872.
    [164] DELLEY B. Hardness conserving semilocal pseudopotentials [J]. PhysicalReview B,2002,66:155125.
    [165] PERDEW J P, ZUNGER A. Self-interaction correction to density-functionalapproximations for many-electron systems [J]. Physical Review B,1981,23:5048.
    [166] PERDEW J P, CHEVARY J A, VOSKO S H, JACKSON K A, PEDERSON MR, SINGH D J, FIOLHAIS C. Atoms, molecules, solids, and surfaces: Applications ofthe generalized gradient approximation for exchange and correlation [J]. PhysicalReview B,1992,46:6671.
    [167] WU Z, COHEN R E. More accurate generalized gradient approximation forsolids [J]. Physical Review B,2006,73:235116.
    [168] PERDEW J P, RUZSINSZKY A, CSONKA G, et al. Restoring thedensity-gradient expansion for exchange in solids and surfaces [J]. Physical ReviewLetters,2008,100:136406.
    [169] HAMANN D R, SCHL, UUML, TER M, CHIANG C. Norm-conservingpseudopotentials [J]. Physical Review Letters,1979,43:1494.
    [170] VANDERBILT D. Soft self-consistent pseudopotentials in a generalizedeigenvalue formalism [J]. Physical Review B,1990,41:7892.
    [171] RAMER N J, RAPPE A M. Virtual-crystal approximation that works: Locatinga compositional phase boundary in Pb(Zr1-xTix)O3[J]. Physical Review B,2000,62:R743.
    [172] KRESSE G, Furthmüller J. Efficient iterative schemes for ab initio total-energycalculations using a plane-wave basis set [J]. Physical Review B,1996,54:11169.
    [173] SHIN Y J, WANG Y Y, HUANG H, KALON G, WEE A T S, SHEN Z X,BHATIA C S, YANG H. Surface-energy engineering of graphene [J]. Langmuir,2010,26:3798-3802.
    [174] GAO X F, JIANG L. Biophysics: water-repellent legs of water striders [J].Nature,2004,432:36-36.
    [175] FENG X J, FENG L, JIN M H, ZHAI J, JIANG L, ZHU D B. Reversiblesuper-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films[J]. Journal of the American Chemistry Society,2004,126:62-63.
    [176] LEENAERTS O, PARTOENS B, PEETERS F M. Water on graphene:hydrophobicity and dipole moment using density functional theory [J]. PhysicalReview B,2009,79:235440.
    [177] WANG S, ZHANG Y, ABIDI N, CABRALES L. Wettability and surface freeenergy of graphene films [J]. Langmuir,2009,25:11078-11081.
    [178] CHEN H Q, MüLLER M B, GILMORE K J, WALLACE G G, LI D.Mechanically strong, electrically conductive, and biocompatible graphene paper [J].Advanced Materials,2008,20:3557-3561.
    [179] RAFIEE J, RAFIEE M A, YU Z Z, KORATKAR N. Superhydrophobic tosuperhydrophilic wetting control in graphene films [J]. Advanced Materials,2010,22:2151-2154.
    [180] ZHANG X, WAN S, PU J, WANG L, LIU X. Highly hydrophobic andadhesive performance of graphene flms [J]. Journal of Materials Chemistry,2011,21:12251-12258.
    [181] AO Z M, PEETERS F M. Electric field activated hydrogen dissociativeadsorption to nitrogen-doped graphene [J]. The Journal of Physical Chemistry C,2010,114:14503-14509.
    [182] AO Z M, PEETERS F M. Electric field: a catalyst for hydrogenation ofgraphene [J]. Applied Physics Letters,2010,96:253106.
    [183] HYMAN M P, MEDLIN J W. Theoretical study of the adsorption anddissociation of oxygen on Pt(111) in the presence of homogeneous electric fields [J].Journal of Physical Chemistry B,2005,109:6304-6310.
    [184] CHOI I, CHI Y S. Surface reactions on demand: electrochemical control ofsam-based reactions [J]. Angewandte Chemie International Edition,2006,45:4894-4897.
    [185] DELLEY B. From molecules to solids with the DMol3approach [J]. TheJournal of Chemical Physics,2000,113:7756-7764.
    [186] ROLDáN A, RICART J M, ILLAS F. Influence of the exchange–correlationpotential on the description of the molecular mechanism of oxygen dissociation by Aunanoparticles [J]. Theoretical Chemistry Accounts,2009,123:119-126.
    [187] HENKELMAN G, JONSSON H. Improved tangent estimate in the nudgedelastic band method for finding minimum energy paths and saddle points [J]. TheJournal of Chemical Physics,2000,113:9978-9985.
    [188] GRIMME S. Semiempirical GGA-type density functional constructed with along-range dispersion correction [J]. Journal of Computational Chemistry,2006,27:1787-1789.methodology for quantum chemical a priori prediction of reaction rate constants [J].The Journal of Physical Chemistry A,2005,109:9563-9572.
    [190] YOUNG D C. Computational chemistry: a practical guide for applyingtechniques to real world problems, Wiley: New York,2001.
    [191] SAITTA A M, SAIJA F, GIAQUINTA P V. Ab initio molecular dynamicsstudy of dissociation of water under an electric field [J]. Physical Review Letters,2012,108:207801.
    [192] LIN Z, LIU Y, YAO Y, HILDRETH O J, LI Z, MOON K, WONG C. Superiorcapacitance of functionalized graphene [J]. The Journal of Physical Chemistry C,2011,115:7120-7125.
    [193] PANTELIC R S, SUK J W, HAO Y F, RUOFF R S, STAHLBERG H.Oxidative doping renders graphene hydrophilic, facilitating its use as a support inbiological TEM [J]. Nano Letters,2011,11:4319-4323.
    [194] PAKDEL A, ZHI C, BANDO Y, NAKAYAMA T, GOLBERG D. Boronnitride nanosheet coatings with controllable water repellency [J]. ACS Nano,2011,5:6507-6515
    [195] GIOVAMBATTISTA N, DEBENEDETTI P G, ROSSKY P J. Reversiblesuper-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films[J]. The Journal of Physical Chemistry B,2007,111:9581-9587.
    [196] BOUKHVALOV D W, KATSNELSON M I. Modeling of graphite oxide [J].Journal of the American Chemical Society,2008,130:10697-10701.
    [197] JUNG I, DIKIN D A, PINER R D, RUOFF R S, Tunable electrical conductivityof individual graphene oxide sheets reduced at "low" temperatures [J]. Nano Letters,2008,8:4283-4287.
    [198] JIANG Q G, AO Z M, CHU D W, JIANG Q. Reversible transition of graphenefrom hydrophobic to hydrophilic in the presence of an electric field [J]. The Journal ofPhysical Chemistry C,2012,116:19321-19326.
    [199] SUN R D, NAKAJIMA A, FUJISHIMA A, WATANABE T, HASHIMOTO K.Photoinduced surface wettability conversion of ZnO and TiO2thin films [J]. TheJournal of Physical Chemistry B,2001,105:1984-1990.
    [200] LV Y A, ZHUANG G L, WANG J G, JIA Y B, Xie Q. Enhanced role of al orga-doped graphene on the adsorption and dissociation of n2o under electric field [J].Physical Chemistry Chemical Physics,2011,13:12472-12477.
    [201] AO Z M, YANG J, LI S, JIANG Q. Enhancement of CO detection in Al dopedgraphene [J]. Chemical Physics Letters,2008,461:276-279.
    [202] DAI J Y, YUAN J M, GIANNOZZI P. Gas adsorption on graphene doped withB, N, Al, and S: a theoretical study [J]. Applied Physics Letters,2009,95:232105.
    [203] DAI J Y, YUAN J M. Adsorption of molecular oxygen on doped graphene:atomic, electronic, and magnetic properties [J]. Physical Review B,2010,81:165414.
    [204]DENIS P A. Band gap opening of monolayer and bilayer graphene doped withaluminium, silicon, phosphorus, and sulfur [J]. Chemical Physics Letters,2010,492:251-257.
    [205] SEGALL M D, LINDAN P L D, PROBERT M J, PICKARD C J, HASNIP P J,CLARK S J, Payne M C. First-principles simulation: ideas, illustrations and theCASTEP code [J]. Journal of Physics: Condensed Matter,2002,14:2717-2744.
    [206] LI X, FENG J, WANG E G, MENG S, KLIME J, Michaelides A. Influence ofwater on the electronic structure of metal-supported graphene: Insights from van derWaals density functional theory [J]. Physical Review B,2012,85:085425.
    [207] SONG E H, YAN J M, LIAN J S, Jiang Q. External electric field catalyzed n2odecomposition on mn-embedded graphene [J]. The Journal of Physical Chemistry C,2012,116:20342-20348.
    [208] SHAPOVALOV V, TRUONG T N. Ab initio study of water adsorption onalpha-Al2O3(0001) crystal surface [J]. The Journal of Physical Chemistry B,2000,104:9859-9863.
    [209] ZHAO Z S, XU B, WANG L M, ZHOU X F, HE J L, LIU Z Y, WANG H T,TIAN Y J. Three dimensional carbon-nanotube polymers [J]. ACS Nano,2011,5:7226-7234.
    [210] BALAT M. Potential importance of hydrogen as a future solution toenvironmental and transportation problems [J]. International Journal of HydrogenEnergy,2008,33:4013-4029.
    [211] BUTTNER W J, POST M B, BURGESS R, RIVKIN C. An overview ofhydrogen safety sensors and requirements [J]. International Journal of HydrogenEnergy,2011,36:2462-2470.
    [212] VARGHESE O K, GONG D, PAULOSE M, ONG K G, GRIMES C A.Hydrogen sensing using titania nanotubes [J]. Sensors and Actuators B: Chemical,2003,93:338-344.
    [213] MOR G K, VARGHESE O K, PAULOSE M, ONG K G, GRIMES C A.Fabrication of hydrogen sensors with transparent titanium oxide nanotube-array thinfilms as sensing elements [J]. Thin Solid Films,2006,496:42-48.
    [214] WANG B, ZHU L F, YANG Y H, XU N S, YANG G W. Fabrication of a SnO2Nanowire Gas Sensor and Sensor Performance for Hydrogen [J]. The Journal ofPhysical Chemistry C,2008,112:6643-6647.
    [215] LU C, CHEN Z. High-temperature resistive hydrogen sensor based on thinnanoporous rutile TiO2film on anodic aluminum oxide [J]. Sensors and Actuators B:Chemical,2009,140:109-115.
    [216] RASHID T R, PHAN D T, CHUNG G S. A flexible hydrogen sensor based onPd nanoparticles decorated ZnO nanorods grown on polyimide tape [J]. Sensors andActuators B: Chemical,2013,185:777-784.
    [217] WAITZ T, WAGNER T, SAUERWALD T, KOHL C D, TIEMANN M.Ordered mesoporous In2O3: synthesis by structure replication and application as amethane gas sensor [J]. Advanced Functional Materials,2009,19:653-661.
    [218] MIURA Y, KASAI H, DI O W, NAKANISHI H, SUGIMOTO T. Firstprinciples studies for the dissociative adsorption of H2on graphene [J]. Journal ofApplied Physics,2003,93:3395-3400.
    [219] BANHART F, KOTAKOSKI J, KRASHENINNIKOV A V. Structural defectsin graphene [J]. ACS Nano,2011,5:26-41.
    [220] LI D, MULLER M B, GILJE S, KANER R B, WALLACE G G. Processableaqueous dispersions of graphene nanosheets [J]. Nature Nanotechnology,2008,3:101-105.
    [221] TAPASZTó L, DOBRIK G, NEMES INCZEL P, VERTESY G, LAMBIN P,BIRóL P. Tuning the electronic structure of graphene by ion irradiation [J]. PhysicalReview B,2008,78:233407.
    [222] LEHTINEN O, KOTAKOSKI J, KRASHENINNIKOV A V, TOLVANEN A,NORDLUND K, KEINONEN J. Effects of ion bombardment on a two-dimensionaltarget: Atomistic simulations of graphene irradiation [J]. Physical Review B,2010,81:153401.
    [223] LEHTINEN P O, FOSTER A S, MA Y C, KRASHENINNIKOV A V,NIEMINEN R M. Irradiation-induced magnetism in graphite: a density functionalstudy [J]. Physical Review Letters,2004,93:187202.
    [224] ALLOUCHE A, FERRO Y. Dissociative adsorption of small molecules atvacancies on the graphite (0001) surface [J]. Carbon,2006,44:3320-3327.
    [225] KIM B H, HONG S J, BAEK S J, et al. N-type graphene induced bydissociative H2adsorption at room temperature [J]. Scintific Reports,2012,2:690.
    [226] CARLSSON J M, HANKE F, LINIC S, SCHEFFLER M. Two-step mechanismfor low-temperature oxidation of vacancies in graphene [J]. Physical Review Letters,2009,102:166104.
    [227] REUTER K, SCHEFFLER M. Composition, structure, and stability ofRuO2(110) as a function of oxygen pressure [J]. Physical Review B,2001,65:035406.
    [228] YANG Z X, WANG Q G, WEI S Y, MA D W, SUN Q. The effect ofenvironment on the reaction of water on the ceria (111) surface: A DFT+U study [J].The Journal of Physical Chemics C,2010,114:14891-14899.
    [229] NIST Chemistry Webbook: http://webbook.nist.gov/.
    [230] SUN C Q, NIE Y G, PAN J S, ZHANG X, MA S Z, WANG Y, ZHENG W T.Zone-selective photoelectronic measurements of the local bonding and electronicdynamics associated with the monolayer skin and point defects of graphite [J]. RSCAdvances,2012,2:2377-2383.
    [231] AMFT M, LEBèGUE S, ERIKSSON O, SKORODUMOVA N V. Adsorptionof Cu, Ag, and Au Atoms on graphene including van der Waals interactions [J].Journal of Physics: Condensed Matter,2011,23:395001.
    [232] GANZ E, SATTLER K, CLARKE J. Scanning tunneling microscopy of Cu, Ag,Au and Al adatoms, small clusters, and islands on graphite [J]. Surface Science,1989,219:33-67.
    [233] COSTANZO F, SILVESTRELLI P L, ANCILOTTO F. Physisorption,diffusion, and chemisorption pathways of H2molecule on graphene and on (2,2)carbon nanotube by first principles calculations [J]. Journal of Chemical Theory andComputation,2012,8:1288-1294.
    [234] HERZING A A, KIELY C J, CARLEY A F, LANDON P, HUTCHINGS G J.Identification of active gold nanoclusters on iron oxide supports for CO oxidation [J].Science,2008,321:1331-1335.
    [235] XIE X W, LI Y, LIU Z Q, HARUTA M, SHEN W J. Low-temperatureoxidation of CO catalysed by Co3O4nanorods [J]. Nature,2009,458:746-749.
    [236] HORNES A, HUNGRIA A B, BERA P, et al. Inverse CeO2/CuO catalyst as analternative to classical direct configurations for preferential oxidation of CO inhydrogen rich stream [J]. Journal of the American Chemical Society,2010,132:34-35.
    [237] LIU Z P, HU P, ALAVI A. Catalytic role of gold in gold-based catalysts: adensity functional theory study on the CO oxidation on gold. Journal of the AmericanChemical Society,2002,124:14770-14779.
    [238] BLEAKLEY K, HU P. A density functional theory study of the interactionbetween CO and O on a Pt Surface: CO/Pt(111), O/Pt(111), and CO/O/Pt(111)[J].Journal of the American Chemical Society,1999,121:7644-7652.
    [239] GONG X Q, LIU Z P, RAVAL R, HU P. A systematic study of CO oxidationon metals and metal oxides: density functional theory calculations [J]T[2h4e0J] oLuIrUna Dl o Jf. PChOy soicxaild aCtihoenm oisnt rRyh C(1,0200)0:7m,1u1lt1i:s i1te46a9to8m-1i4st7i0c6l.attice-g. a2s00m4o, d1e2l6in: g8-[9J]..
    [241] LIU Z P, GONG X Q, KOHANOFF J, SANCHEZ C, HU P. Catalytic role ofmetal oxides in gold-based catalysts: a first principles study of CO oxidation on TiO2supported Au [J]. Physical Review Letters,2003,91:266102.
    [242] WANG Y G, YOON Y, GLEZAKOU V A, LI J, ROUSSEAU R. The role ofreducible oxide–metal cluster charge transfer in catalytic processes: new insights onthe catalytic mechanism of CO oxidation on Au/TiO2from ab initio moleculardynamics [J]. Journal of the American Chemical Society,2013,135:10673-10683.
    [243] LU Y H, ZHOU M, ZHANG C, FENG Y P. Metal-embedded graphene: apossible catalyst with high activity [J]. The Journal of Physical Chemistry C,2009,113:20156-20160.
    [244] SONG E H, WEN Z, JIANG Q. CO catalytic oxidation on copper-embeddedgraphene [J]. The Journal of Physical Chemistry C,2011,115:3678-3683.
    [245] LI Y F, ZHOU Z, YU G T, CHEN W, CHEN Z F. CO catalytic oxidation oniron-embedded graphene: computational quest for low-cost nanocatalysts [J]. TheJournal of Physical Chemistry C,2010,114:6250-6254.
    [246] TANG Y N, YANG Z X, DAI X Q. A theoretical simulation on the catalyticoxidation of CO on Pt/graphene [J]. Physical Chemistry Chemical Physics,2012,14:16566-16572.
    [247] ZHAO J X, CHEN Y, FU H G. Si-embedded graphene: an efficient andmetal-free catalyst for CO oxidation by N2O or O2. Theoretical Chemistry Accounts,2012,131:1242.
    [248] JIANG Q G, AO Z M, JIANG Q. First principles study on the hydrophilic andconductive graphene doped with Al Atoms [J]. Physical Chemistry Chemical Physics,2013,15:10859-10865.
    [249] AO Z M, PEETERS F M. High-capacity hydrogen storage in Al-adsorbedgraphene [J]. Physical Review B,2010,81:205406.
    [250] http://www.knowledgedoor.com/2/elements_handbook/cohesive_energy.html.
    [251] HONKALA K, LAASONEN K. Oxygen molecule dissociation on the Al(111)surface [J]. Physical Review Letters,2000,84:705.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700